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ABSTRACT The pH-dependent insertion of pHLIP across membranes is proving to be a useful property for targeting acidic
tissues or tumors and delivering drugs attached to its C-terminus. It also serves as a model peptide for studies of protein insertion
into membranes, so further elucidation of the insertion mechanism of pHLIP and its features is desirable. We examine how
the peptide perturbs a model phosphatidylcholine membrane and how it associates with the lipid bilayer using an array of
fluorescence techniques, including fluorescence anisotropy measurements of TMA-DPH anchored in bilayers, quenching of
pHLIP fluorescence by brominated lipids and acrylamide, and measurements of energy transfer between aromatic residues
of pHLIP and TMA-DPH. When pHLIP is bound to the surface of bilayers near neutral pH, the membrane integrity is preserved
whereas the elastic properties of bilayers are changed as reported by an increase of membrane viscosity. When it is inserted,
there is little perturbation of the lipids. The results also suggest that pHLIP can bind to the membrane surface in a shallow or a deep
mode depending on the phase state of the lipids. Using parallax analysis, the change of the penetration depth of pHLIP was
estimated to be 0.4 Å from the bilayer center and 2.8 Å from the membrane surface after the liquid-to-gel phase transition.

INTRODUCTION

The isolated C-helix of bacteriorhodopsin has been observed

previously to be water-soluble, to bind to lipid bilayer surfaces

as an unstructured peptide above pH 7, and to spontaneously

insert as an a-helix across lipid bilayers in a pH-dependent

manner, with a pKapp of 6 (1). The insertion of this peptide,

dubbed pHLIP, for pH low insertion peptide, is reversible

and oriented such as the C-terminus is translocated across

the membrane whereas the N-terminus stays outside of

the membrane (2,3). The insertion mechanism is coupled to

the protonation of one or both of two aspartic acid residues

located in the transmembrane part of the peptide (Asps at

positions 85 and 96 in the bacteriorhodopsin sequence) (1,4).

The thermodynamics of pHLIP binding and insertion in

membranes has been analyzed in detail (1,5), and its three

major forms (soluble in aqueous solution, bound at the

membrane surface, and inserted across a lipid bilayer) were

found to be monomeric at peptide concentrations less than

;7 mM (3).

Owing to its exceptional characteristics, pHLIP can be

used as a model peptide for studying membrane protein

folding and insertion in lipid bilayers, or as a tool for thera-

peutic drug delivery. Individual peptides that mimic trans-

membrane sections of membrane proteins are suitable model

systems for biophysical studies to obtain an insight into the

molecular interactions that play a role in the native system

(6–8). Such an approach is rationalized by the two-stage

process model of membrane protein folding, when individual

helices first insert and, then, oligomerize to form higher order

structures (9,10). Folding pathways for membrane proteins

can be based on this model even if additional steps are often

required for achieving the final equilibration of native and

functional structures in vivo (11). Studying a single helix

may thus provide an insight into the folding of more complex

membrane proteins (12,13).

Biological membranes are the main barriers for thera-

peutic drug delivery. The energy released as a result of

pHLIP insertion into a membrane can be used to move cell-

impermeable cargo molecules across a membrane into a cell

(2). The ability of pHLIP to target cells in an extracellular

acidic environment, which is associated with tumors and

other pathological conditions, has been confirmed in vivo by

whole-body fluorescence and positron emission tomography

imaging (4,14). pHLIP has also been shown to induce shape

changes of RBCs at neutral pH, consistent with the idea that

peptide binding perturbs the bilayer structure, whereas at low

pH, i.e., when the peptide is inserted in lipid bilayers, the

perturbations are absent (4).

The objective of this study is to gain further insights into

the interaction of pHLIP with a lipid bilayer both for fun-
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damental understanding and to facilitate the rational design

of sequences that insert into cell membranes in a controlled

way. The strain that pHLIP induces in a bilayer when it is

bound to its surface, the positioning of the peptide at the

bilayer surface in the liquid-crystal and gel phases, and the

changes on membrane insertion were investigated in detail by

a variety of biophysical methods.

MATERIALS AND METHODS

Materials

Mops was purchased from Roche Diagnostics (Indianapolis, IN). Urea,

melittin peptide from honey bee venom, and Triton X-100 were supplied by

Sigma-Aldrich (St. Louis, MO). One M Tris�HCl pH 8 solution was from

American Bioanalytical (Natick, MA). The pH of the samples was checked

using a MI-415 pH combination electrode supplied by Microelectrodes

(Bedford, MA). POPC, DMPC, DPPC, (6-7)Br2-PC, and (9-10)Br2-PC in

chloroform, and a mini-extruder were purchased from Avanti Polar Lipids

(Alabaster, AL). TMA-DPH and calcein were from Invitrogen Molecular

Probes (Carlsbad, CA). The HiPrep 26/10 Desalting column and the Äkta

FPLC system were from GE Healthcare Life Sciences (Piscataway, NJ).

Slide-A-lyser dialysis cassettes of 3,500 Da cutoff (0.5 to 3 mL capacity)

were from Pierce Biotechnology (Rockford, IL). pHLIP with the following

sequence GGEQNPIYWARYADWLFTTPLLLLDLALLVDADEGT and the

variant with the six last residues in C-terminus, –NANQGT were chemically

synthesized and purified (.95%) by Biopeptide (San Diego, CA).

Preparation of pHLIP sample

A lyophilized powder of the peptide was dissolved at 1 mg mL�1 in 8 M urea,

20 mM Tris�HCl, 50 mM NaCl, pH 8. After vortexing, the sample was dialyzed

four times against 500 mL of the same buffer without urea. The buffer was

exchanged for 20 mM Mops, 50 mM NaCl, pH 7.9 over four additional dialysis

baths. The final concentration of pHLIP was determined by UV absorption

using a molar extinction coefficient of e280 ¼ 13,940 M�1 cm�1 (2).

Preparation of vesicle suspensions

Five milligrams of lipids in chloroform (the initial concentrations were 25 mg

mL�1 for POPC and 10 mg mL�1 for DMPC) were dried in a rotary evap-

orator and then held under vacuum overnight. The dried lipid film was re-

hydrated with 1 mL of water and vortexed. The resulting vesicles were

subjected to five cycles of freeze-thawing to produce liposomes, which then

were extruded (25 times using a mini-extruder) through 100 nm pore di-

ameter filters to obtain LUVs. Lipid concentration was checked using

Marshall’s assay (15).

Steady-state anisotropy measurements

LUVs were prepared from DMPC according to the protocol described above

and TMA-DPH in methanol was added from a 5 mM stock solution to give a

final probe/lipid molar ratio of 1:500 (0.2 mol %). To allow the probe to be

incorporated, liposomes were incubated at 30�C (i.e., above Tm) for at

least 1 h before use. Increasing concentrations of pHLIP peptide (0.2, 0.4,

1.0, and 2.0 mol %) were mixed with 1.9 mM LUVs and samples were

allowed to equilibrate for 15 min at 30�C before the measurements. The

buffers were 20 mM Mops at pH 7.5 or pH 4.0. All measurements were taken

in 3 mm wide cuvettes (sample volume ¼ 150 mL). Fluorescence polariza-

tion was measured on a PTI fluorimeter equipped with a Peltier device

connected to a temperature controller. The widths of excitation and emission

slits were 4 nm. The excitation and emission wavelengths were 350 nm and

420 nm, respectively. Measurements were started at 10�C and the tem-

perature was increased gradually to 40�C with steps of 2�C. An equilibration

time of 2 min was allowed after each temperature change. For each tem-

perature, the emission fluorescence was recorded for 1 min and averaged.

The vertically and horizontally polarized emission intensities were corrected

for background scattering by subtraction of the corresponding polarized

intensities of a blank containing an unlabeled LUV suspension. Steady-

state fluorescence anisotropy was determined according to the following

equation (16):

r ¼ IVV � GIVH

IVV 1 2GIVH

; (1)

where IVV and IVH are the emission intensities measured with the excitation

polarizer set in the vertical direction and the emission polarizer oriented in the

vertically or horizontally direction, respectively. The instrumental factor G

(G ¼ IHV/IHH) was determined by measuring the emission intensities of the

fluorescent probe with the excitation polarizer oriented in the horizontally

direction.

FRET measurements

Measurements were carried out using a SLM-Aminco 8000C spectro-

fluorimeter (ISS, Champaign, IL) equipped with a thermo-bath RTE-111

(Neslab). The widths of the excitation and emission slits were 4 nm. Energy

transfer between aromatic residues of pHLIP excited at 280 nm and TMA-

DPH (0.2 mol %) incorporated in DMPC or POPC bilayers was recorded

over the wavelength range from 290 to 540 nm as a function of temperature.

Measurements were started at 35�C and the temperature was lowered to 15�C

in steps of 5�C. The molar ratio of pHLIP to lipids was 0.25 mol % and the

concentration of lipids was 0.85 mM. The buffers used in the experiments

were 20 mM Mops at pH 7.5 or pH 4.3. Light scattering and fluorescence

backgrounds of a blank containing TMA-DPH inserted into LUVs were

subtracted from the spectra.

CD spectroscopy

Measurements were carried out using a CD spectrometer model 215 (Aviv,

Lakewood, NJ). All spectra were recorded over the wavelength range from

200 to 280 nm with a 1 nm wavelength step and 3.0 s averaging time.

Samples were measured in a 1.0 cm path length cuvette, with a sample

volume of 3 mL, at 37�C. Peptide concentrations were checked at the end of

each assay by quantitative amino acid analysis and these values were used to

normalize the mean residue ellipticity. Two scans were averaged for each

sample and the appropriate background contribution, i.e., buffer with or

without LUVs, was subtracted from the spectra.

Calcein leakage experiments

The dried POPC lipid film was rehydrated with 50 mM calcein in 10 mM

Mops, 150 mM NaCl, 5 mM EDTA, pH 7.4. LUVs were prepared using the

standard procedure and the free dye was removed by passage over a HiPrep

26/10 Desalting column (Sephadex G-25 Fine) pre-equilibrated with the

same buffer. The total lipid concentration was adjusted with buffer to a final

concentration of 0.1 mM. The LUV sample was kept at 4�C for a maximum

of 3 days. Calcein leakage from the vesicles was monitored by measuring the

decrease of self-quenching (excitation and emission wavelengths were set at

450 nm and 515 nm, respectively). The widths of excitation and emission

slits were 2 nm. The percentage of dye released from the vesicles was cal-

culated using the equation (17):

%release ¼ 100 3 ðIF � IBÞ=ðIT � IBÞ; (2)

where IB is the background (self-quenched) intensity of calcein encapsulated

in vesicles, IF is the enhanced fluorescence intensity resulting from the
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dilution of dye in the medium, IT is the total fluorescence intensity after

complete permeabilization by addition of 0.05% Triton X-100 from a 20%

stock solution.

Quenching of pHLIP intrinsic fluorescence
by acrylamide

Experiments were carried out by measuring the fluorescence intensity of

pHLIP in separate samples containing increasing concentrations of acryl-

amide taken from a 2 M stock solution. Measurements were taken at pH 7.5

or pH 4.5 in the presence of DMPC LUVs at 35�C and 15�C, or in the

presence of DPPC LUVs at 35�C. The excitation wavelength was 280 nm

and emission spectra were recorded between 290 and 420 nm. The inner filter

effect was corrected using the following equation (16):

Fcorr ¼ Fobs 3 10
ðAex1AemÞ=2

; (3)

where Fcorr and Fobs are the corrected and observed fluorescence intensities,

respectively. Aex and Aem are the measured absorbance at the excitation and

emission wavelengths, respectively. Quenching data were analyzed by a fit to

the Stern-Volmer equation (16):

F0=F ¼ 1 1 KSV½Q�; (4)

where F0 and F are the fluorescence intensities in the absence and in the

presence of the quencher, respectively, [Q] is the molar quencher concen-

tration (in M) and KSV is the Stern-Volmer quenching constant (in M�1).

Depth measurements by bromine quenching of
pHLIP intrinsic fluorescence

Collisional quenching of tryptophan fluorescence by brominated phospho-

lipids (Br2-PCs) was used to assess the depth of insertion of these residues in

the lipid bilayer. Br2-PCs are considered to be appropriate for this purpose

because they are thought to minimally perturb the membrane. Bromine

quenching of pHLIP was analyzed as a function of temperature. After mixing

0.25 mol % pHLIP with 0.6 mM DMPC LUVs with or without 30 mol %

(6,7)Br2-PC incorporated in the bilayer, fluorescence emission spectra were

recorded on excitation at 280 nm, at pH 7.5 or pH 4.5, and at temperatures

above (35�C) and below (15�C) Tm. The difference of pHLIP quenching

between the two conditions indicates a difference in depth of penetration of

pHLIP adsorbed at the bilayer surface. Accordingly, the depth of the tryp-

tophan residues was calculated by the parallax method using an additional

sample of 0.25 mol % pHLIP mixed with 0.6 mM DMPC LUVs containing

30 mol % (9,10)Br2-PC. The differences in quenching of pHLIP fluores-

cence by (6,7)- and (9,10)Br2-PC incorporated separately in DMPC LUVs

allow the calculation of the probability for the localization of tryptophan

residues in the bilayer using the following equation (18):

zcF ¼ Lc1 1 f½ð�1=pCÞlnðF1=F2Þ � L
2

21�=2L21g; (5)

where zcF is the depth of the fluorophore as measured from the center of the

bilayer, Lc1 is the distance of the center of the bilayer from the shallow quencher,

L21 is the difference in depth between the two quenchers, F1 is the fluorescence

intensity in the presence of the shallow quencher, F2 is the fluorescence intensity

in the presence of the deep quencher, and C is the two-dimensional quencher

concentration in the plane of the membrane (molecules/Å2).

RESULTS

Membrane permeability

Our previous data indicated that pHLIP induces membrane

distortion of human RBCs at neutral pH, but no leakage of

hemoglobin was observed (4), nor was there disruption of

vesicles encapsulating ANTS or DPX (3). To confirm that

pHLIP does not induce gross membrane leakage over a wide

rang of peptide concentrations, the inability of pHLIP to

cause the release of entrapped vesicle contents was checked

at room temperature by monitoring the fluorescence intensity

of calcein encapsulated in POPC liposomes at high self-

quenching concentrations (Fig. 1). The appearance of fluo-

rescence is a sensitive measure of vesicle permeability. As a

positive control, the experiment was also carried out using a

lytic peptide (melittin, from honey bee venom), which can

form pores in cell membranes (19). The comparison between

melittin and pHLIP confirms that membrane integrity is

preserved at low concentrations of pHLIP.

FIGURE 1 Effect of pHLIP versus melittin on the membrane leakage. (A)

Kinetics of calcein leakage. The release of calcein (50 mM) encapsulated in

POPC vesicles was monitored by the increase in fluorescence intensity at

515 nm (excitation at 450 nm), on addition of 0.2 mol % melittin or pHLIP

(arrow 1). Complete leakage was achieved on addition of 0.05% Triton

X-100 (arrow 2). The percentage of calcein release was calculated as described

in Materials and Methods. The total lipid concentration was 0.1 mM and

the buffer was 10 mM Mops, 150 mM NaCl, 5 mM EDTA, at pH 7.4. (B)

Calcein release versus peptide concentrations. The intensity was recorded

after 30 min incubation in the dark at room temperature.
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Membrane fluidity

To study the effects of pHLIP on membrane fluidity, we

measured changes in fluorescence anisotropy of a fluorescent

probe (TMA-DPH) incorporated in DMPC bilayers versus

temperature (Fig. 2). Fluorescence anisotropy reports the

degree of rotational mobility of a fluorescent molecule and,

therefore, it highly depends on the viscosity of the medium in

which the fluorophore is dissolved. Anisotropy values can be

used to probe the microviscosity of lipid membranes into

which the fluorophore partitions (see (20) for review). TMA-

DPH is a hydrophobic molecule, which is anchored at the

water/lipid interface due to its charged trimethylammonium

group. This fluorophore reports then on the mobility of the

lipid headgroup region of membranes (21,22). Below Tm

(23�C), DMPC lipids are in a gel phase, which is charac-

terized by a low fluidity and slow lateral and rotational dif-

fusions, whereas above this temperature, they are in the

liquid-crystal state, which is characterized by a high fluidity

and a fast diffusion (see (23) for review). Changes in anisot-

ropy values of TMA-DPH from 0.18 to 0.31 with a decrease of

temperature follow the phase transition of DMPC lipids. In

the presence of low concentration of pHLIP at pH 7.5, there

are no significant changes in the anisotropy. However, at high

peptide concentration (2.0 mol % pHLIP or low lipid/peptide

ratio of 50:1) the anisotropy values increase ;10%, espe-

cially at low temperatures. This effect is a consequence of

pHLIP interaction with the outer leaflet of bilayers, consistent

with the induction of membrane perturbations, and it is en-

hanced by increasing peptide concentration. Interestingly,

surface binding of pHLIP increases the value of Tm by ;2�C

for DMPC. The increase in anisotropy at low temperatures

cannot be associated with better binding of pHLIP to the lipid

bilayer, because thermodynamics data show clearly that the

adsorption constant of pHLIP by POPC vesicles is 2 times

lower at 15�C than at 35�C (5). At pH 4.0, i.e., when the

peptide is inserted across the membrane, almost no difference

is observed with regard to the membrane viscosity, even in

the presence of 2.0 mol % pHLIP. Identical results were

obtained with the fluorescent probe DPH, which reports on

the order of hydrophobic chains in the core region of bilayers.

Depth of penetration of pHLIP adsorbed at the
bilayer surface

The penetration depth of surface-bound pHLIP into bilayers

in the liquid-crystal and gel phases was estimated by analysis

of quenching of pHLIP emission by brominated lipids (Br2-

PCs) versus temperature. In Fig. 3, fluorescence spectra are

reported for pHLIP, at pH 7.5 or 4.5, in the presence of

DMPC LUVs with and without Br2-PCs. Comparison of

fluorescence quenching of membrane surface-bound pHLIP

at 35�C and 15�C, i.e., at temperatures above and below Tm

respectively (Fig. 3, A and B), shows a less significant

quenching at high temperature than at low temperature. The

quenching efficiency of pHLIP by Br2-PC is ;10% at 35�C

and ;20% at 15�C. At pH 4.5 (Fig. 3, C and D), the

quenching efficiency is insignificantly affected by the phase

transition (;53% at 35�C and ;54% at 15�C). The position

of maximum of pHLIP emission shifts toward long and short

wavelengths as a result of quenching by Br2-PCs at neutral

and low pHs, respectively. Because tryptophan residues

contribute much more to emission fluorescence than tyrosine

and phenylalanine residues on excitation at 280 nm, we can

attribute the fluorescence of pHLIP to tryptophan residues.

Therefore, the observed shift suggests heterogeneity of

tryptophan residue locations in the lipid bilayer in both states,

which correlates well with our previous fluorescence de-

composition analysis that showed two populations of tryp-

FIGURE 2 Effect of pHLIP on lipid membrane fluidity. The fluorescence

anisotropy of TMA-DPH incorporated in DMPC bilayers was monitored in

the presence of pHLIP at pH 7.5 (A) or pH 4.0 (B). Several concentrations of

pHLIP (0.2, 0.4, 1.0, and 2.0 mol %) were tested with 1.9 mM DMPC LUVs

containing 0.2 mol % TMA-DPH. The samples were excited by polarized

light at 350 nm and emission was monitored at 420 nm. The fluorescence

anisotropy was calculated as described in Materials and Methods and plotted

as a function of temperature. Experimental points were fitted with a sigmoid

function. The buffer was 20 mM Mops, at pH 7.5 or pH 4.0.
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tophan residues with emission at 326 and 347 nm in the

membrane-adsorbed state, and 321 and 339 nm in the in-

serted state (3). In the case of the absorbed peptide, bromine

atoms more efficiently quench the emission of the buried

tryptophan residue (which emits with a maximum at 326 nm),

leading to the significant long-wavelength shift of fluores-

cence (;2 nm at 35�C and ;8 nm at 15�C). However, at low

pH, when the peptide is inserted, the presence of Br2-PCs

induces a slight short-wavelength shift in emission (;1 nm at

both temperatures) and enhanced quenching, which might

suggest an interaction of both tryptophan residues with bro-

mine atoms (with some predominance in the interaction of

the tryptophan residue that emits with a maximum at 339

nm). The enhanced wavelength shift and quenching effi-

ciency of pHLIP adsorbed to a DMPC bilayer surface in the

gel phase in comparison with the liquid phase might suggest

deeper burial of tryptophan residue in the core of the bilayer.

Applying the parallax method (18), the penetration depth

of tryptophan residues of pHLIP adsorbed to the bilayer

surface was calculated from the magnitude of quenching

measured for vesicles containing either (6,7)- or (9,10)Br2-

PCs. Because there is a clear heterogeneity of tryptophan

location in the lipid bilayer, the values obtained from the

parallax method are likely to be associated with the trypto-

phan residues located close to bromine atoms. An important

value needed for the calculation of depth is the distance of

each quencher from the bilayer center. Using x-ray diffrac-

tion, these distances have been determined for a series of Br2-

PCs structured in POPC bilayer-like in the liquid-crystal

phase (24,25), but they need to be known in DMPC bilayers

in both phases, because the bilayer thickness changes with

acyl chain length (26) and with the phase transition. In the last

case, the thickness variations are due to a rigidification of

fatty acyl chains and concern mainly the hydrophobic core

(27). The thickness of DMPC bilayers in the crystal-liquid

phase has been determined to be 35.3 Å for the head-head

thickness, i.e., the distance between the phosphate groups,

and 25.4 Å for the hydrocarbon core region (28). In the gel

phase, the thickness has been determined to be 40.1 Å for the

head-head spacing and 30.3 Å for the hydrophobic core re-

gion (29). Based on these values and assuming a uniform

hydrocarbon chain packing across the bilayer, the increments

per CH2 group are equal to 0.907 Å/CH2 and 1.08 Å/CH2 in

the liquid-crystal and gel phases, respectively. By using the

same assumptions reported by McIntosh and Holloway (24),

we can make a rough calculation of the distance of each

quencher from the bilayer center. We assume the following:

i), the averaged quencher distances from the bilayer center

are at the averaged positions of the carbon atoms of the fatty

acyl chain to which the bromine atoms are attached; and ii),

the distance between apposing terminal methyl groups is

twice the separation of adjacent methylenes, because the

volume of CH3 is about twice the volume of a CH2 group

(30,31). Consequently, an extra CH2 increment that corre-

sponds to the distance between the terminal methyl group and

the bilayer center is added in the acyl chain length. The re-

spective distances of quenchers from the bilayer center were,

therefore, estimated to be 7.7 Å and 9.2 Å for (6,7)Br2-PC in

FIGURE 3 Quenched emission spec-

tra of pHLIP by brominated lipids.

pHLIP (0.25 mol %) was mixed with

0.6 mM unlabeled DMPC LUVs or

DMPC LUVs containing 30 mol % (6,7)

Br2-PC. Fluorescence emission spectra of

pHLIP were recorded at 35�C (A and C)

and 15�C (B and D). The buffer was

20 mM Mops, pH 7.5 (A and B) or pH 4.5

(C and D).
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the liquid-crystal and gel phases, respectively. For (9,10)Br2-

PC, these distances are 5.0 Å and 5.9 Å in the liquid-crystal

and gel phases, respectively. The depth values zcF of one of

tryptophan residues of pHLIP adsorbed at the membrane

surface were, then, calculated to be 8.0 6 0.1 Å at 35�C

and 7.6 6 0.2 Å at 15�C from the center of the bilayer.

These distances correspond to distances of 9.7 Å at 35�C and

12.5 Å at 15�C from the positions of phosphate groups in the

membrane.

Measurements of quenching of pHLIP emission by ac-

rylamide also were done. Here, we examine changes of the

acrylamide quenching rate of tryptophan emission from

pHLIP mixed with DMPC or DPPC LUVs at low and high

temperatures and pH values. The slope of the Stern-Volmer

plot gives the Stern-Volmer constant (KSV). This parameter

provides information about the accessibility of tryptophan

residues to the quencher. Acrylamide quenching experiments

were done at pH 7.5 and pH 4.5 with DMPC LUVs at either

35�C (liquid-crystal phase) or 15�C (gel phase), and with

DPPC LUVs at 35�C (gel phase). The averaged Stern-

Volmer constants are reported in Table 1. The value of KSV

obtained at pH 7.5 and in the absence of bilayers, i.e., when

the peptide is present in solution, is close to that expected for

completely water-accessible tryptophan (KSV ¼ 16 M�1)

(16). This result supports the idea that the peptide is well

exposed to the solution and does not form clusters. In the

presence of DMPC bilayers in the liquid-crystal phase (at

35�C), the KSV value is lower due to the peptide binding to a

bilayer and burial of tryptophan residues into it. The value of

KSV (6.8 M�1), which is the average value for both trypto-

phan residues (buried and exposed) is 46% of the relative

KSV value calculated for the completely exposed tryptophan

residues (100%). This value correlates well with the averaged

value of KSV (48%) obtained from the decomposition anal-

ysis (3). When the pH is titrated to pH 4.5, the KSV constant

found is close to the value expected for completely shielded

tryptophan (KSV ¼ 1.2 M�1) (32), because the insertion of

pHLIP in membranes results in burial of both tryptophan

residues. This value correlates well with the averaged value

of the relative KSV constant (15%) obtained as a result of

decomposition analysis. At 15�C, the DMPC bilayer is in the

gel phase state and the measured KSV constant is lower for pH

7.5 (29%) compared to the respective value obtained at 35�C,

which is an additional evidence that a part of pHLIP is buried

more deeply in the lipid bilayer in the gel phase. To test

whether the temperature and the phase have an effect on

quenching efficiency, this experiment was carried out at 35�C

in DPPC bilayers, which are in a gel phase state (Tm ¼
41.5�C) (33). The value of KSV determined at pH 7.5 is close

to that obtained in DMPC at 15�C, confirming the absence of

temperature effect on quenching efficiency and proving the

influence of the lipid phase on quenching of pHLIP fluores-

cence. At pH 4.5, the value of KSV is close to that obtained in

DMPC at 35�C, suggesting the absence of any measurable

phase effect on quenching efficiency.

Insertion assay

The overlap between the emission spectrum of tryptophan

residues and the excitation spectrum of TMA-DPH enables

FRET from one to the other. This pair of fluorophores was

already used in previous studies and the R0 distance, i.e., the

distance at which 50% of energy transfer is efficient, was

determined to be between 34–39 Å (34,35), so we took ad-

vantage of the opportunity to make FRET measurements to

explore pHLIP binding and insertion in lipid bilayers. Fig. 4,

A and B, show emission fluorescence spectra of pHLIP at pH

7.5 and pH 4.3 in the presence of pure POPC bilayers or

POPC bilayers containing TMA-DPH, respectively. When

pHLIP is inserted into the lipid bilayer as a transmembrane

helix, a FRET signal is observed, whereas at neutral pH,

when the peptide is adsorbed on the membrane surface, there

is no significant energy transfer. Even at low pH the energy

transfer is not very efficient considering that R0 is ;40 Å. In a

related study, no energy transfer was observed for melittin

interacting with a lipid bilayer containing TMA-DPH at low

lipid/peptide molar ratio of 60:1 (35). The authors carried out

a very careful analysis of the probability of contacts between

a randomly distributed dye in the bilayer and melittin, and

concluded that the average distance between peptide and dye

is more than 40 Å. The enhanced efficiency of energy transfer

in case of pHLIP inserted into lipid bilayers indicates closer

contact between one of the tryptophan residues and TMA-

DPH. Our interpretation is that, in the membrane-adsorbed

state of pHLIP, one tryptophan residue is located outside the

membrane (347 nm) and the other is buried in the lipid

bilayer (326 nm), and that they are both too far from TMA-

DPH to produce any significant energy transfer. In the in-

serted form of pHLIP, one tryptophan residue (the exposed

one with emission at 339 nm) is most likely to be located at

level of headgroups and in close contact with TMA-DPH,

which enhances the energy transfer. Further, our view is

supported by the observation of a slight short-wavelength

shift of pHLIP emission after FRET (see Figs. 4 B or 6 A).

Also, the total quantum yield of tryptophan residues (quan-

tum yield of donor) buried inside lipid bilayers is enhanced

and the R0 value, which depends on donor quantum yield, is

expected to increase.

TABLE 1 Stern-Volmer quenching constant KSV of

acrylamide for pHLIP

KSV (M�1)

In buffer

35�C

In DMPC
In DPPC

35�C35�C 15�C

pH 7.5 14.8 6.8 4.3 4.0

pH 4.5 – 2.3 – 2.1

pHLIP (0.25 mol %) was mixed with 0.6 mM DMPC LUVs or DPPC

LUVs. The buffer was 20 mM Mops, pH 7.5 or pH 4.5.
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Additional evidence of bilayer perturbations accompanied

by a deeper position of pHLIP adsorbed to the bilayer surface

is given by the changes in the FRET signal with temperature.

For this purpose, pHLIP was mixed with either POPC or

DMPC bilayers containing TMA-DPH at pH 4.3 or pH 7.5

and emission fluorescence spectra were monitored versus

temperature. These two lipid types were chosen because in

the temperature range tested (15�C–35�C) POPC bilayers are

in the liquid-crystal phase, whereas DMPC bilayers have a

gel-to-liquid crystal phase transition at 23�C. To correct for

the temperature effects on fluorescence intensities, the ratios

of emission intensities recorded at 333 and 430 nm at pH 4.3

or recorded at 340 and 430 nm at pH 7.5 are shown in Fig. 5

rather than the absolute intensities. In the presence of POPC

bilayers at pH 4.3, the FRET signal increases linearly with

cooling temperature. The value of the FRET signal is ;30%

stronger at 15�C than at 35�C probably because of changes in

the degree of hydration of the bilayer. In the presence of

DMPC, the signal is similar to that obtained in POPC at

temperatures above Tm, but a jump is observed below Tm. At

15�C, the signal was ;23% higher in DMPC than in POPC

and this difference is associated with rigidification of the

DMPC bilayer due to the phase transition. On the other hand,

in POPC at pH 7.5, the value of the FRET signal is insig-

nificant (Fig. 3 B), so it stays low and stable over the tem-

perature changes. In DMPC, the value of the FRET signal is

close to that obtained in POPC at 35�C, whereas it is 53%

higher at 15�C. A tentative of interpretation of this obser-

vation is a deeper position of a part of pHLIP in the gel phase

compared to the fluid phase. No variation of the ellipticity

FIGURE 4 pH-dependence of FRET process between pHLIP and TMA-

DPH incorporated in the membrane. pHLIP (0.33 mol %) was mixed with

0.85 mM POPC LUVs (A) or POPC LUVs containing 0.2 mol % TMA-DPH

(B). The samples were excited at 280 nm at 20�C. The buffer was 20 mM

Mops, at pH 7.5 or pH 4.3. Light scattering and fluorescence backgrounds of

a blank containing TMA-DPH inserted into LUVs were subtracted from the

spectra.

FIGURE 5 Temperature-dependence of pHLIP fluorescence in the pres-

ence of membranes. pHLIP (0.25 mol %) was mixed with either 0.85 mM

POPC LUVs or DMPC LUVs at pH 4.3 (A) or pH 7.5 (B). Samples were

excited at 280 nm and the emission fluorescence was observed as a function

of temperature. Data are plotted as the ratio of intensities at 333 and 430 nm

for samples at pH 4.3, and at 340 and 430 nm for samples at pH 7.5 to cancel

out the effect of fluorescence quenching due to temperature variations. The

dashed line indicates Tm of phase transition for DMPC at 23�C.
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signal was observed by CD after the phase transition, which

means that the variations in the binding mode do not sig-

nificantly alter the secondary structure of the peptide.

Peptide design

Our earlier biophysical studies and those presented here ad-

vance our understanding of the interactions of moderately

polar peptides, like pHLIP, with a lipid bilayer. To broaden

the case, we include the beginnings of an effort to find the key

elements of the amino acid sequence that give pHLIP its

properties. We first studied variants that differ from the wild-

type peptide by the replacement of two aspartate residues

present in the transmembrane domain by either asparagines

(N-pHLIP) or lysines (K-pHLIP). Those peptides were tested

for their ability to insert in membranes (4), and it was shown

that the pH-dependent insertion was affected: N-pHLIP is

present mainly in its helical form and inserts in membranes at

both high and low pHs (but less efficiently than the wild-type

peptide) whereas K-pHLIP is mainly unstructured. Both of

them exhibit aggregation in aqueous solutions. An additional

question that remained unanswered is how the aspartate

residues located outside the transmembrane domain affect the

insertion process. We compared the characteristics of the

wild-type pHLIP with a variant in which its C-terminus is

neutralized by replacing three negatively charged residues

(two aspartates and one glutamate) by three polar, but neutral,

residues (two asparagines and one glutamine). The assay

using FRET, described above, was used for testing the in-

sertion ability of pHLIP and the variant, which were mixed

separately with POPC bilayers containing TMA-DPH at pH

7.4 and pH 4.2 (Fig. 6, A and B). In contrast to the wild-type

peptide, the FRET signal obtained for the variant is not

enhanced after titrating pH 7.4 to 4.2 and no blue-shift is

observed, showing modified efficiency of insertion of the

variant. On the other hand, the CD spectra show that the sec-

ondary structure of pHLIP is strongly affected by the change

of these residues in its C-terminus: at pH 7.8, with or without

a lipid bilayer, the variant presents a mixture of helical and

random structures, whereas the wild-type peptide is com-

pletely unstructured (Fig. 6, C and D). A drop of pH leads to

an increase of helicity. Replacement of the negative residues

FIGURE 6 Insertion ability and secondary structure of wild-type and variant pHLIP peptides. The peptides (0.2 mol %) were separately mixed with 0.85

mM POPC LUVs containing 0.2 mol % TMA-DPH at pH 7.4 or pH 4.2. The emission fluorescence spectra of wild-type (A) and variant (B) peptides, after

excitation at 280 nm, were corrected for light scattering and fluorescence background, and were normalized to the maximal intensity. The buffer was 20 mM

Mops. The peptides (0.8 mol %) were analyzed by CD spectroscopy without or with 0.37 mM DMPC LUVs at 37�C, at pH 7.8 and pH 4.3. The CD spectra of

wild-type (C) and variant (D) peptides were corrected for the background contribution, and were smoothed in a window of three points. The buffer was 2 mM

Tris�HCl, 5 mM NaCl.
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by neutral ones changes the hydrophobic character of the

peptide (using the octanol/water scale, DG varies from 8.38

to �0.06 kcal.mol�1 (36)), which might lead to an aggre-

gation of the peptide in solution and a reduction of its ability

to insert into a lipid bilayer.

DISCUSSION

In this study, we have examined biophysical properties of

the interaction of pHLIP with lipid bilayers. Such properties

are relevant both for improving our understanding of the

insertion of peptides into membranes and for the develop-

ment of therapeutic applications. Before insert, the first re-

quired step is the binding of the peptide to the surface of

membranes, which is the focus of our analysis here. This

study was motivated by previous data showing that pHLIP

induces macroscopic perturbations of intact human RBCs

(4). Accordingly, we investigated the pHLIP binding mode

with the aim of gaining quantitative insights into the bilayer

perturbations and interactions. All the results reported in this

work were obtained on LUVs, a system used widely as a

model for measurements of protein binding to and insertion

into membranes.

From a pharmaceutical or toxicological point of view, any

mechanism of cargo translocation resulting in gross per-

meabilization of the membrane would be unacceptable. The

calcein leakage experiments were, therefore, carried out to

check whether the peptide causes damage to pure phospho-

lipid bilayers and to ensure that the binding of pHLIP does

not lead to membrane permeabilization. The absence of

calcein release from POPC vesicles in the presence of pHLIP

at physiological pH (pH 7.4) confirms the absence of pore

formation compared to melittin. This result is in agreement

with earlier work (3,4). At neutral pH, the interactions of

pHLIP with the biological membranes of human RBCs in-

duce no leakage of hemoglobin while leading to the ap-

pearance of spicules on the surface of the majority of cells.

The formation of spikes when the peptide is bound to the

membrane is interpreted as the consequence of extra area

occupied by pHLIP on the outer leaflet of the lipid bilayer. At

pH 6, i.e., when the peptide is inserted into the membrane, a

greatly reduced number of spikes is seen, which is consistent

with pHLIP insertion across both halves of the bilayer. A

related observation is obtained from lipid fluidity measure-

ments using fluorescence anisotropy of TMA-DPH incor-

porated into the DMPC bilayer. Taking the lipid headgroup

area as 60.6 Å2 in the liquid-crystal phase (29) and the vesicle

shape as a sphere of 100 nm diameter, the highest peptide

concentration tested (2.0 mol %) corresponds to ;2000

peptides per vesicle, or a low lipid/peptide ratio of 50:1.

Under these conditions, the pHLIP association with the bi-

layer surface gives rise to an increase of lipid microviscosity

and a rise in the Tm of the DMPC phase transition, whereas no

significant perturbation occurs when pHLIP is adsorbed on

the membrane surface at lower concentration or inserted

across the bilayer. Our data are in good agreement with our

isothermal titration calorimetry results, which show two

types of pHLIP interactions with lipid bilayers at low and

high lipid/peptide ratios (5). We found that in the membrane-

bound state at low and high lipid/peptide ratios pHLIP in-

teracts with ;60 and ;120 lipids and that an additional

50–60 and 80–100 lipids are affected (destabilized), respec-

tively, whereas the inserted peptide interacts with only ;22

lipids, which is approximately the first surrounding layer for

a transmembrane helix.

In earlier studies from the Huang laboratory, the interac-

tions of a helical amphiphilic peptide (Alamethicin) with

bilayers were analyzed in detail by x-ray lamellar diffraction

(37). It was shown that the adsorbed peptides on the bilayer

surface lead simultaneously to a disordering of the lipid

chains and to a decrease of the bilayer thickness. The ob-

served effects were ascribed to an increase of the cross sec-

tional area in the polar region that requires accommodation

by the lipids. Similarly, pHLIP increases the area of outer

leaflet of membranes; however, it binds to the surface as an

extended chain, rather than as a helix. Both pHLIP and am-

phiphilic helical peptides can be regarded as anisotropic in-

clusions into a leaflet of the bilayer, inducing membrane

perturbations (38,39). However, the differences in confor-

mation may lead to detailed differences in the interactions,

perhaps including the extent of their insertion into the

headgroups. An indication of this difference is seen in the

deeper surface binding of pHLIP in the gel state and the in-

crease of the transition temperature caused by pHLIP bind-

ing, indicating some stabilization of the gel state. This

unexpected finding may be a worthy subject for further study.

Additional studies of pHLIP binding to the bilayer surface

used fluorescence quenching experiments by either Br2-PCs

or acrylamide. At pH 7.5, the acrylamide quenching Stern-

Volmer constant and the fluorescence quenching efficiency

by Br2-PCs change with the phase transition. In all cases, it

appears that one tryptophan residue is more deeply buried in

the bilayer than the other. This observation correlates well

with our previous fluorescence decomposition analysis that

showed two populations of tryptophan residues (3). The

distance between the buried tryptophan residue of pHLIP and

the center of the bilayer was evaluated by parallax analysis

using (6,7)- and (9,10)Br2-PC as a pair of quenchers (18).

The change of penetration depth after the phase transition

was estimated to be 0.4 Å from the bilayer center and 2.8 Å

from the bilayer phosphate groups given the bilayer thickness

variation. Equilibrium of pHLIP intermediates adsorbed on

the membrane surface could explain the differences observed

in the gel and liquid-crystal phases. The propensity of the

peptide to spontaneously insert into membranes, due to the

presence of its hydrophobic residues, is thermodynamically

opposed by the presence of its charged carboxylates. In this

context, it may be useful to consider that the peptide binding

to the bilayer is highly dynamic. This issue could be inves-

tigated by solution NMR spectroscopy, which can give dy-
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namic information on the conformation of the peptide de-

pending to the timescale of the intermediate equilibrium (40).

Additional results at pH 4.5 indicate that, when the peptide is

inserted across the bilayer, it does not induce significant

perturbation and that variations due to the gel-to-liquid

crystal phase transition are negligible.

We found that energy transfer from the aromatic residues

of pHLIP to the fluorescent probe TMA-DPH anchored in the

polar region of bilayers correlates with the surface binding

and insertion of pHLIP. When the peptide is bound at the

membrane surface (pH 7.5) no significant energy transfer is

observed, whereas when pHLIP is inserted across the bilayer

(pH 4.3) energy transfer is enhanced. The enhancement is

associated most likely with closer contact between one of the

tryptophan residues of pHLIP and TMA-DPH. The FRET

assay done on various lipids at different pHs and tempera-

tures further supported the results of bilayer perturbation at

neutral pH, accompanied by a deeper position of pHLIP on

the bilayer in the gel phase compared to the fluid phase.

The FRET assay was also used to compare pHLIP with a

variant in which the charged Asp and Glu residues located on

the C-terminus of the peptide were changed to the polar but

uncharged side chains Asn and Gln, with the idea that the

peptide insertion might be facilitated if the more polar groups

did not have to be translocated. We observed the formation of

elements of secondary structure for the variant in aqueous

solution and suspect some form of self-association. Based on

the FRET analysis, no significant insertion was seen even if

we noticed by CD a shift toward helix formation at low pH in

the presence of bilayers. Thus, this variation of the amino

acid sequence may not prove useful, except as a caution that

the combination of properties shown by pHLIP may be more

difficult to create than we thought.

The design of sequences with controlled insertion prop-

erties should be aided by knowledge of peptide interactions

with a bilayer. It is important that such a peptide preserves its

ability to be monomeric in aqueous solution as well as when

it is bound to the surface of a bilayer or inserted across it. This

study advances our understanding of pHLIP interaction with

cell membranes and strengthens the view that the mechanism

of pHLIP interaction is different from the mechanism of

amphipathic peptide interaction with a lipid bilayer, where

the insertion involves cooperative oligomerization resulting

in pore formation. The relaxation of lipid distortion has been

proposed as a contributor to the insertion of amphipathic

helices (37,41), but it is important to note that the case of

pHLIP insertion differs in several respects. To consider the

driving forces, one must examine the initial and final equi-

librium states. Amphipathic helices bind at the bilayer sur-

face and distort the lipid as folded helices and attain an

inserted state that has both helix-helix contacts and helix-

lipid contacts, because oligomers form during the process.

On the other hand, pHLIP binds to the surface in an extended,

unfolded form that distorts the lipid, but it is not established

that the distortions are the same as those involved when the

different geometry of a helix is at the surface. The inserted

pHLIP is a single helix, interacting only with lipid, so there is

no need to separate the energies arising from helix-helix in-

teractions from those arising from helix-lipid interactions.

Thus, both the initial and final states of the two systems,

amphipathic helices and pHLIP, differ. The distortion of

lipids induced by pHLIP adsorption is not sufficient to induce

peptide insertion, because pHLIP does not insert as a trans-

membrane helix with an increase of peptide concentration.

Rather, the insertion mechanism of pHLIP is triggered by the

increase of peptide hydrophobicity resulting from the pro-

tonation of negatively charged residues at low pH, which

shifts the equilibrium toward partitioning of the peptide into

the hydrophobic bilayer and the formation of a transmem-

brane helix. At the same time, because the interaction of

pHLIP with the bilayer surface, which is the first step in the

insertion process, distorts the lipids, and because the insertion

across the bilayer relaxes the distortion, we conclude that the

distortion energy of the bilayer might also contribute to the

insertion.
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