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Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Laboratoire de Spectrometrie Ionique et Moleculaire,
Villeurbanne, France

ABSTRACT Monte Carlo simulations of the temperature-induced unfolding of small gas-phase polyalanines in a static,
homogeneous electric field are reported, based on the AMBER ff 96 force field. The peptides exhibit a structural transition from the
native a-helix state to entropically favored b-sheet conformations, before eventually turning to extended coil at higher temper-
atures. Upon switching the electric field, the molecules undergo preferential alignment of their dipole moment vector toward the field
axis and a shift of the a-b transition to higher temperatures. At higher field strengths (.108 V/m) the molecules stretch and the a-b
and b-coil transitions merge. A simple three-state model is shown to account for the observed behavior. Under even higher fields,
density functional theory calculations and a polarizable force field both show that electronic rearrangements tend to further
increase the dipole moment, polarization effects being approximately half in magnitude with respect to stretching effect. Finally a
tentative (temperature, field-strength) phase diagram is sketched.

INTRODUCTION

The behavior of biological systems under electromagnetic

fields has recently attracted a lot of attention (1–4), partly to

address the possible damages suffered upon exposure to the

many sources of radiation in our increasingly technological

everyday life. Electromagnetic interactions are thought to be

responsible for heating biological systems, particularly in the

infrared and microwave ranges (5). These so-called nonther-

mal effects could alter the stability and activity of biomole-

cules, as was experimentally studied by several groups (6–8).

Additionally, understanding the influence of electromagnetic

effects on proteins could be useful in designing molecules with

specific properties (9). Despite the importance of such mea-

surements, to the best of our knowledge the effects of elec-

tromagnetic fields on the structure of biomolecules have been

only poorly addressed by theory or simulation (an exception

being the recent molecular dynamics study in (10), whose

relevance has been questioned in (11)).

The influence of external fields on the structure and dy-

namics of molecular systems has been mostly investigated on

water, either at the bulk level (12–16), or in low-dimensional

wires (17–19) or finite clusters (20–24). In the latter case, and

for small clusters having fewer than five molecules, ab initio

calculations (25) have shown the preferential alignment be-

tween the dipole moments along the electric field direction as

the field strength increases. Other field-induced structural

transformations have been reported in clusters (22,24). In

bulk (15) and confined (26) water, the easier nucleation of ice

under electric fields is known as electrofreezing. Field-induced

transitions in water convey the weakening of the hydrogen-

bond network as the field strength increases (27,28), which is

also reflected by the steady decrease in the dielectric constant

(29,30). Besides water, the influence of electric fields has

been addressed on various other molecular systems, includ-

ing hydrates (31), liquid methanol (32), or loaded zeolites

(33). In most cases, hydrogen bonds are also disrupted under

high fields.

The structure of biomolecules is partly driven by long-

range electrostatic forces, especially when hydrogen bonds

are formed. The effects of an external field on hydrated pro-

teins are difficult to study because of the simultaneous re-

arrangements of the solvent (34,35). However, measurements

of secondary structures in an electric field are comparatively

easier in the gas phase, as was first attempted experimentally

by Antoine and co-workers (36). A review of some experi-

mental methods to determine peptide conformations in the gas

phase has been recently written by Jarrold (37). Poulain and

co-workers (38) specifically investigated the finite-temperature

properties of a small dipeptide (Trp-Gly) under a static electric

field, for different magnitudes of the field. At low field, the

peptide was found to undergo preferential alignment of its

electric dipole moment along the field axis, the projection of

the dipole following the Langevin-Debye equation. At high

fields (above 108 V/m), deviations from the Langevin law

were interpreted as due to qualitative changes in the confor-

mation (38), as made possible due to the floppiness of the

molecule.

In this article, we focus on larger peptides, namely poly-

alanines Alan. These molecules are very stable in the a-helix

conformation, which is associated with large electric dipole

moments (also called macrodipoles) resulting from the ad-

ditive contribution of nearly aligned hydrogen bonds. Indi-

vidual hydrated polyalanines are expected to undergo a single

helix-coil transition (39–41). However, recent experimental

(42) and theoretical (43–45) investigations have suggested
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that b-strand conformations may be more stable than helices

in an intermediate temperature range due to entropic effects.

The competition between the a-helix and b-strand secondary

structures is of primary importance in molecular biology, as it

is responsible for the misfolding of proteins and, in the case

of peptide assemblies, amyloidosis, which in turn cause fatal

diseases (46–50).

Helical conformations are associated with large electric

dipole moments, which essentially increase linearly with the

number of amino acids. While this dipole moment is notably

screened when the peptides are solvated into a polar solvent

(including water), it can reach high values in the gas phase,

making isolated polyalanines very sensitive to an external

field. Conversely, neither b-hairpins or the random coil state

are characterized by important electric dipole moments, hence

the a-b or helix-coil transitions should be drastically affected

by the presence of an external field.

Our goal in this article is to investigate, by means of nu-

merical simulations, the conjugated effects of temperature,

electric field, and size of polyalanines on their statistical con-

formations. Following our previous effort (45), we mainly use

standard, nonpolarizable force fields to model these polypep-

tides. Combined with efficient sampling methods, this sim-

plified approach allows us to characterize the average thermal

properties, including the caloric curves. However, under the

presence of high fields, the classical force-field approach may

be too simplistic and fail to describe the actual electronic re-

arrangements of the peptide. We then also employ more ac-

curate polarizable force fields, as well as first-principle density

functional theory calculations to quantify the extent of polar-

ization effects. The article is organized as follows. In the next

section, the simulation methods are briefly outlined. Their

application to Ala8 and Ala16 is then presented and discussed,

before specifically studying the high field regime, where we

pay a particular attention to the polarization and stretching

effects. Tentative phase diagrams are finally constructed based

on our simulation data. The article ends on some concluding

remarks and perspectives.

METHODS

This section is devoted to the theoretical and numerical methods that have

been used or developed for the problem of sampling molecular conforma-

tions in a static electric field. Methods used for studying the high field regime

will be described in the subsequent section.

Model details

Our primary goal is to calculate finite temperature properties and to char-

acterize the folding transition of small polyalanines in a broad temperature

range. Even with the presently available simulation methods, the presence of

a structural competition makes convergence of simulations hard to achieve

unless a force field is chosen to describe the intramolecular interactions.

Among the many existing biomolecular force fields, we have chosen to

model the peptides using AMBER (51) with its ff 96 parameters (52), as they

correctly reproduce the electric dipole moments measured experimentally

(38). The original partial charges of AMBER ff 96 were increased with re-

spect to their gas-phase values to compensate for polarization effects in so-

lution. In this work, a dielectric constant of e¼ 2 was chosen to reduce these

charges. This also has the beneficial effect of minimizing the over-

stabilization of b-sheet structures over helices in hydrated peptides known

with AMBER ff 96 (53–55), while other AMBER parameters sets tend to

favor a-helices (56,57).

Denoting V0(R) the AMBER potential energy of configuration R
without electric field, the total energy including the electrostatic contri-

bution due to the field is written at the leading orders in the field strength as

VðR;~mÞ with

VðR; ~mÞ ¼ V0ðRÞ �~m0ðRÞ3~E � 1

2
~mindðR;~EÞ3~E: (1)

In the above equation, we have separated the permanent dipole ~m0; which

only depends on the configuration of the peptide, and the induced dipole~mind;

which also depends on the electric field

~m0ðRÞ ¼ +
i

qir~i; (2)

~mindðR;~EÞ ¼ ae
~E; (3)

where qi is the partial charge located at r~i and ae is the global electronic

polarizability tensor of the molecule. This quantity weakly depends on

conformation or on the orientation, and it will be neglected for sampling

purposes. However, polarization effects can become important under high

electric fields, and will be specifically discussed later. In the present non-

polarizable approximation, the vector ~m ¼ ~m0 1~mind � ~m0 no longer de-

pends on the electric field, and the potential energy of the peptide is a

function of its configuration R and orientation u only (see Fig. 1):

VðR; uÞ ¼ V0ðRÞ � mðRÞEcosu: (4)

This last expression will be used for sampling the configuration space of the

peptide in a static electric field.

FIGURE 1 Orientation of the helical polyalanine in the electric field. The

electric dipole moment of the molecule is carried by the vector ~m, while the

field axis E~ is vertical in the figure plane. The angle formed by the two

vectors is denoted u.
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Monte Carlo simulations in a static field

The conformational spaces of the polypeptides have been sampled with Monte

Carlo (MC) simulations using the torsion angles of the peptide backbone

as the only internal coordinates. The parallel tempering method (58–61)

has been used to accelerate convergence of the simulations. In practice, 32

trajectories or replicas were propagated simultaneously, with one occasional

exchange attempted every 10 Monte Carlo sweeps. The exchanges have been

selected and performed according to the recent all-exchange strategy (62,63).

The temperatures were taken as a geometric progression in the range 50–1000 K,

thus providing a good overlap between energy distributions of adjacent

replicas. The simulations consisted of 5 3 106 Monte Carlo sweeps per

replica, after 106 equilibration sweeps. In absence of electric field, the results

agree with our previous investigations (45) using the Wang-Landau algo-

rithm (64,65) for joint densities of states.

For molecules in a static electric field, several simulation methods have

been employed. At the most basic level, the field axis can be rigidly fixed in

space, and the moves in dihedrals space would naturally change the dipole

moment orientation ~m with respect to~E: Sampling the preferred orientation

can be made more efficient by including a specific global rotation move, only

changing the angle u in Eq. 4. We have used this method, attempting a global

rotation of the peptide once every Monte Carlo sweep. This method provides

the usual statistical averages for the energy and order parameters. The

multiple histogram method (66,67) can then be used to calculate the various

quantities of interest as a continuous function of temperature.

Since intramolecular torsion moves and global orientational moves are

decoupled when building the Markov chain, the latter can be attempted with

an arbitrary probability during the Monte Carlo trajectory, much more fre-

quently than only once in a MC sweep. In the limit of an infinite number of

such moves, the statistical average of Eq. 4 over all orientations u at tem-

perature T is exactly given by

ṼðR;bÞ ¼ V0ðRÞ � mðRÞEL½bmðRÞE�; (5)

where

LðxÞ ¼ e
x
1 e

�x

e
x � e

�x �
1

x
(6)

is the Langevin function, and with b ¼ 1/kBT the inverse temperature, kB

being the Boltzmann constant. It was shown by Poulain and co-workers (38)

that the projection mz of the electric dipole moment on the field axis correctly

obeys the Langevin-Debye formula (68,69),

Æmzæ ¼
Æm2æ0;T

3kBT
1 ae

� �
E; (7)

where Æm2æ0,T is the average square dipole of the molecule without electric

field, at temperature T. The Langevin-Debye formula applies within the

linear response theory framework, that is, when the field is sufficiently low in

magnitude.

We should stress here that the use of Eq. 5 for the statistical average of the

potential energy in the field is not equivalent to assuming that the molecule

actually aligns in the field following the Langevin-Debye expression. Be-

cause the molecule is flexible, its preferred conformations will still depend on

the field strength (as well as temperature).

Performing the orientational average above leads to an effective energy

ṼðR, bÞ which explicitly depends on temperature. Care should then be taken

when attempting a replica exchange move. The acceptance probability for

swapping configurations Ri and Rj initially at inverse temperatures Ti and Tj

reads (70)

accðRi�RjÞ ¼ min 1; exp biṼðRi;biÞ1 bjṼðRj;bjÞ
��

�biṼðRj;biÞ � biṼðRi;bjÞ
��
: (8)

The temperature dependence of the potential energy also adds corrective

terms to the internal energy U(T) and, more importantly, to the heat capacity

Cv(T):

UðTÞ ¼ ÆṼæ ¼ ÆV0æ� EÆmLðbmEÞæ; (9)

CvðTÞ ¼
1

kBT
2 ÆṼ2æ� ÆṼæ2

1 b

�
Ṽ
@Ṽ

@b

	
�
�
@Ṽ

@b

	


�bÆṼæ
�
@Ṽ

@b

	�
: (10)

In this case, it follows straightforwardly from Eqs. 5 and 6, that

@Ṽ

@b
¼ �mE @L

@b
¼ m

2E2

sinh
2ðbmEÞ

� 1

b
2: (11)

The previous formulas involving the potential energy must be applied for the

running statistical averages calculated on-the-fly. Statistical quantities only

dependent on the configuration (but not on energy) are obtained from usual

arithmetic averages.

Reweighting of zero-field histograms

In the low field limit, the interaction between the dipole moment and the

electric field represented by the second term in the right-hand side of Eq. 4

can be considered as a small perturbation which mainly affects the favored

orientations of the peptide. It turns out that a complete characterization of the

statistical behavior of the peptide at zero field, in terms of its potential energy

and dipole moment, is sufficient to provide the corresponding properties at

nonzero field. The method presented here relies on the histogram reweighting

approach (66,67), in which the distributions of potential energies are pro-

cessed into the microcanonical density of states, allowing the subsequent

calculation of statistical properties in the canonical ensemble.

At nonzero field, each configuration in phase space is characterized by its

energy Ṽ, which derives from V0 and the dipole moment m through the simple

sum of Eq. 5. Any canonical property A sampled at nonzero field can be

obtained from statistical averages at zero field, following a standard re-

weighting procedure (71),

ÆAæṼ ¼
ÆAexp½bðV0 � ṼÞ�æV0

Æexp½bðV0 � ṼÞ�æV0

; (12)

which, in this case, yields

ÆAæṼ ¼
ÆAexp½mELðbmEÞ�æV0

Æexp½mELðbmEÞ�æV0

: (13)

Therefore, the running averages obtained at zero field can be used at finite

field after correcting by the corresponding weight

w ¼ exp½mELðbmEÞ�
Æexp½mELðbmEÞ�æV0

: (14)

Since this weight can only be estimated at the end of simulation, it is more

convenient to process the energy histograms, which are obtained from a

standard parallel tempering Monte Carlo simulation of the peptide without

electric field. We denote by pb (V0, m) the two-dimensional histograms of

the potential energy V0 and norm m of the dipole moment, at temperature

b. The standard multiple histogram method provides the configurational

microcanonical density from the histograms in energy only, PbðV0Þ ¼
+

m
pbðV0, mÞ: Each state (V0, m) with probability pb at temperature b

corresponds to a different state ðṼ, mÞ also with a different probability p̃b:

The energy Ṽ is given by Eq. 5 and, according to the previous remarks, the

probability p̃b should be reweighted from pb as

p̃bðṼ;mÞ} pbðV0;mÞexp½mELðbmEÞ�; (15)
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and then properly normalized to keep the number of effective states constant.

The multiple histogram method can then be applied to the energy distribu-

tions ~PbðṼÞ obtained from summing p̃bðṼ, mÞ on the variable m.

Because this method is perturbative, it is expected to hold as long as the

energetics of the peptide is only marginally affected by the interaction with

the field. Its main interest is to avoid repeating the calculations for each new

value of the electric field. As will be seen below, its predictions are rather

accurate for low field strengths under ;108 V/m.

FOLDING AND STRUCTURAL TRANSITIONS IN
A STATIC FIELD

Structural order parameters

Two polyalanines have been investigated with the methods

described in the previous section, namely Ala8 and Ala16. As

in our previous work (45), the secondary structures are

characterized by the average (square) electric dipole moment

Æm2æ and by the end-to-end distance d between the nitrogen

atom in N-ter position and the hydrogen atom from the hy-

droxyl group in C-ter position. Here we also use comple-

mentary order parameters, which have often been used in

molecular simulation of biomolecules. The fractional helicity

is defined by r ¼ NH=Nmax
H , where NH is the number of helical

hydrogen bonds, Nmax
H being the maximum number of such

bonds. A residue is considered here to be helical if its f and c

angles lie in the ranges [�100�, �40�] and [�67�, �7�], re-

spectively. Nmax
H is equal to 6 for Ala8 and 14 for Ala16.

The proximity of the polypeptide toward its native con-

formation can also be measured by a parameter x called an

overlap function. We use the definition of Veitshans and co-

workers (72), which has also been adopted by Giessen and

Straub in their recent study of model polyalanines (73),

xðfrijgÞ ¼
1

N
2

a
� 5Na 1 6

+
Na�3

i¼1

+
Na

j¼i13

Qðz � jrij � r
nat

ij jÞ; (16)

where Na denotes the number of a-carbons, and rij and rnat
ij

are the distances between a-carbons i and j in the current

configuration and in the native state, respectively. Q is the

Heaviside step function, and z ¼ 0.5 Å measures how close

the structure is to the native state. Similar to the heat capacity,

the fluctuations in x, that is, Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Æx2æ� Æxæ2

p
; turn out to

be more insightful than x itself.

In addition to these two order parameters, we have com-

puted the average radius of gyration ÆRgæ, which is more

sensitive to the collapse transition.

Octa-alanine

In Fig. 2, we show the variations of the heat capacity, overlap

fluctuations Dx, and helical content r as a function of tem-

perature, obtained for Ala8 under several strengths of electric

field. These curves were obtained using a combination of

intramolecular torsion moves, as well as occasional global

rotations attempted once per MC sweep, the field axis being

fixed in space.

Without electric field, the heat capacity exhibits a main

peak centered near 230 K, as well as a second, low-

temperature peak near 90 K. These two peaks were also

reported for Ala12, albeit shifted to higher temperatures

(45). Looking at the other order parameters, the loss in

helical order is clearly associated with the low-temperature

peak, and the fluctuations in the overlap function are

maximum. The average electric dipole moment and the end-

to-end distance, shown in Fig. 3, both drop at the same

temperature. However, both the latter quantity and the gy-

ration radius show a sharp increase at a temperature corre-

sponding to the second heat capacity peak. In agreement

with our previous study (45), we interpret these results as

the manifestation of a first structural transition from a-helix

to b-strand conformations, followed by a second transition

from b-strand to random coil. These two transitions can be

considered as the folding and the collapse transitions, re-

spectively. The higher stability of b-conformations is due to

FIGURE 2 Variations of the canonical heat capacities (upper panel), fluc-

tuations of the overlap function (middle panel), and helical content (lower

panel) of the Ala8 peptide as a function of temperature, for electric fields in

the range 0–109 V/m.
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their higher entropy (42), which can be seen in annealing

simulations (45). Such entropy-driven structural transitions

at low-temperatures have been previously reported in other

molecular systems, particularly atomic clusters (74,75).

As the electric field is turned on, the peaks in the specific

heat gradually shift to higher temperatures. At E. 2 3 108

V/m, the two peaks merge and the area under the peak (the

latent heat associated with the transition) increases as well.

The variations of all order parameters reflect the shifts in the

transition temperatures. The greater thermodynamic stability

of the helix conformation within an electric field is due to its

strong macrodipole. Conformations with a higher b-strand

character and those belonging to the random coil state have a

much lower electric dipole, and their stability is not signifi-

cantly enhanced in presence of the field. The greater stability

of a-helices relative to the b-strand and random coil con-

formations is thus revealed onto the heat capacity curves. As

the field becomes strong enough, the temperature range of

stability for the b-conformations becomes narrower, because

the b to random coil state is poorly affected by the field. As

the helix-coil transition becomes single step, the transition

temperature, and the latent heat both increase with the field,

again reflecting the higher energetic stability of the helical

state. In a first approximation, the shift in collapse tempera-

ture and the associated latent heat both vary linearly with the

applied field. As long as the energy gain is itself proportional

to the field, this is the expected behavior. However, this

should mainly hold at sufficiently low temperature to keep

the electric dipole aligned with the field.

Instead of sampling the peptide conformations at fixed

field, it is possible to perform the orientational average at

each Monte Carlo step involving intramolecular coordinates,

following the procedure outlined in the previous section. The

heat capacity should then be calculated with the temperature-

dependent effective potential of Eq. 5, using the formula of

Eq. 10. Alternatively, the heat capacity can be also obtained

by processing the joint histograms of energy and dipole

moments gathered at zero field, using the reweighting for-

mulas of Eq. 15. These calculations are illustrated in Fig. 4

for Ala8 under field strengths of 108 V/m and 2 3 108 V/m.

At low field E ¼ 108 V/m, the three curves agree very well

with each other, showing that the main influence of the field

is to align the molecule preferentially along its axis, without

inducing additional deformations. However, as the field is

doubled, the heat capacity curve obtained from reweighting

the zero-field histograms does not show the low-temperature

shoulder near 150 K that characterizes the remains of the a-b

transition, as correctly reproduced by the Monte Carlo sim-

ulation using the effective Langevin potential. Instead, the

specific heat displays a single peak, both the transition tem-

perature and the latent heats being overestimated. This poor

agreement indicates that the peptide undergoes not only

statistical alignment toward the field axis, but also deforma-

tions which are coupled with the favored orientations.

Therefore the reweighting procedure from the zero-field

histograms should not be used for quantitative accuracy at

fields of 2 3 108 V/m and higher.

Hexadeca-alanine

In Fig. 5, we have represented the variations of the specific

heat of the Ala16 polypeptide as a function of temperature.

The various order parameters considered previously for Ala8

show comparable behaviors for Ala16, and are not shown for

brevity.

All properties generally behave similarly as for the smaller

polyalanine, but the transitions are shifted to higher tem-

peratures, and the peaks are higher and narrower for the larger

peptide. These findings are not specific to these two peptides,

and a gradual evolution is observed by varying the number of

alanine amino-acids between 8 and 20 (45). Both shifting and

narrowing effects are well known and expected from finite-

size scaling theories (76,77). As the number of amino acids

FIGURE 3 Variations of the average square electric dipole moment m2

(upper panel), end-to-end distance d (middle panel), and radius of gyration

Rg (lower panel) of the Ala8 peptide as a function of temperature, for electric

fields in the range 0–109 V/m.
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grows, the polyalanine becomes increasingly stable (in both

the helical and b-hairpin states) due to the increasing number

of intramolecular hydrogen bonds. The decreasing impor-

tance of boundary effects is reflected on the higher unfolding

transition. In three-dimensional atomic systems, phenome-

nological models predict that the depression in the order-to-

disorder temperature grows with the inverse radius (78), and

some similar behavior could be inferred here as a function of

the peptide length, e.g., by computing the partition function

zeros (77). The shift of the a / b transition to higher tem-

peratures is less obvious, as it refers to a structural transition

rather than an order-disorder phase change.

The sharpening of the peaks is a signature of the rounding

of first-order phase transitions, as explained by Imry (79),

which is consistent with well-known theories of peptide

folding such as the Zimm-Bragg model (80). In the limit of

infinitely long proteins, the two a / b and b / coil tran-

sitions should merge into a single helix / coil transition

with a Dirac-type heat capacity peak that can only be reached

at the thermodynamic limit.

In the present case of the 16-alanine peptide, the interme-

diate b-phase has a broader range of stability at zero field

between 230 K and 500 K. Compared to Fig. 2 the effects of an

external static electric field are now more important, which is

due to the much larger macrodipole, namely 57 Debye instead

of 24.6 Debye for Ala8. Already for E ¼ 108 V/m, the peaks of

the heat capacity corresponding to the two a-b and b-coil

transitions have started to merge. For E ¼ 2 3 108 V/m, the

a-b peak shifts further to higher temperatures and becomes

high enough to exceed the b-coil peak, making it resemble a

post-melting event (81). At higher fields, only a single helix-

coil transition takes place, which is characterized with a high

latent heat and a still shifting transition temperature.

The stabilization of helical structures and the gradual shift

of the helix-coil transition toward higher temperatures are in

contrast with the destabilization of water clusters by electric

fields (22,23). In the latter case, the most stable configura-

tions are characterized by a weak dipole moment, but the

liquidlike state has many isomers with a nonzero net dipole,

hence they are favored in the presence of a field.

As was the case for Ala8, the Monte Carlo simulations per-

formed using the effective temperature-dependent Langevin

potential give results in good agreement with the heat ca-

pacity curves of Fig. 5 (data not shown). The reweighting

technique, on the other hand, performs only semiquantita-

tively for E ¼ 108 V/m, and works poorly at higher fields: the

deformations experienced by the molecule become signifi-

cant, and can no longer be neglected.

A field-dependent three-state model

The results obtained for Ala8 and Ala16 can be rationalized

using a simple multistate model. We follow here the lines of

FIGURE 4 Variations of the canonical heat capacity of Ala8 at field

strengths (a) E ¼ 10 3 108 V/m; (b) E ¼ 2 3 108 V/m. In both cases, the

curves obtained from direct sampling at fixed field (solid lines), reweighting

from zero field sampling (dotted line), or by assuming a complete statistical

orientation toward the field axis through application of the Langevin formula

(circles).

FIGURE 5 Variations of the canonical heat capacities of the Ala16 peptide

as a function of temperature, for electric fields in the range 0–109 V/m.
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Bixon and Jortner (82), who investigated the microcanonical

and canonical caloric curves of increasingly large finite sys-

tems using an harmonic approximation. We thus consider a

biomolecule characterized from two or three possible states

only, corresponding to the helical, b-strand, and random coil

conformations. These states are characterized by their ener-

gies Ea, Eb, and Ecoil, as well as their average vibrational

frequencies �va, �vb, and �vcoil: The helix state is the only one

to carry a dipole moment ~m:
By definition, the partition function of the system at tem-

perature T is the sum of the partition functions of each state:

ZðTÞ ¼ ZaðTÞ1 ZbðTÞ1 ZcoilðTÞ: (17)

In the harmonic approximation, the partition function Zk of

state k 2 fa, b, coilg reads

ZkðTÞ ¼
expð�Ek=kBTÞ
ð�hvk=kBTÞn ; (18)

where n is the number of degrees of freedom. In the presence

of an electric field E, the helix state is stabilized by the

interaction between the dipole moment and the field, and its

energy becomes temperature-dependent, as given by Eq. 5,

thus leading to

ZaðTÞ ¼
exp½�Ea=kBT 1 mELðmE=kBTÞ=kBT�

ð�h�va=kBTÞn : (19)

Here we have assumed that the vibrational frequency does

not depend on the electric field. The internal energy U(T) ¼
�@ ln Z/@(1/kBT) is thus expressed as

UðTÞ ¼ nkBT 1 Ea

Za

Z
1 Eb

Zb

Z
1 Ecoil

Zcoil

Z

� mE � mE
kBT

@L
@ð1=kBTÞ


 �
Za

Z
; (20)

where the last term in this equation accounts for the inter-

action with the field, including the temperature-dependent

potential and statistical alignment. A rather cumbersome ex-

pression is found for the heat capacity Cv ¼ @U/@T, but it is

omitted here.

To exhibit transitions between the three states, the higher

energy states must also be higher in entropy; that is, they must

have lower �v-values. We have tested this very simple model

for the following parameters, which yield clear transitions in

a restricted temperature range. In reduced units (kB ¼ 1, �h ¼
1): Ea ¼ 0, Eb ¼ 5, Ecoil ¼ 20, �va ¼ 1, �vb ¼ 0:8,

�vcoil ¼ 0:6, and n¼ 84. At zero field, these values lead to two

peaks in the heat capacity located at Ta–b¼ 0.264 and Tb–coil¼
0.615 for the a-b and b-coil transitions, respectively. The

sharpness of these transitions is intimately related to the

strong entropy difference arising from the lower frequencies

of the b and coil states. As the field is turned on, the important

parameter is the product mE, which we have varied in the

range, 0–10 energy units. The variations of the heat capacity

with increasing temperature and for various values of mE are

represented in Fig. 6 as contour plots, in the case of a two-

state a-b, and for the more relevant three-state, a-b-coil

model.

In the two-state model, the a-b transition shifts linearly

with the applied field, in agreement with our simulations

using the all-atom AMBER force field. The height of the heat

capacity peak does not increase significantly; however, the

peak becomes broader, hence the latent heat globally in-

creases with mE: In the three-state model, the b-coil transition

is barely influenced by the electric field. The two heat ca-

pacity peaks merge at some critical value of the field, here for

mE � 6: Above this value, the single a-coil transition varies

sharply as the field further increases, but the effect is mainly

seen on the heat capacity, rather than on the transition tem-

perature itself. Again, all these findings agree qualitatively

with our simulation results, showing that the thermal be-

havior of small isolated polyalanines in electric field can be

roughly described by a simple three-state model.

High-field deformations

This section considers two possible effects of the electric field

on the polypeptides. The favorable interaction with the macro-

dipole tends to stretch the backbone, to maximize the dipole

moment. Polarization effects further stabilize the molecules by

FIGURE 6 Contour plot of the heat capacity as a function of temperature

(horizontal axis) and mE for simple models.
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increasing the dipole moment as the field is applied; however,

their dependence on conformation may not be as significant as

they are for stretching.

Stretching effects

The finite-temperature Monte Carlo simulations performed

using AMBER ff 96 with internal torsion moves and global

rotations are able to account for the statistical orientation and

for possible deformations experienced by the polypeptides

under electric field. We have shown in the previous section

that a low field has the main consequence of aligning the

molecule with respect to the field, without deforming it sig-

nificantly. We have specifically studied the extent of defor-

mations on the stable helical structures of Ala8 and Ala16. To

get the maximum effect, the dipole moment was assumed to

be parallel to the applied electric field. The total energy, in-

cluding the interaction with the field, was locally minimized

using either only the dihedral coordinates, or with the full set

of Cartesian variables, thereby adapting the bond lengths and

bond angles as well. The local optimizations were initiated

from the lowest-energy configurations found during parallel

tempering simulations in a reduced temperature range 25–

150 K, and we have not carried out other specific global

optimization for the peptides in electric field. The further

stabilization of helices with an aligned electric field makes

qualitative changes in the global minimum rather unlikely.

From these minimizations, the magnitude of the dipole mo-

ment was obtained. The variations of the dipole moment rel-

ative to its value at zero field are represented in Fig. 7.

For both sizes, the extent of stretching is significant and

exceeds 20% for Ala8 under 109 V/m. Most of the stretching

effect is due to rearrangements in the backbone dihedrals, and

the other internal coordinates (bond lengths and bond angles)

only marginally contribute to the global stretching. Interest-

ingly, the larger peptide stretches only half of Ala8, in relative

amounts. Since the dipole moment of Ala16 is approximately

twice the one of Ala8, this shows that the two dipole moments

increase with the same rate as the field is applied. This is not

in contradiction with the greater effects of the field found

in our simulations for the larger polypeptide, because the

energetics is mainly driven by the dipole energy, which is

proportional to the dipole moment, while the variations of the

dipole moment itself with the field are a higher-order effect.

The relatively lower effects found for the larger peptides are

still somewhat surprising, considering that the entire back-

bone locally carries a dipole moment, thus being affected by

the field. We interpret the curves of Fig. 7 as due to finite-size

boundary effects, stretching of the small peptide Ala8 being

easier due the reduced number of hydrogen bonds.

Finally, the increase in the dipole moment with increasing

field is initially linear, but slows down at high fields

E. 5 3 108 V/m. This suggests further nonlinear effects due

to the complex interplay between the different terms in the

intramolecular energy and the interaction with the field. As a

consequence, the global minimum energy approximately

follows a cubic polynomial with increasing field strength,

VminðEÞ � Vminð0Þ � m0E � a9E2=2� g0E3=61 � � �, where

a0 is an effective polarizability factor accounting for the

stretching effects, and g0 the nonlinear correction.

Polarization effects

We now consider the interaction between the polypeptides

and an intense electric field, discussing some aspects related

to electronic polarization. The AMBER ff 96 model used

until now does not account for polarization effects, which

may become important under extreme conditions, such as in

the surroundings of ions or charged groups under a high field.

The natural medium of many biological molecules, water, is

highly polar, and the energy landscape of hydrated peptides is

known to be affected by polarization effects (83). A lot of

attention has been given recently to the development of po-

larizable force fields for molecular systems (84–90). Because

these models are not specifically dedicated for molecules in

high electric fields, they may underestimate polarization ef-

fects with respect to more sophisticated quantum mechanical

calculations (91,92). Hence, we follow here a double ap-

proach, by considering first a polarizable force field, com-

plementing some results with first-principle calculations.

Following Patel and Brooks (89,90), and consistently with

some of our previous effort (93–95), we have chosen a

fluctuating charges (fluc-q) framework to model polariz-

ability effects in polyalanines. The fluc-q method has been

developed by Mortier and co-workers (96) and by Rappé and

Goddard (97) as the so-called charge-equilibration method.

Briefly, the electrostatic energy VQ of the molecule is written

implicitly as a function of the partial charges fqig carried by

the atoms as

FIGURE 7 Variations of the magnitude of the dipole moment of Ala8 and

Ala16 under the stretching action of an aligned electric field, normalized by

the dipole moment without field, for increasing field strength. The results

obtained by local minimization using all coordinates (open symbols) or only

torsion angles (solid symbols) are shown.
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VQðRÞ ¼ +
i

eiqi 1 +
i,j

hijqiqj 1 +
i

1

2
hiq

2

i ; (21)

where ei is the electronegativity of atom i, also equal to the

opposite of the chemical potential. The parameters hi are the

hardnesses, while the cross terms hij depend on the distance

rij between atoms i and j. All quantities e and h are taken as

adjustable parameters. Similarly as Patel and Brooks (89,90)

we have chosen a simple combining rule for the hardnesses

between heterogeneous elements, which has the correct

asymptotic 1/r Coulomb behavior at large r:

hij ¼
h
ð0Þ
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 1 ðhð0Þij Þ
2
r

2

ij

q ; (22)

h
ð0Þ
ij ¼

hi 1 hj

2
: (23)

The charges are calculated in practice by minimizing Eq. 21

above under the constraint of global charge neutrality, which

is equivalent to solving a (N 1 1) 3 (N 1 1) linear system,

with N the number of sites. We have parameterized this

fluctuating charges model to mimic the AMBER ff 96

charges as close as possible, for a set of conformations of

the Ala8 peptide taken from a Monte Carlo trajectory at 200 K

in the helical conformation (no replica exchange attempted).

In particular, we have considered the same atom types as

AMBER ff 96 (52); that is (for polyalanine), H, HO, H1, HC,

C, CT, N, O, and OH. The values of the electronegativities

and atomic hardnesses obtained from this systematic adjust-

ment are reported in Table 1 for these atom types. They differ

significantly from the values reported by Patel and Brooks

(89) for the CHARMM force field, but it is important to stress

that these authors parameterized their fluc-q potential based

on density-functional theory calculations, while the present

fitting was made to add some polarization contribution to the

nonpolarizable force field without perturbing the static

charges.

The correlation between the electric dipole moments ob-

tained for the original AMBER ff 96 fixed charges and the

dipole moment obtained using the fluctuating charges is

shown in Fig. 8 for the entire set of 1000 configurations.

The agreement between the fixed-charges and the fluctu-

ating-charges dipole moments is reasonably good. The be-

havior of the fluc-q polarizable model has been further

illustrated in Fig. 9, where the variations of the norm of the

dipole moment, as well as the charge averaged over identical

atom types are shown versus the configuration number dur-

ing the MC trajectory.

While the dipole varies by significant amounts (from 15

Debye to ;25 Debye), all fluctuating charges remain nearly

constant for a given atom type. This surprising result tells us

that the fluc-q model is able to mimic the original AMBER

ff 96 electrostatics, even relatively far from the equilibrium

geometries.

We have used the fluc-q potential to study the influence of

a high electric field on the electrostatic response. To separate

the pure electronic and polarization effects from the atomic

deformations, we only consider the Ala8 and Ala16 peptides

in their more stable a-helix conformation at 0 K and without

a field. The fluctuating charges are affected by the presence of

the field, through an interaction term �mE in the right-hand

side of Eq. 21 above. This term gives rise to effective elec-

tronegativities that are functions of the field (and the mo-

lecular geometry), but the self-consistent solution of the

charges remains straightforward through matrix inversion.

The charges have been determined for favorable conforma-

tions of the molecule, with its dipole moment aligned toward

the field axis.

Additional density-functional theory calculations have

been performed using the B3LYP hybrid functional and the

6–311G* basis set, as available in the Gaussian03 software

package (98), for electric fields in the range 0–109 V/m.

Again, the molecular geometry was taken as the AMBER

ff 96 helical minimum, and was not allowed to relax within

the field. The norm of the dipole moment relative to its value

TABLE 1 Atomic hardnesses h and electronegativities e of

the various AMBER ff 96 atom types obtained by systematic

least-square fitting the rigid charges for a sample of 1000

helical configurations of Ala8 taken at 200 K

Atom type h e Atom type h e

H 457.8 0 HO 3096.2 �828.9

H1 1471.5 �81.9 HC 1532.0 �287.6

C 1823.1 �1053.4 CT 2256.2 123.9

OH 2023.4 1025.5 O 3139.3 1563.3

N 1662.8 1023.6

The electronegativities are given in kcal/mol/e and the hardnesses in kcal/

mol/e2. The electronegativity of hydrogen attached to nitrogen (simply

denoted H) was taken as the reference.

FIGURE 8 Correlation between the electric dipole of helical octa-alanine

moments obtained with the AMBER ff 96 fixed charges or with fluctuating

charges, as obtained from a sample of 1000 helical configurations taken from

a Monte Carlo simulation at 200 K.
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without a field is represented in Fig. 10 as a function of field

strength.

Both the polarizable force field and the electronic structure

calculations show that the apparent dipole is significantly in-

creased upon applying a field, by up to 8% for Ala8 at 109 V/m.

The results obtained with the present polarizable force field

are in very satisfactory agreement with the density-functional

theory calculations, given that no electronic structure data was

included in the fitting procedure.

The marked increase in the dipole moment is a purely

electronic effect, which cannot be captured by the nonpo-

larizable AMBER force field. Under high fields, polarization

effects tend to further stabilize the peptide by increasing the

dipole moment. The slopes, which measure the ratio between

the polarizability and the dipole moment, are very similar for

the two peptides. Considering that the dipole moment is es-

sentially proportional to the number of alanine residues, this

means that the polarizability of Ala16 is approximately twice

the one of Ala8, even slightly lower, which agrees with

simple additive arguments giving 100.3 Å3 and 198.7 Å3,

respectively. However, some marked deviations to the linear

behavior are seen for the fluctuating charges model, which

overestimates the electronic structure data by a few percents

in the case of the larger peptide. Even though polarization

effects are significant, they are not expected to convey a

strong dependence on conformation. Therefore, the energetic

balance between helices, sheets, and extended conformations

should not be exceedingly affected by polarization. However,

it would be interesting to calculate more specifically the

polarization tensors of different secondary structures.

Structural phase diagrams

The simulation data obtained with the AMBER ff 96 force

field can be used to construct a phase diagram for charac-

terizing the most stable conformation of small polyalanines

as a function of both electric field and temperature. At zero

field, three states are found, the a-helix state being the most

stable below the folding temperature, the random coil state

above the collapse temperature, and the b-strand conforma-

tion having a limited range of stability in between these two

temperatures. At low field strength E, 108 V/m, the re-

weighting technique from the histograms in energy and di-

pole moment obtained at zero field can be used to determine

the heat capacity curves as a continuous function of the ap-

plied field. We use this method for field strength up to 2 3

108 V/m, even though its predictions above 108 V/m should

be only considered as semiquantitative. For higher fields,

extrapolations based on our Monte Carlo simulations at 5 3

108 V/m and 109 V/m could also be affected by polarization

effects.

The schematic phase diagrams inferred from the simula-

tions are shown in Fig. 11 for Ala8 and Ala16. The two pol-

ypeptides exhibit qualitatively similar diagrams, with a rather

localized stability region for b-sheet conformations at mod-

erate temperature and low electric field, separating the en-

ergetically favored a helices at lower temperatures and the

entropically favored random coil states at high temperatures.

Only a single-step helix-coil transition is found above ;2 3

108 V/m; however, for large peptides the a-b transition has a

larger latent heat than the b-coil transition, making the two

latter states harder to disentangle.

FIGURE 9 Variations of the instantaneous electric dipole moment (upper
panel) and average individual charges (lower panel) versus Monte Carlo

configuration, as taken periodically along a 200 K trajectory of helical octa-

alanine. The atomic charges are identified by their AMBER type, as

indicated on the right of the panel.

FIGURE 10 Variations of the magnitude of the dipole moment of helical

Ala8 and Ala16 with increasing field strength, due to electronic rearrange-

ments only, as obtained from the fluctuating charges model (solid symbols)

or from density-functional theory calculations (open symbols), for dipole

moments aligned with the field. The dipole moments are normalized by their

values without electric field.
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At high field strengths, the helix-coil transition tempera-

ture steadily grows with the field. Stretching effects are partly

responsible for this increase, but the role of polarization

should be investigated further.

The trends found in this work can be extended to larger

polyalanines. First, the a-b transition should not last for very

large peptides, and the increasing energetic stability of the

helix conformations should make the b-conformations mar-

ginal, also without an electric field. In particular, tertiary

structures composed of several helical parts could be more

stable than the double-strand b-structures with a single turn at

intermediate temperatures. The low net dipole moment of

such tertiary structures would make them only moderately

affected by the external field.

The structural phase diagrams of Fig. 11 can be interpreted

differently if one varies the electric field at fixed temperature.

At moderate temperature, increasing the field can lead to a

b / a transition. At high temperatures, transitions from the

random coil state to the a-helix can also take place upon

increasing the field, in a very similar effect to the electro-

freezing transition in water (15). Such transitions occur at a

rather high field (above 5 3 108 V/m), and could take place

in the vicinity of counterions, metal ions, or other field-

enhancing peptides.

CONCLUSIONS

External electromagnetic fields can have a strong influence

on the structural and dynamical properties of polar molecular

systems. In this article, we have investigated the thermody-

namical behavior of small gas-phase polyalanines in the

presence of a static and homogeneous electric field in the

range 0–109 V/m. Such values, albeit high, are comparable to

the intensities found in the inner parts of biological mole-

cules, e.g., ion channels (99). We have performed Monte

Carlo simulations improved with all-exchanges parallel

tempering, using the AMBER ff 96 force field as our main

model. An efficient way of sampling the flexible conforma-

tions and the various orientations together within the field

was introduced by performing the statistical average over all

orientations for each molecular configuration. This procedure

leads to an effective temperature-dependent potential in-

volving the Langevin function L. We have also used a two-

dimensional multiple histogram method where, from the

correlated energies and dipole moments gathered at a series

of temperatures and at zero field, the caloric curves at finite

field can be calculated perturbatively. This method was found

to be accurate at low fields E# 108 V/m.

By calculating several order parameters, including the ra-

dius of gyration, the helical content, the end-to-end distance,

and the fluctuations in the overlap with the native state, we

have been able to characterize the combined influences of

temperature and electric field on the stable conformations of

octa-alanine and hexadeca-alanine. In agreement with our

previous investigation (45), with experimental measurements

(42) and with recent theoretical suggestions (43,44), the

polyalanines were found to display a two-step unfolding

transition, changing first from a-helix to b-strand confor-

mations, then to extended coil at higher temperatures. The

temperatures of these two transitions, respectively the folding

and the collapse temperature, differ more for the larger

peptide, but come closer to each other as the field is turned on.

Upon increasing the field strength, the macrodipole of the

helical conformations stabilizes them significantly at the ex-

pense of the b-strand and random coil states. This shifts the

a-b folding transition toward higher temperatures. Above

some critical value of the field, the two peaks in the heat

capacity merge and only a single helix-coil transition is ob-

served. As the magnitude of the field increases, the helix is

stabilized further and the collapse transition shifts to higher

temperatures. The field has a stronger influence on the larger

peptide, due to its larger dipole. In particular, the peak as-

sociated with the a-b transition becomes higher than the

second peak, which appears as a high-temperature shoulder

FIGURE 11 Schematic (field strength, temperature) stability diagrams of

Ala8 (upper panel) and Ala16 (lower panel). The boundaries of the shaded

regions are obtained from reweighting of zero-field histograms, while the

dashed lines are the results of direct simulations.
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in an apparent post-melting phenomenon. These results could

be interpreted using a simple three-state harmonic model in

which the energetics of the helical state explicitly depends

on the electric field according to the Langevin statistical

behavior.

At low electric fields (,;108 V/m), an orientation toward

the field axis takes place according to the Langevin law;

hence, it is most important at low temperatures. At moderate

fields, some deformations increase the macrodipole by stretching

along the field, hence further stabilizing the a-helix. A spe-

cific study of this process reveals that the relative stretching

is quite large in magnitude, and reaches 25% for Ala8 under

109 V/m, as measured on the dipole moment. However,

stretching is not as important for the larger peptide, and it

would be interesting to study specifically such effects as a

function of the number of amino acids.

At high electric fields, polarization effects become more

important, and we have parameterized a fluctuating charges

model to mimic the fixed AMBER charges from a sample of

equilibrium configurations. This polarizable model, as well

as complementary density-functional theory calculations,

both predict that the dipole moment increases at high field,

linearly for the smaller peptide, but second-order effects are

more pronounced for Ala16 in the fluc-q model. These linear

variations provide a direct estimate for the polarizabilities.

While they are comparable in magnitude to the stretching

effects, their increase with peptide size balances the decreasing

stretching effects. However, and contrary to stretching, po-

larization effects should affect all conformations similarly.

Thus, even though polarization effects should increase the

macrodipole more rapidly than stretching, their influence on

the structural transitions and helix/coil stability may not be so

important.

Finally, based on our Monte Carlo simulations and the

reweighting method developed here, we have sketched a sche-

matic (field, temperature) structural phase diagram showing

the various domains where each of the a-helix, b-strand, and

random coil states is the most stable. In particular, our results

suggest that electrofreezing transitions could occur at rea-

sonably high temperatures, upon increasing the intensity of

the field.

It would be interesting to characterize the global energy

landscapes of the polyalanines studied here, especially for

getting insight into the relaxation kinetics and pathways as-

sociated with the helix 4 sheet interconversion. In particu-

lar, comparison with the results obtained by Mortenson and

Wales (100,101) who also used AMBER ff 96, albeit with

different shielding parameters (including implicit solvent),

would be very useful for assessing the role of the force field.

The evolution of the landscape as the field is switched on and

progressively increased would probably shed light onto the

mechanisms affecting the relative stability of helical and

sheet conformations.

The methods developed in this article could be useful for

studying any molecular system in presence of an electro-

magnetic field. Water clusters (20–24) or water wires (17–

19), for instance, would provide straightforward applications

of the effective potential approach. Reweighting from zero-

field histograms could also exempt us from performing ex-

plicit simulations in the weak fields’ regime, thus allowing

the investigation of field effects in a continuous range. This

would be most valuable for dealing with larger biomolecules,

for which sampling of the potential energy surface is a real

concern.

The approximation of a single polarizability and dipole

moment may be problematic for large molecules, whose

geometrical extent may exceed the radius of convergence of

the electrostatic energy. Distributed multipoles and polariz-

abilities would be a natural step beyond the present approach;

however, their inclusion in the simulations would demand an

important numerical effort. Guiding the Monte Carlo trajec-

tories with a nonpolarizable force field, and correcting a

posteriori with a proper polarizable potential, could be one

way of improving the modeling along such lines (102,103).

However, it would be desirable to have reference data ob-

tained at a higher level of calculation, to assess the relevance

of such potentials under intense fields.
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