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ABSTRACT We propose what to our knowledge is a new technique for modeling the kinetics of voltage-gated ion channels in
a functional context, in neurons or other excitable cells. The principle is to pharmacologically block the studied channel type,
and to functionally replace it with dynamic clamp, on the basis of a computational model. Then, the parameters of the model are
modified in real time (manually or automatically), with the objective of matching the dynamical behavior of the cell (e.g., action
potential shape and spiking frequency), but also the transient and steady-state properties of the model (e.g., those derived from
voltage-clamp recordings). Through this approach, one may find a model and parameter values that explain both the observed
cellular dynamics and the biophysical properties of the channel. We extensively tested the method, focusing on Nav models.
Complex Markov models (10–12 states or more) could be accurately integrated in real time at .50 kHz using the transition
probability matrix, but not the explicit Euler method. The practicality of the technique was tested with experiments in raphe
pacemaker neurons. Through automated real-time fitting, a Hodgkin-Huxley model could be found that reproduced well the
action potential shape and the spiking frequency. Adding a virtual axonal compartment with a high density of Nav channels
further improved the action potential shape. The computational procedure was implemented in the free QuB software, running
under Microsoft Windows and featuring a friendly graphical user interface.

INTRODUCTION

In neurons and other excitable cells, voltage-gated channels

open and close in response to changes in the membrane po-

tential and thus play a critical role in the generation and

propagation of action potentials. To understand neuronal

function, one must obtain accurate models of ion channel

gating mechanisms. The quantitative analysis of voltage-

gated channels started with the work of Hodgkin and Huxley

(1) on squid giant axons. Their original insight was to de-

scribe the gating mechanism in terms of independent acti-

vation and inactivation ‘‘particles’’, each with first-order

kinetics and voltage-dependent rate constants. For example,

the Hodgkin-Huxley (HH) model of the Nav channel assumes

three identical activation particles and one inactivation par-

ticle. However, experimental evidence strongly suggests that

the four voltage sensors are not identical and activate coop-

eratively, and that the inactivation and activation processes

are coupled (2–5). These features cannot be represented with

a vectorial product of several independent gating particles,

and one must turn to a description based on Markov models.

Ideally, one would determine the gating mechanism and

estimate the average kinetic parameters for each channel

type, across a population of neurons. However, even when

this is practically possible, assembling this knowledge into a

model of cellular dynamics may not reproduce the observed

neuronal behavior. Factors contributing to model failure are

the nonlinear dynamics of the cell (small parameter estima-

tion errors may substantially change the cellular dynamics),

and possibly a nonconvex parameter space, in which case the

average estimate is not a generally acceptable solution (6). A

recent technique that allows one to functionally replace a

biological ion channel with a virtual conductance, and to

study its effects upon cellular electrical behavior is the

‘‘dynamic current clamp’’ (7). In the ‘‘passive’’ current-clamp

mode, a patch-clamp amplifier injects a current of prescribed

value into the cell and simultaneously measures the mem-

brane voltage. In contrast, the ‘‘dynamic’’ current clamp is a

feedback loop (Fig. 1): the membrane voltage is measured,

and a current is calculated according to a computational

model that includes voltage dependence. This current is then

injected into the cell, which in turn changes the voltage, and

the whole process is repeated in real time.

Here, we present the theoretical and computational details

of what to our knowledge is a new technique—based on

dynamic clamp—for real-time modeling of the kinetics of

voltage-gated ion channels in a functional context. As illus-

trated in Fig. 2, this procedure involves several steps:

1. Record the ‘‘reference’’ action potential normally gener-

ated by the cell. If necessary, depolarize the cell to induce

spiking.

2. Pharmacologically block the current passing through the

studied channel (e.g., Nav).

3. On the basis of a voltage-dependent kinetic model,

calculate and inject a current into the cell, using dynamic

doi: 10.1529/biophysj.107.118190

Submitted July 24, 2007, and accepted for publication February 12, 2008.

Address reprint requests to Lorin S. Milescu, Cellular and Systems

Neurobiology Section, NINDS, National Institutes of Health, Bethesda,

MD 20892-2540. E-mail: milescul@ninds.nih.gov.

Murtaza Z. Mogri’s present address is Dept. of Bioengineering, Stanford

University, Stanford, CA.

Editor: Toshinori Hoshi.

� 2008 by the Biophysical Society

0006-3495/08/07/66/22 $2.00

66 Biophysical Journal Volume 95 July 2008 66–87



clamp. Adjust the parameters until spiking is restored,

albeit with different frequency and action potential shape.

4. Calculate the error between the reference and the dy-

namic-clamp-generated action potentials.

5. If the error is small, then the model and its parameter

values are accepted. If the error is large, choose a new set

of parameters and repeat step 3. The search for optimal

parameters can be automated, and prior knowledge from

other experiments (e.g., previously recorded macroscopic

currents) can be included in the fit.

The advantage of this new approach is that one may find a

model and parameter values for a given channel type (e.g.,

Nav) that explain not only the biophysical properties of the

channel, but also the functional behavior of a specific cell,

without requiring any knowledge about the nonlinear inter-

actions with other currents (e.g., Kv). Modeling kinetics from

voltage-clamp protocols only has the potential of being very

precise, but does not guarantee that the estimated parameters

do, in fact, explain the observed dynamics for that very same

cell; fitting the action potential should do so. Furthermore, in

principle, one could repeat the experiment for other ion

channel types, and functionally replace several currents one

by one. At the end of the experiment, the obtained parameters

will still guarantee spiking, with similar frequency and action

potential shape, all for the same cell. In this way, one could

even inspect the distribution of parameters across a popula-

tion of cells (8).

Our results suggest that the real-time modeling technique

proposed here has the practical potential to advance our un-

derstanding of how voltage-gated ion channels function and

interact with each other in neurons and other excitable cells to

create a large variety of dynamical behaviors. We extensively

tested this procedure with computer simulations, but also

with in vitro experiments on raphe neurons (9,10) patch-

clamped in brainstem slices. These neurons were chosen

because they spike tonically and are easy to identify, and are

relatively electrotonically compact, which reduces experi-

mental artifacts. We chose to model Nav channels because

they can be fully and conveniently blocked with tetrodotoxin,

but especially because they place the highest constraints on

the dynamic clamp system due to their very fast kinetics and

rather complex gating mechanisms. However, the same pro-

cedure can be applied to study other voltage-gated channels

in neurons or in other excitable cells. We implemented the

technical procedure as an extension of the freely available

QuB software for electrophysiology (www.qub.buffalo.edu).

MATERIALS AND METHODS

Modeling

Kinetic models

We tested both Markov and Hodgkin-Huxley models (Fig. 3). In the Markov

formalism, each conformation of the ion channel is mapped into a state of the

model, and the frequencies of transitions between states are quantified by rate

constants. The rate constants of any Markov model can be compactly ex-

pressed as a rate matrix Q (11), of dimension NS 3 NS, where NS is the

number of states. The Q matrix has each off-diagonal element, qij, equal to

the rate constant between states i and j, and each diagonal element, qii, equal

to the negative sum of the off-diagonal elements of row i, so that the sum of

each row is zero. A voltage-dependent rate constant, kij, has the Eyring ex-

pression

kij ¼ k
0

ij 3 e
k

1
ij 3 V

; (1)

where V is the transmembrane voltage, k0
ij is the rate at zero membrane

depolarization and k1
ij is a factor equal to dijzijF/RT, where zij is the electrical

charge moving over the fraction dij of the electrical field, F is Faraday’s

constant, R is the gas constant, and T is the absolute temperature. The

dynamics of a Markov model are described by the Kolmogorov equation:

FIGURE 1 Replacing ion channel cur-

rents in functional neurons using dynamic

clamp. As shown, the cell’s own Na1

current is blocked with TTX, and a re-

placement current is injected using dy-

namic clamp, on the basis of a Nav

kinetic model. In a real-time computa-

tional loop, the computer reads Vm from

the amplifier through the digital acquisi-

tion card (DAQ), integrates the ODEs of

the Nav model (shown as Markov), and

calculates an output current INa and in-

jects it into the cell. The entire construct

is a hybrid biological-computational sim-

ulator: in each cycle, the cellular mem-

brane ‘‘solves’’ the ODEs for Vm, IK,

and other currents while the calculated

INa is held constant by the D/A con-

verter; simultaneously, the computer sol-

ves the Nav model using an effectively

constant Vm, as provided by the A/D

converter.
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dPT

dt
¼ PT

3 Q; (2)

where P is the (transposed) state probability vector, representing the

occupancy of the NS states.

The Hodgkin-Huxley formalism describes voltage-gated ion channels in

terms of independently gating ‘‘particles’’, each with first-order kinetics and

voltage-dependent rate constants. For a given channel, several identical

particles may be required to describe a certain function, e.g., activation or

inactivation. The dynamics of a HH model, e.g., of a Nav channel, can be

formulated as

dm

dt
¼ am 3 ð1� mÞ � bm 3 m; (3)

dh

dt
¼ ah 3 ð1� hÞ � bh 3 h; (4)

where m and h are the occupancy probabilities for the activation and

inactivation particles, respectively. The a and b values are the rate constants

describing the gating transitions, in their standard naming convention, with

Eyring voltage dependency as in Eq. 1:

a ¼ a
0
3 e

a
1
3V
; b ¼ b

0
3 e

b
1
3V
; (5 and 6)

although phenomenological voltage-dependent expressions are also used (1).

Each HH model has a Markov equivalent, but the converse is not true, as

Markov models are not limited to the same assumptions (identical and

independent gating particles). The HH version of a model generally requires

fewer differential equations than its Markov equivalent (e.g., two versus

seven for the m3h Nav model), and therefore computes faster.

Steady-state probabilities

The steady-state probabilities of an ion channel can be calculated by setting

equal to zero the differential equations describing the dynamics of the model.

For a Markov model, we have

dPT

eq

dt
¼ PT

eq 3 Q ¼ 0; (7)

where Peq is the vector of equilibrium-state probabilities. Equation 7 above

can be solved for Peq as detailed in Colquhoun and Hawkes (11). For a HH

FIGURE 2 Real-time kinetic modeling of voltage-gated channels using dynamic clamp. The procedure is based on minimizing the difference between two

action potential waveforms: one obtained under control conditions (A), and the other (B) obtained by replacing the current of the studied voltage-gated channel,

using the dynamic-clamp engine (C), as shown in Fig. 1. The minimization of the cost function (the MSE between the two AP waveforms) can be done

manually or programmatically (F), by changing in real time the parameters of a voltage-dependent kinetic model (D). A parameter-dependent penalty can be

optionally added to the cost function, to include a priori knowledge, such as that provided by macroscopic currents (G) previously recorded from the same

or other cell(s). Both the control and the fitted AP waveforms are averages of multiple consecutive spikes, detected when Vm crosses a user-defined threshold,

e.g., �30 mV (E). The computation is divided between several parallel threads, but only the dynamic-clamp thread (C) runs in real time, responding within dt

to any change in parameters, via manual user input, or from the optimizer.
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model, the equilibrium occupancy probability, xeq, of a gating particle is

similarly obtained by solving the equation

dxeq

dt
¼ a 3 ð1� xeqÞ � b 3 xeq ¼ 0; (8)

with the simple solution

xeq ¼ a=ða 1 bÞ: (9)

When a and b have Eyring expressions, as in Eqs. 5 and 6, xeq is a sigmoidal

function of voltage:

xeq ¼
1

1 1 e
s 3 ðV�V1=2Þ

; (10)

where the slope, s, and the half-activation voltage, V1/2, are calculated as

s ¼ b
1 � a

1
; (11)

V1=2 ¼ �
ln b

0 � ln a
0

b
1 � a

1 : (12)

The above calculations are for one gating particle only. For q identical and

independent gating particles, the sigmoid in Eq. 10 is raised to the qth power.

Ionic currents

The ionic current passing through an ensemble of NC ion channels, in the

Markov formulation, is calculated as

I ¼ NC 3 gT
3 P 3 ðV � VrevÞ; (13)

where g is the vector of unitary conductances, and Vrev is the reversal voltage

for the permeant ion. For a HH model, e.g., of a Nav channel, the current is

I ¼ NC 3 g 3 m
q
3 h

p
3 ðV � VrevÞ; (14)

where g is the unitary conductance, and q and p are the numbers of activation

and inactivation particles, respectively. Including NC in the current equation is

required for stochastic simulations, where the actual number of channels

is important. For deterministic simulations, it may be more convenient to

express the current in terms of specific conductance, gC (e.g., in nS/pF) and

membrane capacitance, C (in pF), which is proportional to the membrane area:

I ¼ C 3 gC 3 gT
3 P 3 ðV � VrevÞ: (15)

In this case, g has elements equal to zero or 1, for closed or open states,

respectively, being simply used to select the conducting states. Similarly, for

HH models,

I ¼ C 3 gC 3 m
q
3 h

p
3 ðV � VrevÞ: (16)

In actual experiments, the capacitance of the membrane, C, can be estimated

using the capacitance compensation circuits of the patch-clamp amplifier.

Cellular dynamics

The dynamic-clamp technique is practically restricted to measuring the

membrane voltage in one cellular compartment (e.g., soma) and injecting a

FIGURE 3 Kinetic models of voltage-gated ion channels evaluated in this study. Hodgkin-Huxley models are a vectorial product of independent ‘‘gating

particles’’, each with first-order kinetics. Typically, Nav models have three identical activation particles and one inactivation particle (A1), whereas Kv models

have four identical activation particles (B1). Markov models describe channels in terms of interconvertible conformational states, some conducting ionic

current (the ‘‘open’’ states). Any HH model has a Markov equivalent (e.g., A1 and A2), but the converse is not true (e.g., Markov models A4 and A5 do not

have a HH equivalent). In the Markov form, the constraints of gating-particle identity and independence are reflected by the ratio between successive steps

(e.g., A2, 3am:2am:am). The constraint of microscopic reversibility is implicit (in all HH models), or explicit (e.g., imposed by the a and b allosteric factors in

A4). In most cases, rate constants are exponential functions of voltage, e.g., am ¼ a0
m 3 expða1

m 3 VÞ:
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calculated current in the same compartment. For this reason, we assume here

that the voltage and the modeled ion channel(s) are homogenously distrib-

uted within a single compartment. Under these conditions, the cellular dy-

namics are minimally described with ordinary differential equations (ODEs),

one for voltage and the others for channel state probabilities. For example, to

simulate the dynamics of a neuron with Nav and Kv currents, formulated as

Markov models, one has to integrate the following ODEs:

C
dV

dt
¼ INa 1 IK; (17)

dPT

Na

dt
¼ PT

Na 3 QNa; (18)

dPT

K

dt
¼ PT

K 3 QK: (19)

Injecting currents into biological neurons using dynamic clamp is equivalent

to a real-time, hybrid biological/computational simulation. Thus, the neuron

‘‘integrates’’ the ODEs for voltage and for its own biological ion channels,

e.g., a Kv channel, whereas the computer integrates the ODEs for the

modeled ion channel, e.g., a Nav channel, as illustrated in Fig. 1.

Deterministic ODE solver

Splitting the integration between the cell and the computer leads to errors. To

minimize these errors, the integration step dt has to be as short as possible,

and, since it takes place in real time, the computation must be fast. One of the

fastest numerical integration methods is the explicit Euler. If x is the variable

to be integrated (e.g., Pi or m) with dx/dt ¼ fx(x, y, z,. . .), then the explicit

Euler method provides the solution:

xt1dt ¼ xt 1 dt 3 fxðxt; yt; zt; . . .Þ: (20)

The explicit Euler integration requires only one function evaluation per time

step, but it also makes the largest error, proportional to dt (12), and it is the

least stable.

The very fact that only the channel state probabilities have to be propa-

gated in time, whereas the voltage has to be assumed constant between

successive readings, makes it possible to use another integration method.

Thus, the differential equation describing the dynamics of the state proba-

bility vector (Eq. 2) has the following analytical solution:

PT

t1dt ¼ PT

t 3 e
Qt3dt

; (21)

where Pt and Pt1dt are the state probability vectors at time t and after a time

step dt, respectively, and Qt is the rate matrix calculated using the voltage

measured at time t. The assumption of constant voltage notwithstanding, this

solution is exact, and it can be applied to any model, whether Markov or

Hodgkin-Huxley. For a Markov model, the exponential of Qt 3 dt is the

transition probability matrix, which can be conveniently calculated using the

spectral expansion (11)

e
Qt3dt ¼ +

k

Ak 3 e
lk3dt

; (22)

where the Ak values are the spectral matrices and the lk values are the

eigenvalues of the Qt matrix. For a HH model, based on the assumptions of

equal and independent gating particles, the solution simplifies to

xt1dt ¼ ð1� xtÞ3 a 1 xt 3 b; (23)

where x represents the occupancy probability of a gating variable, such as m

or h, and a and b are the expressions

a ¼ ða 1 a 3 e
�ða1bÞ3dtÞ=ða 1 bÞ; (24)

b ¼ ða 1 b 3 e
�ða1bÞ3dtÞ=ða 1 bÞ: (25)

The analytical solution (Eq. 21) consists of multiplying the vector of state

probabilities by the transition probability matrix, and requires about the same

computational effort as the Euler integration. However, for a general Markov

model, it also involves computing the eigenvalues and the eigenvectors of the

rate matrix Q. Clearly, this cannot be executed at each time step fast enough

for a real-time application, but the matrix exponential can be calculated only

once over an entire range of voltages, and the appropriate matrix can be

substituted in Eq. 21, according to the value of V. This calculation will have

to be repeated each time a parameter affecting Q is changed, but it can be

performed outside the real-time thread.

Stochastic ODE solver

When the number of channels NC is in the thousands or hundreds, stochastic

effects may become significant (13) and deterministic integration may not be

accurate enough. In this case, we can use Gillespie’s stochastic algorithm

(14). Briefly, the lifetime of a Markov model in state i is a random variable

with exponential distribution, with average equal to �1/qii. When the state

randomly changes from i to j, it does so with probability

Pij ¼ �qij=qii: (26)

Thus, to simulate the random dwelling of a Markov model, one needs to draw

a sequence of random number pairs: an exponential deviate for the dwell

duration and a uniform deviate to choose the next state. For an ensemble of

NC channels, the descriptor of the ensemble’s state is how many channels, Ni,

are in each of the NS states. The average lifetime in this ensemble state is

tNC
¼ � +

i

Ni 3 qii

� ��1

: (27)

This is the first random number to be drawn, an exponential deviate. Each of

the Ni sets of channels can change state with probability

Pi ¼ �Ni 3 qii=tNC
: (28)

This is the second random number, a uniform deviate. Thus, one channel in

state i will switch to state j with probability Pij as in Eq. 26. This is the third

random number, also a uniform deviate. For the new ensemble state, we

make Ni :¼ Ni – 1 and Nj :¼ Nj 1 1. The vector of state probabilities P is

advanced over dt by repeatedly drawing these three random numbers, until

the sum of the dwell times is $dt.

Gillespie’s algorithm is very efficient (15). However, the average lifetime

of the ensemble state is inversely proportional to the number of channels, NC.

Thus, to advance the solution over dt, one will have to draw more and more

random numbers as NC becomes larger, but this computation itself must take

at most dt seconds in real time. For large NC, this becomes impossible. In this

case, we can use Langevin’s approximation (16), which is essentially solving

the same deterministic ODEs, but with an added stochastic term vt, so that

dx/dt ¼ fx(x, y, z,. . .) 1 vt. This approximation gives different results from

Gillespie’s exact solution (13,16), but it is good enough when NC is large

(17). Note that the stochastic integration is subject to the same kind of error as

the deterministic integration, due to the assumption that the voltage is con-

stant during dt.

Model parameters and constraints

The parameters of interest are the factors k0
ij and k1

ij (or a0
m; a1

m; b0
m; etc.), and

the number of channels, NC, or the specific conductance, gC. As in any op-

timization problem, it is best to reduce the number of free parameters to a

minimum, by enforcing constraints on the model. Some constraints arise

naturally from the model itself. For example, one rate may be a multiple of

another in the voltage activation pathway, and loops must be in microscopic

detailed balance. Note that loop-containing Markov models that have a HH

equivalent are automatically in balance. A particularly efficient way of im-

plementing these linear constraints for Eyring rates (Eq. 1) is described in
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detail in (18), and we use it here whenever appropriate. The procedure in-

volves using the singular value decomposition to obtain a reduced set of free

parameters from the set of rate constants, through a logarithmic transfor-

mation of variable. For non-Eyring rates, the logarithmic transformation

cannot be used, and the parameterization becomes more difficult when the

model contains loops, but alternative solutions exist (19).

Parameter transformations

For Hodgkin-Huxley models with Eyring voltage-dependent rates (Eqs. 5

and 6), the following transformations—in addition to changing any param-

eter independently—simplify the manual search for optimal parameters:

1. Offset V1/2 by DV mV, by changing the preexponential factors:

a
0

:¼ a
0
=f ; b

0
:¼ b

0
3 f ; (29 and 30)

where f is a factor calculated from the relation

DV ¼ � 2lnf

b
1 � a

1; (31)

2. Change the slope, s, by Ds mV�1, by adding Ds/2 to the absolute value

of each exponential factor:

a
1

:¼ a
1
1 Ds=2; b

1
:¼ b

1 � Ds=2: (32 and 33)

At the same time, the preexponential factors are changed to keep V1/2 the

same:

a
0

:¼ a
0
=f ; b

0
:¼ b

0
3 f ; (34 and 35)

where f is calculated from the relation:

V1=2 ¼
ðln b

0 � ln a
0Þ � 2 ln f

ðb1 � a
0Þ1 Ds

: (36)

3. Keep the electrical charge constant but reposition the transitional

complex in the electric field, by adding Ds/2 to each exponential factor:

a
1 :¼ a

1
1 Ds=2; b

1 :¼ b
1
1 Ds=2: (37 and 38)

Note that s is proportional to the total charge moved by the gating particle,

and the transitional complex is positioned symmetrically in the electric field

if k1
a ¼ �k1

b: This transformation does not change the steady state;

4. Make the gating process faster or slower, by changing the preexponen-

tial factors:

k
0

a
:¼ k

0

a
3 f ; k

0

b
:¼ k

0

b
3 f ; (39 and 40)

where f . 1 to make it faster. This transformation does not change the steady

state;

5. Offset the exponential voltage dependence of a single rate by DV mV, as

follows:

k
0

:¼ k
0
3 expðDV 3 k

1Þ; (41)

where k stands for either a or b. This transformation does change the steady

state.

For Markov models, similar transformations may be difficult to imple-

ment in the general case, but for each specific model one may find empirical

relations to obtain approximately the same results.

Real-time fitting

The principle of the real-time fitting procedure is illustrated in Fig. 2. The

cost function is the sum of square errors (or the mean-square error) between

the action potential waveforms, one recorded as a control and the other one

obtained by injecting into the cell a current calculated according to the

current set of parameters:

Ci ¼ +
t

ðyt � xtÞ2; (42)

where i refers to the iteration, t is the discrete time index in the waveform, and

x and y are the voltage values in the fitted and in the control AP waveforms,

respectively.

The real-time optimization procedure adjusts the parameters of the

model—subject to constraints—as to minimize C. Although this is nothing

more than curve fitting, there are some technical difficulties. Most important,

the fitting curve cannot be simply calculated but it must be generated dy-

namically in real time (e.g., it takes 10 s of real time to simulate a 10-s time

course). Second, the cost function is inherently random, due to stochastic ion

channel fluctuations, voltage measurement noise, finite time resolution, and

time step jitter. To reduce the effect of noise, several spikes should be col-

lected and averaged, at the cost of increasing the fitting time.

There is no easy way to calculate analytically the gradients of the cost

function. Numerical gradients could in principle be calculated, but they will

be affected by the randomness of the cost function. Hence, a gradient-descent

search method (18,20), although it would be very efficient, cannot be used

here, unless this randomness can be reduced to acceptable levels (e.g., by

averaging over many spikes, which depends on the stability of the experi-

mental preparation). Therefore, we chose the Simplex optimization algo-

rithm (21), as implemented in Press et al. (22), which is quite robust and

relatively impervious to the randomness of the cost function. The main

disadvantage of Simplex it that it becomes inefficient as it approaches the

optimum. However, the very random nature of the cost function imposes a

limit as to how far the convergence can be pushed, as C cannot be reduced

below the inherent noise. Of course, a less stringent convergence results in

less precise estimates.

Including a priori knowledge

The nonlinear interactions between ionic currents and membrane voltage

result in a complicated relationship between the input parameters of the

kinetic model and the cellular output. Therefore, a model tested with the

dynamic clamp technique must also satisfy other a priori knowledge, if that

is available. Including additional knowledge in the parameter estimation

process can be accomplished by global fitting or by adding penalties to the

cost function. In the first case, one can globally fit not only the action po-

tential waveform, but other data as well, such as the steady-state activation

and inactivation curves, or macroscopic currents elicited by voltage steps.

Since these different data types have different noise properties and are also

likely to come from different sources, their respective sums of squares must

be weighted:

C ¼ w1 3 C1 1 w2 3 C2 1 . . . ; (43)

where the w values are weighting factors summing to 1, which can be chosen

empirically.

The objective of estimation with penalties is to find a set of parameters

that best fit the data (e.g., action potentials), but which at the same time are in

agreement with a prior parameter distribution. This prior distribution could

be, for example, a multivariate Gaussian with mean vector mx and covariance

matrix Vx. Thus, any set of parameter estimates x will have the associated

probability density:

pðxÞ ¼ 1

ð2p 3 jVxjÞ1=2
e
�1

2
ðx�mxÞ

T
3 V�1

x 3 ðx�mxÞ: (44)

The mx and Vx values can be determined from previously available data, e.g.,

by maximum likelihood fitting of single-channel (20,23,24) or macroscopic

currents (18). From steady-state curves, mx can be determined with any

fitting program, and Vx can be calculated using the method described in

Colquhoun et al. (25).

Real-Time Kinetic Modeling 71

Biophysical Journal 95(1) 66–87



For real-time fitting, the penalty can be added to the cost function in the

following way:

Ci :¼ w 3 Ci 1 ð1� wÞ3 ln pðxiÞ; (45)

where w is an empirical weighting factor. Using a penalty might be useful

even when parameters are changed manually, if correlations are known to

exist between them. Thus, when one parameter, xk ; is individually changed to

xxk ; the other parameters xj 6¼k should be changed to xxj 6¼k; so as to maximize

pðx̃Þ in Eq. 44. This maximization can be done numerically. If Vx is diagonal,

then changing xk will not require any change in xj 6¼k: However, in the

presence of cross correlations, xj 6¼k will also have to be adjusted, with the

overall result that a change in one parameter is compensated by changes in

the other parameters to minimize the error with respect to prior knowledge.

Using prior parameter distributions has the advantage of including a priori

knowledge in a computationally compact way, although these distributions

may not be readily available.

Experimental methods

Electrophysiology

In vitro brainstem slices (350–400 mm thick) from postnatal P0-P4 rats were

perfused in aCSF containing (in mM): 124 NaCl, 25 NaHCO3, 3 KCl, 1.5

CaCl2, 1.0 MgSO4, 0.5 NaH2PO4, and 30 D-glucose, equilibrated with 95%

O2/5% CO2, at room temperature (pH 7.4). Whole-cell recordings from

neurons in raphe nucleus obscurus were obtained under IR-DIC visualiza-

tion. For current-clamp recordings (including dynamic clamp experiments),

electrodes (4–6 MOhm) were filled with a solution containing the following

(in mM): 125 K-gluconate, 4 NaCl, 11 EGTA, 1 CaCl2, 10 HEPES, 4 Mg-

ATP, 0.3 Na-GTP, and 4 Na-phosphocreatine, pH 7.3 (with KOH). For

measuring Na1 currents with voltage steps, the K-gluconate was replaced

with Cs-gluconate, prepared from CsOH and gluconic acid, and pH-adjusted

with CsOH. In this case, the following blockers were added (in mM): 4 4-AP

and 10 TEA-Cl in the pipette (substituting for Cs-gluconate), and 0.2 CdCl2
and 0.02 CNQX in the bath. Where necessary, Nav channels were blocked

with 1–2 mM tetrodotoxin (TTX). A measured liquid junction potential of

;10 mV for the K1-based and ;8 mV for the Cs1-based solutions was

corrected online.

Pipettes were coated with Sylgard to reduce capacitive transients, which

also resulted in a more stable operation of the dynamic clamp. The series

resistance error was compensated 75–80% for voltage-clamp recordings,

using the 2 ms response time option of the amplifier-controlling software

(Pulse 8.77, HEKA, www.heka.com), and 100% for current-clamp record-

ings. The value of Rs was periodically checked and the compensation was

readjusted, if necessary. For voltage-clamp recordings, cells with Rs . 15

MOhm were discarded. For current-clamp experiments, Rs values as high as

40 MOhm were acceptable, but precise compensation was critical. Voltage-

clamp data were digitally sampled at 100 kHz and low-pass filtered at 40

kHz. Where necessary, the capacitance of the neuronal membrane was de-

termined as the value used to compensate the slow capacitive component, as

determined automatically by the Pulse software. In some dynamic clamp

experiments, an RC circuit representing a physical model of the cell was

connected to the patch-clamp amplifier (model cell MC-9, from HEKA).

Computer work and data acquisition

We used the following hardware and software components: a desktop

computer with a dual-processor 2.6 GHz AMD Opteron, running Windows

XP Pro SP2; a National Instruments DAQ NI 6052E, controlled by the NI-

DAQmx 8.1 driver (free download from www.ni.com); a HEKA EPC10

Double patch-clamp amplifier, controlled with the Pulse 8.77 software. The

EPC10 features true, fast current-clamp, and allows injecting currents of

maximum 610 nA, sufficient for our application. A current offset of several

pA, measured by the amplifier in the absence of any input, was corrected

online with the dynamic clamp software.

Software implementation

We programmed the dynamic clamp and the real-time fitting procedure as

extensions of the scripting language featured in the freely available QuB

program (www.qub.buffalo.edu). A brief description of the operating pro-

cedure and examples are provided in Supplementary Material, Data S1.

RESULTS

First, we tested our dynamic clamp system with respect to

integration accuracy, throughput rates and real-time perfor-

mance. Next, we explored the issues of parameter identifi-

ability and model discrimination, occurring when fitting

action potentials, and determined the benefits of including

additional knowledge obtained from voltage-clamp experi-

ments. Finally, we tested the real-time fitting procedure, first

in a computer simulation and then on raphé neurons.

Testing the dynamic clamp

The performance of the dynamic clamp and its suitability as a

quantitative tool for modeling ion channel kinetics depend on

how accurately the model is solved. Three deterministic and

one stochastic integration methods were compared: the im-

plicit back-differentiation formula implemented in the

CVODE package (26), the explicit Euler (Eq. 20), the method

using the transition probability matrix (Eqs. 21–25), and

Gillespie’s stochastic algorithm (Eqs. 26–28). The CVODE

solution was run with settings for high accuracy (absolute and

relative tolerances 1 3 10�6), and was used as the gold

standard. A neuronal model having one Nav and one Kv

channel type was simulated, with parameters chosen to pro-

duce tonic spiking. The Nav channel was formulated either as

an m3h HH model (Fig. 3 A1), or as its Markov equivalent

(Fig. 3 A2), and was integrated either deterministically or

stochastically. The Kv channel was formulated as an n4 HH

model (Fig. 3 B1), and was integrated deterministically. We

also tested other models, as further described. The Euler and

the matrix methods were tested both in non-real time and in

real time. In the real-time case, the model was run as a self-

contained computer simulation, or was interfaced with the

patch-clamp amplifier, using a model cell connected as input.

The spiking frequency and the shape of the action potential

depend on the integration method, the size of the time step,

and the properties of the model (Fig. 4, A and B). In general,

the CVODE method was only slightly dependent on the time

step, as expected. With the HH m3h Nav model, the spiking

frequencies obtained with the three deterministic integration

methods were approximately equal only if they were run at

rates $50 kHz (Fig. 4, A1 and A2). Also, at 50 kHz all three

methods resulted in virtually identical AP shapes (Fig. 4 B).

At lower rates, Euler integration produced faster spiking and

a distorted AP shape, becoming practically useless below 30

kHz (Fig. 4 A1). In contrast, the matrix integration was

generally more stable, with only slightly slower spiking at

lower rates, and was usable even at 10 kHz (Fig. 4 A2).
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As expected, the Euler method had difficulty integrating

the Markov form of the m3h model, with large errors even at

50 kHz (Fig. 4 A1). With more complex Markov models

(e.g., the model in Fig. 3 A5), Euler failed completely. In

contrast, the matrix method integrated the HH and the Mar-

kov forms with identical results, and could successfully solve

the larger models. In conclusion, the dynamic clamp must be

run at a frequency of ;50 kHz, and possibly higher for

models with faster kinetics. For Markov models, especially

complex ones, or at lower throughput rates, the matrix inte-

gration method is the only reasonable choice. Based on these

results, we recommend the matrix method for general pur-

pose simulations, as it is accurate, stable, and fast.

Can typical models be run fast enough in a dynamic clamp

configuration? Certainly. In Table 1, we list the throughput

rates achieved with different models, on our test hardware

configuration (see Methods). Generally, a single HH model

runs at rates .75 kHz. Even more complete neuronal models,

such as that proposed for respiratory neurons showing

bursting behavior (27), containing three HH channels (m3h
Nav 1 mh Nav 1 n4 Kv), run at 60–70 kHz. Markov models

run more slowly, as there are more ODEs to be integrated, but

they are still fast enough. Thus, the Markov equivalent of the

m3h Nav model, having eight states and seven ODEs, runs at

.60 kHz, whereas the larger model in Fig. 3 A5, having 12

states and 11 ODEs, runs at .50 kHz.

The matrix integration method was only a little slower than

Euler when applied to HH models, but was equally fast with

Markov models. However, this was only a test for the matrix

multiplication to advance the solution over dt (Eq. 21), and

did not include the calculation of the transition probability

matrix itself (Eq. 22). For Markov models, this matrix must

be computed over a whole range of voltages, whenever a

kinetic parameter is changed. We found that this calculation

takes between a few hundred milliseconds and a few seconds,

depending on the size of the model and on the range and

FIGURE 4 Quantitative modeling with dynamic clamp relies on small integration errors and good real-time performance. A spiking neuronal model having

one Nav and one n4 Kv channel type was integrated at different throughput rates (different dt), with the implicit back-differentiation formula in the CVODE

package (used as reference), the explicit Euler (cf. Eq. 20), the transition probability matrix (cf. Eq. 21), and Gillespie’s stochastic algorithm (cf. Eqs. 26–28).

The spiking frequency (A) and the action potential shape (B) depend on dt and integration method. The matrix integration is more precise and stable than Euler,

at all rates and with all tested Nav models. Thanks to minimal time-step jitter, a real-time simulation (C, red line) shows little difference from a non-real-time

simulation (C, black line). A stochastic simulation (blue line) is considerably more irregular, like a biological experiment would be. The system runs at the

nominal rate (50 kHz) ;99% of the time, with a longest time step of ;50 ms, and is relatively immune to heavy user activity and other simultaneous

computation (D).
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discretization of the voltage. For example, it takes only a

couple of seconds to calculate the matrix corresponding to the

large Nav model shown in Fig. 3 A5, over a voltage range

from �80 to 50 mV, with a discretization step of 0.1 mV. In

fact, the accuracy was just as good even with a 0.5-mV dis-

cretization, which takes less than half a second. Note that this

matrix computation takes place outside the real-time dynamic

clamp loop, and only adds a little delay to the system’s re-

sponse to a user-input change in parameter values, without

altering the integration time step. This delay is short enough,

considering the human reaction time.

These tests cover a useful range of models, and can be used

to predict the maximum throughput rates for other models,

when using deterministic integration. We also tested the

limits of stochastic integration with Gillespie’s algorithm. In

this case, the test measure is not the maximum rate, but the

maximum number of channels that can be integrated within

dt. With more channels than this maximum, the real-time

required to advance the stochastic solution exceeds—

probabilistically—the prescribed dt. To carry out this test, a

spiking neuronal model was simulated, where one channel

type was integrated stochastically, and the other(s) were in-

tegrated deterministically. The results are presented in Table

1. With the Markov equivalent of the m3h Nav model, the

maximum number of channels that could be integrated at a

throughput rate of 50 kHz was ;20, but it reached ;300 for

the mh equivalent. Note that these numbers would be larger if

only the stochastic channel was computed. For those appli-

cations requiring larger numbers, our software offers the

choice of using Langevin’s approximation, which runs at a

speed comparable to deterministic simulations.

Real-time performance

Our dynamic clamp implementation runs under Microsoft

Windows, which is not a real-time operating system, and it is

therefore subject to time-step jitter. Practically, jitter means

that occasionally some computational cycles will take longer

to execute—in real time—than the prescribed dt. With the

Euler integration, the actual duration of the time step, which

can be read from the computer clock, can be used in Eq. 20.

Thus, the effect of a longer dt is only a correspondingly larger

integration error, although extremely long time steps may

still bring the integration to a halt. With the matrix integration

method, it is more difficult to take advantage of knowing the

actual dt, as, for efficiency reasons, the transition matrix is

precalculated for a given dt. However, the time-step jitter

should have reasonably small effects, provided that the

fraction of larger steps is small, and that the worst-case step is

short.

By taking advantage of the multiprocessor architecture, we

obtained a real-time performance comparable to that reported

for real-time systems (28,29), in terms of jitter, and may have

even exceeded it, in terms of throughput rates (see Table 1).

Thus, a real-time simulation shows little difference from its

non-real-time counterpart (Fig. 4 C, red line versus black
line). An experiment involving a biological cell would cer-

tainly show more irregularity, due to inherent ion channel

stochasticity and fluctuations in the measured membrane

voltage. We illustrate this situation with a simulation in

which the m3h Nav model is integrated stochastically (NC ¼
1000), and the n4 Kv model is integrated deterministically

(Fig. 4 C, blue line). Notice the irregular interspike interval.

Certainly, the time-step jitter affecting our dynamic clamp

system is not only small, but will have effects that are an

order of magnitude below those caused by biological and

experimental noise.

The real-time performance of the software is summarized

by the histogram of the actual time steps taken over a 2-min

interval (Fig. 4 D). Thus, the longest time step was ;50 ms,

and the percentage of time steps longer than the nominal dt
was ,1%. It is very important to note that the performance

was not affected much by graphical user activity or by other

computation taking place in parallel with the dynamic clamp,

TABLE 1 Kinetic models of voltage-gated channels can be accurately solved in real time

Model(s)

Deterministic Stochastic

Euler integration Matrix integration Gillespie

HH Markov HH Markov Markov

Maximum rate [kHz] NC at 50 kHz

Nav m3h 79 62 77 61 ;20

Nav m4h Idem 55 Idem 55 —

Nav mh Idem 74 Idem 74 ;300

Nav (Fig. 3A5) — 51 — 51 —

Kv n4 81 73 81 73 ;400

Kv n4 1 Nav m3h 76 53 71 52 —

Kv n4 1 Nav (m3h 1 mh) 70 47 64 47 —

Even a complex Nav Markov model (Fig. 3 A5) can be integrated at .50 kHz (dt , 20 ms), using the matrix method. Each case is a real-time simulation with

I/O (reading Vm on one A/D channel and writing the calculated current on one D/A channel) and an R/C circuit—representing a physical model of the

cell—connected to the patch-clamp amplifier. For stochastic simulations, the performance measure is the number of channels, NC, that can be integrated in the

dt interval. In the absence of a model, the maximum throughput rate was limited by I/O to ;110 kHz. These values will vary with computer performance.
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such as calculating the transition probability matrix, the

steady-state curves, or the macroscopic currents. In conclu-

sion, the most important factors affecting the performance are

the maximum throughput rate and the integration errors, and

to a lesser extent the variability of the time-step. Taken to-

gether, these results suggest that our dynamic clamp system

is fast enough to accurately run models of realistic com-

plexity, either deterministically or stochastically. The num-

bers listed here can only improve as faster processors become

available, and with some further code optimization.

Parameter identifiability

Our modeling goal is to find—for a given model—those

parameters that best explain the data, according to some

optimality criterion, such as minimum sum of square errors,

or maximum likelihood. Under ideal conditions, i.e., noise-

less, unlimited data, how many parameters can be uniquely

identified from fitting action potentials? We answered this

question empirically, with a simple experiment: using the

automated fitting procedure (Fig. 2), we optimized all pa-

rameters of the model except one, which was held constant at

different values. The rationale is that if all parameters can be

uniquely identified, then we expect the plot of the cost

function versus the value of the fixed parameter to show a

single minimum. On the contrary, if parameters are degen-

erate, the cost function would be a flat line (a continuum of

solutions), or would have multiple and identical minima

(discrete solutions).

We tested the parameter identifiability for the m3h Nav

model, but the same principles would apply to other kinetic

models. Note that, for the purpose of parameter estimation,

the HH and the Markov representations of the same model are

equivalent. With all rates simple exponential functions of

voltage, cf. Eqs. 5 and 6, the m3h model has nine free pa-

rameters: a0
m;a

1
m;b

0
m;b

1
m;a

0
h;a

1
h;b

0
h;b

1
h; and g. In general, it

may be tempting to reduce the number of free parameters by

making equal the exponential factors for the same transition

(e.g., a1
m ¼ b1

m), but doing so resulted in poor fits to our own

voltage-clamp data recorded from raphe neurons. For this

test, we fixed a0
m (the activation rate at zero depolarization)

and optimized the other eight parameters.

We found that the m3h model has a unique set of param-

eters for a given action potential. Thus, the cost function had

a single minimum, corresponding to the true value of a0
m

(Fig. 5 A). However, the cost function was rather shallow:

changing the fixed parameter by a factor of 2 could be

compensated by the free parameters so as to result in almost

identical AP shapes (Fig. 5 B). These waveforms differed by

a root mean-square (RMS) of ,1 mV, which is comparable

to membrane voltage fluctuations measured in real experi-

ments. In contrast to the small differences in AP shape, the

activation and inactivation steady-state distributions changed

significantly with the value of the fixed parameter, especially

with respect to V1/2 (Fig. 5 C). The responses to voltage steps

also changed significantly, in terms of time course and

maximum conductance (Fig. 5 D).

This test indicates that adding macroscopic currents or

steady-state distributions to the action potential fit should

improve parameter identifiability in practical terms, i.e., in

the presence of noise. For models assuming independent and

identical gating particles (i.e., Hodgkin-Huxley), steady-state

distributions can be calculated with Eq. 10. However, even

supposing that these assumptions are true in reality, it may be

impossible to reconstruct the steady-state curves from ex-

perimental data, when the measured current depends on both

activation and inactivation. The alternative is to construct

approximate distributions, using a voltage-clamp protocol

such as that shown in Fig. 6 A. Thus, the peak current during

the first voltage segment is used as a measure of activation,

whereas the peak current during the second segment is used

as a measure of noninactivation.

How good can these approximations be, relative to the

theoretical steady-state curves? We answer with a practical

example, by simulating the response of an m3h Nav model to

the voltage-clamp protocol shown in Fig. 6 A3. The response

is shown for two cases: a1
m.b1

h (Fig. 6 A1), and a1
m,b1

h (Fig.

6 A2). Note that in each case we chose b1
m and a1

h so as to

preserve the charge, and hence to keep the theoretical curves

unchanged (see Eqs. 37 and 38). A comparison between the

theoretical and the two sets of approximate distributions in-

dicates significant differences (Fig. 6 B), especially in activa-

tion. Differences are also notable in the time-to-peak, plotted

as a function of voltage (Fig. 6 C). These results strongly

suggest that, when used as an additional fit criterion, steady-

state curves should be calculated from a simulation in response

to the same voltage-clamp protocol as that used for the ex-

perimental data. Failure to do so may easily result in estimation

errors, e.g., underestimation of the activation charge or V1/2.

Model discrimination

When the model itself is not known, one needs to be able to

compare different models and select the best one. For example,

one may want to test whether inactivation is intrinsically

voltage-dependent or is coupled to the activation process (2),

or to estimate the number of steps in the activation pathway, by

comparing m4h, m3h, and m2h models (30). Under ideal con-

ditions, can these models be discriminated on the basis of

fitting action potentials? To answer this question empirically,

we simulated with one type of model and fitted with the

other(s). For the first test, data were simulated with the Markov

model shown in Fig. 3 A3, which features voltage-dependent

inactivation, and were fitted with the model shown in Fig.

3 A4, which has voltage-independent inactivation, but coupled

to the activation process. For the second test, data were sim-

ulated with the m4h model and were fitted with m3h or m2h.

The tests were run by fitting either a single spike or two

consecutive spikes. Fitting two spikes effectively adds the

constraint that the model should match the data in terms of

Real-Time Kinetic Modeling 75

Biophysical Journal 95(1) 66–87



spiking frequency, although it cannot be easily applied to

experimental data, when the interspike interval is variable.

The results of the first test indicate that the model with

voltage-dependent inactivation (Fig. 3 A3) can be theoreti-

cally distinguished from the model with inactivation coupled

to activation (Fig. 3 A4), as shown in Fig. 7, A and B.

However, the differences are probably too small to matter in

practical experiments, unless additional information is con-

sidered (Fig. 7, C and D). Thus, when fitting a single spike,

the second model was capable of a good fit to data simulated

with the first model (Fig. 7 A1), but could not reproduce the

spiking frequency (Fig. 7 A2). In contrast, when fitting over

two consecutive spikes, the AP shapes were more different

(Fig. 7 B1), but the spiking frequency was correct (Fig. 7 B 2).

In contrast to the small differences in AP shape, the two

models differed significantly in terms of steady-state distri-

butions (Fig. 7 C) and time-to-peak plots (Fig. 7 D). Like-

wise, the results of the second test (not shown) indicate that

the m2h, m3h, and m4h models are theoretically distinguish-

able from each other, but the differences in AP shape were

small. In contrast, the steady-state distributions and the time-

to-peak plots were significantly different, and can help to

discriminate these models in practice.

Improving parameter identifiability and
model discrimination

Taken together, the previous results strongly suggest that, as

expected, extra information should be added to the action

potential fit to significantly improve parameter identifi-

ability and model discrimination. Exactly what data are

necessary depends on the specific model and parameter

values. At the minimum, one could use a voltage-clamp

protocol like the one shown in Fig. 6. The macroscopic

currents recorded in response to this protocol contain both

stationary and transient information. While these currents

can be fitted directly, it is more efficient to condense this

information into activation and inactivation steady-state

plots, time-to-peak plots, and time courses at a few voltages.

These data representations, together with the action poten-

tial waveform, make the components of the cost function,

C (cf. Eq. 43)

C ¼ wAP 3 CAP 1wAI 3 CAI 1wTP 3 CTP 1wMC 3 CMC; (46)

where the terms indexed by AP, AI, TP, and MC stand for the

components of the cost function (weight and mean-square

error) calculated from the action potential, activation and

FIGURE 5 Model parameters are theoretically identifiable from the action potential but practical identifiability requires additional information. First, a

spiking neuronal model with one m3h Nav and one n4 Kv channel type was simulated. The resulting action potential waveform (B, black line), steady-state

curves (C, black lines) and macroscopic currents (D1) calculated in response to a voltage-clamp protocol (D2) were registered as reference. Then, one

parameter (a0
m) of the Nav model was fixed at different values, and the other kinetic and conductance parameters of the Nav model were optimized using the

real-time optimizer. The cost function was the MSE between the reference and the fitting action potential waveforms. The MSE value of the best fit had a

minimum at the true value of a0
m (A), indicating that a unique solution exists. The spike corresponding to the best fit (B, red and blue lines)—as obtained with

different a0
m fixed values—differed little from the reference spike, but the steady-state curves (C, red and blue lines) and the macroscopic timecourses (D1, red

and blue lines) differed significantly from their corresponding references.
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inactivation steady-state curves, time-to-peak plots, and mac-

roscopic currents, respectively.

To determine the sensitivity of the cost function to pa-

rameter values, we first simulated a spiking model having an

m3h Nav and an n4 Kv channel type. Multiple trials were then

simulated, with the parameters of the Nav model uniformly

randomized within a range containing the reference values.

For each trial, the voltage-clamp protocol shown in Fig. 6

was used to calculate the steady-state and time-to-peak

curves, and the macroscopic time courses corresponding to

voltage steps from �80 to �30 mV and from �80 to 0 mV,

normalized to the maximum current value of the two. Fur-

thermore, we calculated the RMS difference between each of

the randomized trials and the reference trial separately for

AP, steady state, time to peak, and macroscopic currents. We

selected only those trials that resulted in spiking. Out of these,

we further selected those with an AP RMS of ,3 mV, steady-

state RMS of ,0.03, time-to-peak RMS of ,0.03 ms, or

macroscopic (normalized) current RMS of ,0.03. These

RMS values represent ;3% of the range of the cost function

variable (e.g., voltage or probability) for each component.

The AP component of the cost function changed little even

when parameters were changed two- or even fourfold, as

indicated by the correlation plots in Fig. 8 A (black circles).

Some parameters appeared to be correlated, e.g., b1
m and b0

m;

or to have a narrower range, e.g., b0
h and b1

m: In comparison,

the timecourse component was more sensitive to parameter

values (Fig. 8 A, red circles). Clearly, fewer trials met the

selection criteria in this case (there are fewer red circles than

black circles), and over a narrower parameter range, e.g., b0
h:

The activation and inactivation steady-state and the time-

to-peak components were also more sensitive to parameter

values than the AP (results not shown). Interestingly, there

was no apparent correlation between the four components of

the cost function, as indicated by the plots in Fig. 8 C. This

suggests that these criteria are orthogonal and should be used

together. Their intersection will effectively result in estimates

with higher precision, as is generally the case with global

fitting. We also checked the sensitivity of the spiking fre-

quency to each parameter, and found that for this particular

model and parameter values, only b1
m changed it somewhat

predictably (Fig. 8 B).

Effects of parameter transformations on the
shape of the action potential

Even when the free parameters have a unique solution, the

real-time optimizer may still get trapped in a local minimum,

if started too far from the global solution. Also, some ex-

perimental variables may change if it takes too long to reach

FIGURE 6 Theoretical steady-state distributions may not be approximated well from experimental voltage-clamp data. (A1–A3) We simulated the response

of an m3h Nav model to a voltage-clamp protocol (A3) typically used to determine the voltage dependency of steady-state activation and inactivation, for

a1
m . b1

h (A1), and for a1
m , b1

h (A2). In both cases, for the same value of b1
h; the a1

m and b1
m values were chosen so that a1

m � b1
m remained constant, which left

unchanged the theoretical steady-state curves (B, black lines), calculated according to Eq. 25. Experimental steady-state curves were constructed by plotting the

normalized peak conductance versus voltage (e.g., A1 and B, red circles). In this example, the two sets of experimental steady-state curves are quite different

from each other (B, red and blue lines), and different from the theoretical curves (B, black lines). In each case (A1 and A2), the time to reach the peak

conductance during the activation step is a different function of voltage (C).
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convergence. To improve the chance of finding the global

minimum and to shorten the time, one must carefully choose

the parameter starting point. For this, it is important to know

how to change the model so as to obtain a desired change in

the shape of the action potential. Of course, this extends to all

fitting criteria, such as steady-state curves and macroscopic

currents, but changing these is more intuitive. Having this

information, it is easier to manually adjust parameters toward

a better starting point for the automated fitting routine. We

applied this sensitivity analysis to the parameters of the m3h
Nav model, and to a few other biophysical variables. The

kinetic parameters of the model were changed indirectly,

through the transformations specified by Eqs. 29–41. The

results apply only to this particular Nav model and parameter

values, and are valid only in the context of the accompanying

Kv model, but some general principles can be extracted.

We found that different parameters had specific effects on

the action potential shape, as illustrated in Fig. 9. However,

there was some ambiguity, confirming the results of previous

experiments (Fig. 5). Thus, the width and height of the spike

were simultaneously affected by the activation V1/2 (Fig.

9 A1), but also by the Na conductance (Fig. 9 E). Likewise,

the inactivation V1/2 (Fig. 9 A2) and the Na reversal potential

(Fig. 9 F) had comparable effects. Also, the rate of (in)acti-

vation (Fig. 9, B1 and B2) and the position of the (in)acti-

vation charge in the electrical field (Fig. 9, D1 and D2) had

similar effects. This ambiguity can be resolved only by in-

specting other properties of the model, e.g., the steady-state

distributions and the macroscopic time courses. For example,

the (in)activation V1/2 is a parameter of the (in)activation

steady-state curve, but the conductance and the reversal

voltage are not. Together with the AP shape, these properties

of the model should indicate which parameters should be

adjusted.

Testing the real-time fitting in a
computer simulation

To test the optimizer in controlled conditions, a spiking

neuron having one m4h Nav and one n4 Kv channel type was

simulated. The parameters of the Nav model were then ran-

domly changed from their reference values, so as to preserve

spiking but to significantly change the shape of the action

potential and the steady-state and transient properties of the

model. From this point, we let the optimizer find the best fit,

with the expectation that it will converge onto the reference

values. The free parameters to be optimized were the eight

rate factors (a0
m;a

1
m;b

0
m;b

1
m;a

0
h;a

1
h;b

0
h; and b1

h) and the con-

ductance, g. The cost function was the mean-square error

(MSE) calculated from the AP shape, or from the AP shape

together with the activation and inactivation steady-state

curves, time-to-peak plots, and the normalized macroscopic

time courses at �30 and 0 mV. In the second case, the four

components were weighted in a ratio 2 3 10�4:1:1:1. The

steady-state distributions were calculated according to the

experimental voltage-clamp protocol. For the macroscopic

FIGURE 7 Models with and without voltage-dependent inactivation can be discriminated. We simulated a spiking neuron having one Nav channel type with

voltage-dependent inactivation rates (cf. Fig. 3 A3) and one n4 Kv channel type. The Nav channel was then replaced by a model with voltage-independent

inactivation rates (cf. Fig. 3 A4), and optimal parameters were found with the real-time optimizer. As cost function, we used the shape of one single spike (A) or

two consecutive spikes (B), which effectively enforces a match of the spiking frequency. The coupled model could not exactly reproduce the spike simulated

with the uncoupled model, especially when fitting two spikes, but differences were small. More obvious was the mismatch between the different sets of steady-

state curves (C), and between the time-to-peak plots (D, cf. Fig. 6 C). Similar results were obtained when comparing models with different numbers of

activation particles (voltage sensors)—see text.
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time courses, the starting-state probabilities were calculated as

the equilibrium distribution at the holding voltage (�80 mV).

When the cost function was calculated only from the action

potential, the optimizer found a set of parameters that accu-

rately reproduced the shape of the action potential (Fig.

10 A1), but not necessarily the other properties of the model,

especially the steady-state activation curve (Fig. 10 A2) and

the macroscopic time courses (Fig. 10 A4). In contrast, the

solution found by global fitting explained very well not only

the AP shape (Fig. 10 A1) but all the other properties of the

FIGURE 8 Action potentials of similar shape can be obtained with different parameter sets. We simulated a spiking neuron having one m4h Nav and one n4

Kv channel type. For each simulation trial, parameters were uniformly randomized around some reference values (A and B, green circles). The randomization

ranges were as shown for each graph. Shown are the spiking trials with MSE , 3 3 3 mV2 from the reference action potential waveform (A and B, black
circles), and the spiking trials with MSE , 0.03 3 0.03 from the reference normalized time courses at�30 and 0 mV (A, red circles). Some parameters appear

correlated, notably b1
m with b0

m; a0
m; or a1

m: The spiking frequency (fAP) can depart considerably from the reference (;30 Hz), and is mostly correlated with b1
m

(B). There is no apparent correlation between the MSE for AP shape (MSEAP), steady-state (MSEAI), time-to peak (MSETP), or time course (MSETC) (C),

which suggests that all these criteria should be simultaneously used in a global fit to improve the precision of the estimates.
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model (Fig. 10, A2–A4). One exception was the steady-state

inactivation curve, which indicated a slight underestimation

of the electrical charge (i.e., a1
h � b1

h). It turned out that this

was a local minimum that trapped the optimizer. After man-

ually increasing the inactivation charge, the optimizer easily

found the global minimum (results not shown).

Even with global fitting, the optimized parameters were

not exactly the same as the reference values. This is not

surprising, considering both the sensitivity results (Fig. 8)

and the relative inefficiency of the Simplex optimizer near

convergence. Certainly, optimizing nine free parameters of a

model with highly nonlinear dynamics is not an easy prob-

lem, and it took ;100–150 iterations to reach convergence.

Generally, adding constraints improves the solution. Con-

straints such as those used in the second experiment (Fig.

10 C), which do not change the number of free parameters,

slowed the convergence a little (Fig. 10 C1). On the other

hand, constraints such as microscopic reversibility or scaled

rates, which reduce the number of free parameters (18,19),

would make convergence faster. We also tested the optimizer

with the Nav model integrated stochastically. In this case, the

spike shape and the interspike intervals were irregular. De-

spite the added stochasticity, we obtained similar results (not

shown) by increasing the number of spikes to be collected

and averaged for each evaluation of the cost function.

Testing the real-time fitting in neurons

The results so far are based on computer simulations of a

neuronal model that minimally consists of Nav and Kv

channel types. In reality, the kinetics of Nav channels are

finely tuned to interact with the multitude of other ionic

currents expressed by the neuron to generate action potentials

of specific shape and frequency (31). Since not just any Nav

model, with an arbitrary set of parameters, will make the

neuron spike, we had to construct a preliminary Nav model

from whole-cell voltage-clamp data. As shown in Table 1, it

is possible to accurately run Markov models that are more

FIGURE 9 Parameter transformations change the action potential shape and the spiking frequency in a predictable way. We simulated a spiking neuron

having one m4h Nav and one n4 Kv channel types (black line in each graph), then we applied several transformations to the parameters of the Nav model (rate

factors) (A–D), and to the Na conductance (E), Na reversal voltage (F), and injected offset current (G), as indicated (red and blue lines).
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complex and more realistic than the traditional Hodgkin-

Huxley model. However, our goal here was to test the tech-

nique, and thus the widely known and better understood HH

model seemed more appropriate.

The m4h Nav model fitted well the voltage-clamp data (Fig.

11 A, red lines), and better than the m3h model (results not

shown). Instead of fitting the entire set of macroscopic cur-

rents elicited by the voltage-clamp protocol shown in Fig.

6 A3, we chose to globally fit only the normalized macro-

scopic currents raised by voltage steps from�80 to�30 mV,

and from �80 to 0 mV (Fig. 11 A1), and the steady-state

curves (Fig. 11 A2). The rationale was that this condensed

information is visually more intuitive and it is more likely to

be used as prior knowledge in a modeling experiment. We

verified that this combination of transient and steady-state

data provided enough information for a unique parameter

solution. The curve fitting was done with the same real-time

optimizer (cf. Fig. 10), but without including the action po-

tential component in the cost function (cf. Eq. 46).

The m4h Nav model and the above estimated parameter

values (see Fig. 11 legend) were tested in tonically spiking

raphe neurons. Characteristic for these neurons is a relatively

broad action potential (4–5 ms; Fig. 11 B1, black trace), a

regular spiking pattern (2–3 Hz; Fig. 11 B2, black trace), and

a strong after-hyperpolarization. For each analyzed cell, we

recorded the firing pattern in the current clamp mode (i.e., the

FIGURE 10 Convergence of the automated fitting procedure: a simulation study. We simulated a spiking neuron having one m4h Nav and one n4 Kv channel

type (A, black lines). Then we randomized the kinetic parameters and the conductance of the Nav model, and from this starting point (A, dashed lines), we let

the real-time optimizer find the best fit. As cost function, we used either the AP shape (B), or the AP shape and the steady-state curves, time-to-peak plots, and

normalized time courses at �30 and 0 mV (C). The progress of the optimization (the MSE) is illustrated with an example in each case (B1 and C1). The true

parameter values are indicated by the interrupted lines in B2, B3, C2, and C3.
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control), then bath-applied TTX, which fully blocked Na1

channels in these neurons, as verified with voltage steps. Upon

TTX application, some cells ceased firing, whereas others

switched to a Cav channel-based spiking behavior (data not

shown). Using the dynamic clamp, we then tried to restore the

spiking pattern, in terms of action potential shape and firing

frequency. We started with a zero nS/pF conductance (cf. Eq.

16), and increased it until spiking was initiated (in initially

silent neurons), and then until the slope of the voltage during

the rising phase approximately matched the control.

With the m4h model and the kinetic parameters obtained

from voltage-clamp data we were able to generate action po-

tentials in virtually all of the cells we tried (.20). In most cells,

the shape of the action potential was an almost perfect match

for the control, as illustrated by the example shown in Fig. 11

B1 (red trace). The overall spiking pattern was also remark-

ably similar to the control, in terms of regularity, frequency,

and after-hyperpolarization (Fig. 11 B2, red trace). However,

one obvious difference characterizes the onset of the action

potential, when the voltage rises slowly in the model but takes

a sharp upturn in the control. This difference makes the acti-

vation threshold of the model appear more positive than the

control. This is not true, in fact, considering that the two traces

were aligned with respect to the point where they cross a�30-

mV threshold. On the other hand, the reduction in the after-

hyperpolarization between the control and the model is a real

difference, but it is largely due to a cellular run-down in some

outward current, which we could not prevent.

The current flowing through the membrane during the

action potential, calculated as I ¼ �C 3 dV=dt; where C is

the estimated membrane capacitance, is shown in Fig. 11 C1
(control, black trace; model, red trace). The minus sign is

used to follow the convention that a depolarization is caused

by a negative (inward) current. Also shown is the current

injected in the cell, as calculated according to the Nav model

(INa, green trace). Note that C, and consequently I, are only

estimates. In fact, I in this figure was adjusted by an arbitrary

factor, to match INa, since the only current likely to flow

during the rising phase of the action potential is through Nav

channels. Also note that the control current has a more abrupt

rising initially, and reaches a peak value, after which it fol-

lows approximately the same trajectory as the model current.

The time courses followed by activation (m4), inactivation

(1 � h), and open probability (m4 3 h) during the action

potential are shown in Fig. 11 C2. It is remarkable that the

maximum open probability reached by the Nav model is

FIGURE 11 Nav channels in raphe

neurons can be functionally replaced

with dynamic clamp. Whole-cell mac-

roscopic currents were recorded in re-

sponse to the voltage-clamp protocol

shown in Fig. 6 A3, and steady-state

curves were constructed as explained in

the legend to Fig. 6. The currents

elicited by �30 and 0 mV steps (A1),

together with the steady-state curves

(A2) were globally fitted with an m4h
Nav model (red lines). The estimated

parameters are a0
m ¼ 7:87ms�1; a1

m ¼
0:049mV�1; b0

m ¼ 0:0247ms�1; b1
m ¼

�0:112mV�1; a0
h ¼ 0:000314ms�1;

a1
h ¼ �0:137mV�1; b0

h ¼ 1:805ms�1;

and b1
h ¼ 0:049mV�1: (B) A current-

clamp recording of a tonically spiking

raphe neuron (black traces). After bath

application of TTX, a current is injected

with dynamic clamp, using the m4h Nav

model with the above kinetic parameters

and a conductance of 16 nS/pF (A and B,

red lines). (C1) The current flowing

through the membrane (black and red

traces) and calculated from the model

(green trace). (C2) The time courses of

activation (m4), inactivation (1� h), and

open probability (m4 3 h). The real-time

integration rate was 50 kHz.
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,0.15. Given that value, the overlap between the control and

the model currents—at least during the later phase—suggests

that the conductance of the model was appropriate. Of course,

a model with a different set of rates might reach a different

open probability, and thus it will require a different con-

ductance to give the same current.

Next, we tested the automated real-time fitting. The results

presented in Fig. 12 illustrate the ability of the real-time

optimizer to find a set of parameters that simultaneously

explains not only the action potential shape (Fig. 12 A), but

also the steady-state (Fig. 12 C) and the macroscopic currents

(Fig. 12 D). In the cost function, the above three components

were weighted in a 1 3 10�4:1:1 ratio. We started the opti-

mizer with parameters that were intentionally changed from

the voltage-clamp-derived values, to test the ability to con-

verge. Thus, starting from a set of kinetic parameters that

produced action potential, steady-state curves, and normal-

ized macroscopic currents (Fig. 12, A, C, and D, respectively,

red dotted lines) that were significantly different from their

controls, the optimizer converged in ,10 min (40–50 itera-

tions) to a solution of good precision (Fig. 12 B). In this

example, the five free parameters to be optimized were the

theoretical half-activation and inactivation voltages, the rates

of activation and inactivation, and the conductance. Opti-

mizing these parameters is equivalent to optimizing a0
m, b0

m,

a0
h, b0

h; and g, but using a more intuitive parameter space.

Similar results were obtained when all nine parameters of the

model were optimized (i.e., a0
m;a

1
m;b

0
m; etc., and g), but

convergence was slower (results not shown).

The control and fit action potentials were virtually identical

from �20 mV to the peak, and back down to �20 mV (Fig.

12 A). However, as in the experiment shown in Fig. 11, the fit

action potential rises more slowly at the onset than the con-

trol. Apparently, the optimizer tried to compensate this by

making the rate of activation faster (about twofold) than the

voltage-clamp data would require (Fig. 12 D; see legend for

parameter values). The steady-state inactivation curve cor-

responding to the fit is shifted from the control data by a few

millivolts in the positive direction. This result is remarkable,

as our voltage-clamp data obtained from raphe neurons in-

dicate that the inactivation curve of Nav channels may shift in

time in the negative direction (32,33). Thus, the inactivation

data used as control in Fig. 12 C may contain some bias. Also

as in Fig. 11, there was a strong rundown of the after-hy-

perpolarization during the 10–15 min elapsed since recording

the control action potential. However, this rundown has not

affected the fit, as the calculation of the cost function was

restricted between �10 and 17 ms from the point where the

voltage crosses the �30 mV detection threshold.

Generally, a couple of practical problems were encoun-

tered when running the automated real-time fitting. First,

some parameter sets were not able to generate spiking at all,

whereas others locked the membrane voltage in a depolarized

plateau. The solution was to incorporate into the optimizer a

time-out mechanism to detect both silent and above-the-

threshold periods of a certain duration (e.g., 5 and 0.2 s, re-

spectively), and reject those parameter sets. In the case of the

plateau, it was also necessary to reset the model, i.e., to re-

initialize the state probabilities to values corresponding to a

subthreshold equilibrium (i.e., �80 mV); otherwise the

voltage remained locked at the plateau value. Second, ex-

cessively large conductance values, as sometimes proposed

by the optimizer, resulted in ringing. The solution to this

problem was to scan the detected action potential for ripples,

and reject that parameter set if necessary. We implemented a

simple but effective ripple detector that searches for a local

minimum (of user-defined depth and width) immediately

after the threshold crossing point.

Adding a virtual axonal compartment

What remains to be explained now is the abrupt rise of the

voltage at the onset of the action potential in the control,

FIGURE 12 Automated real-time fitting of action potentials. Nav chan-

nels in a raphe neuron were blocked with TTX and functionally replaced

with dynamic clamp, using an m4h model. Then, the real-time fitting

procedure was started, to globally fit the action potential shape (A), the

steady-state curves (C), and the normalized macroscopic currents (D), using

a 1 3 10�4:1:1 weighting. The initial set of parameters generated spikes, but

of different shape than the control (A, red dotted line), and produced

different steady-state (C, red dotted lines) and macroscopic currents (D, red

dotted lines). The free parameters to be optimized were the theoretical

activation and inactivation V1/2, the activation and inactivation rates, and the

conductance. An accurate solution (A, C, and D, red solid lines) was found

in ,10 min (B). The parameters corresponding to the solution were: a0
m ¼

12:58ms�1; b0
m ¼ 0:0319ms�1; a0

h ¼ 0:00049ms�1; b0
h ¼ 1:573ms�1; and

g ¼ 3:57nS=pF: The a1
m, b1

m, a1
h, and b1

h factors were not optimized, and

were the same as in Fig. 11. The real-time integration rate was 50 kHz.
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compared to the slower rise obtained with the Hodgkin-

Huxley model and the set of parameters directly derived from

voltage-clamp data, or obtained with the real-time fitting

procedure. We hypothesize that this is a short-coming of the

single-compartment assumption, traditionally made in dy-

namic-clamp experiments, whereby Nav channels are located

only in the soma, whereas in reality Nav channels are dis-

tributed not only in the soma but also along the axon. Prob-

ably no other type of kinetic model or parameter combination

would work in the single-compartment paradigm. We tested

this hypothesis by using the dynamic clamp to add to the

neuron the simplest possible—yet physically plausi-

ble—model of an axonal compartment, populated only with

Nav channels in high density.

According to the schematic shown in Fig. 13 A, a current

INa,m flows into the neuronal soma through somatic Na

channels, whereas a current INa,x flows into the virtual axon

through axonal channels. Whenever there is a difference

between the somatic and axonal voltages (Vm and Vx, re-

spectively), a current flows between the two compartments,

with intensity Im�x ¼ gm�x 3 ðVm � VxÞ; where gm�x is the

electrical conductance between the two compartments. The

somatic voltage, Vm, is measured by the patch-clamp am-

plifier, whereas the axonal voltage, Vx, is calculated by the

dynamic clamp, by solving the differential equation

dVx=dt ¼ ð�Im�x1INa;xÞ=Cx; where Cx is the axonal ca-

pacitance. Thus, the current injected in the neuron is the sum

between INa,m and Im�x.

The virtual axon significantly sharpened the onset of the

action potential, as illustrated in Fig. 13 B. Thus, the model

action potential obtained with the virtual axon (Fig. 13 B,

blue trace) is approximately halfway between the control

(black trace) and the model action potential without axon

(red trace), in terms of how fast the voltage rises. The cause

for the faster rising of the somatic voltage is easy to explain:

the high density of Nav channels in the axon allows the ax-

onal voltage Vx to rise (more) abruptly. Then, the positive

difference between Vx and Vm causes a depolarizing current

to flow into the soma, until the two voltages are again

equalized. Thus, the sharpening effect of the axonal com-

partment is approximately confined to the initial rising phase.

This is also illustrated in Fig. 13 C, where the current flowing

through the somatic membrane is plotted as a function of time

(Fig. 13 C1) or voltage (Fig. 13 C2). One can easily imagine

that further adjusting the axonal model or its parameter

values may result in an even better action potential shape.

DISCUSSION

Currently, sophisticated techniques exist, such as model-

based maximum likelihood fitting of single-channel (20,23)

or macroscopic (18,34–36) currents, that can be used to ex-

tract kinetic parameters from voltage-clamp data and to dis-

criminate between different models (36–39). Studying ion

channels in the isolation provided by the voltage-clamp

paradigm is ideal from a biophysical perspective. However,

this analysis is biased toward those data features that are

prominent in such experiments (i.e., the exponential distri-

bution of single-channel dwell times, or the exponential re-

laxation of macroscopic currents), and it may overlook some

model properties that play an important functional role but do

not manifest strongly in the data. As a result, an optimal

FIGURE 13 Adding a virtual axon to

the neuron explains the abrupt voltage

rising. An axonal compartment was

modeled as shown in the schematic

(A), populated only with a high density

of Nav channels. (B) The voltage rises

faster in the axon (green trace) than in

the soma (blue trace), due to the higher

density of Nav channels. The difference

in voltage causes a depolarizing current

to flow into soma, which makes the

somatic voltage (blue trace) rise more

abruptly than it does without an axon

(red trace), although not as fast as the

control (black trace). (C) The current

that flows through the somatic mem-

brane during an action potential is

shown as a function of time (C1) or

voltage (C2). The current obtained with-

out axon has only one component (red
traces). In contrast, both the control

(black traces) and the current produced

when an axon is added (blue traces)

show two components. The following

values were used: Cm ¼ 20 pF; Cx ¼
1 pF; gm-x¼ 0 (no axon) or 10 nS (plus axon); gNa,x¼ 0 or 100 nS/pF; and gNa,m¼ 12.46 or 9.76 nS/pF. Both somatic and axonal Nav channels were modeled

as m4h Hodgkin-Huxley, using separate models, with kinetic parameters as in Fig. 11. The real-time integration rate was 40 kHz.
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model selected on the basis of voltage-clamp data alone may

fail to explain the observed cellular dynamics.

The strength of the new methodology presented here is that

realistic biophysical models of voltage-gated ion channels

can be tested and fitted in a functional context, in neurons and

other excitable cells. Using the dynamic clamp, different

kinetic models can be functionally tested, and parameters can

be estimated with good accuracy, in real time, by fitting ac-

tion potential waveforms. A priori knowledge, derived from

voltage-clamp data or from any other experiment, can and

should be incorporated to constrain the fit and to improve the

solution. The result is that a good model would not only

satisfy the existing biophysical constraints (e.g., the number

of kinetic states and their interconnectivity) but would also

explain the electrical activity of the cell (e.g., action potential

shape and spiking frequency), without requiring any infor-

mation about the other ionic currents.

The real-time fitting technique was demonstrated here with

an application to modeling the kinetics of Nav channels in

tonically spiking raphé neurons. Starting from a Nav m4h
model and a parameter set obtained from whole-cell voltage-

clamp experiments, we could make these neurons spike, after

blocking Na1 currents with TTX, by injecting a model-based

current with dynamic clamp (Fig. 11). Considering the real

complexity of Nav kinetics (2,5,40–44), it is quite surprising

that a basic Hodgkin-Huxley model with all rates simple

exponential functions of voltage could reproduce the action

potential shape and the spiking pattern with such remarkable

accuracy. To our knowledge, this is the first time the dynamic

clamp technique has been used to reconstruct in such detail

the action potential in mammalian central neurons, by using a

kinetic model of Na1 channels derived from voltage-clamp

data, and further improving it by real-time fitting (Fig. 12).

Future studies are necessary to include in the Nav model other

features, such as deactivation or recovery from inactivation,

that were not covered here.

It is convenient to model neuronal dynamics assuming a

spherical cellular geometry and a spatially and kinetically

homogeneous channel distribution. For dynamic clamp

studies, this paradigm is not only convenient but apparently

was the only choice until now, probably due to computational

limitations imposed by the available software. In contrast,

according to experimental evidence, the neuron may express

several Nav channel types, differentially distributed in the

soma and in the axon (31,45,46), and possibly with different

activation thresholds (47). Our own current-clamp data in-

dicate clearly the presence of two components in the inward

current flowing during the rising phase of the action potential

(Fig. 11 C1), suggesting that the action potential is initiated in

the axon. We reported here the first attempt at modeling the

function of Nav channels located within the axon, using dy-

namic clamp. Thus, together with the model for somatic Nav

channels, a model of a single axonal compartment populated

with a high density of Nav channels (Fig. 13 A) is enough to

produce action potentials featuring a significantly more

abrupt onset (Fig. 13 B), and a two-component inward cur-

rent, approaching the characteristics of action potentials

normally generated by raphe neurons.

The performance of the dynamic clamp technique as a

quantitative tool for modeling the kinetics of voltage-gated

channels depends on several factors. Most importantly, it

should be able to accurately integrate realistic—often very

complex—kinetic models. In this sense, we made a signifi-

cant advance by using the transition probability matrix of the

ion channel model to advance the state probabilities, thus

integrating the equations of dynamics. This method is much

more accurate than the traditional Euler integration (see Fig.

4), but also very fast, allowing to solve, for example, Markov

models with 12 states at .50 kHz (Table 1). These integra-

tion rates are critical for modeling voltage-gated channels

with fast kinetics, such as Nav channels. For example, in

raphe neurons the voltage during the action potential rises

from �30 to 120 mV in ;1 ms. Within this interval, the

voltage is sampled 50 times, if the rate is 50 kHz. Corre-

spondingly, the maximum error in reading the voltage is only

1 mV. In contrast, running at lower rates, e.g., 10 kHz, would

be unacceptable, as the kinetics of Nav channels would

change dramatically over a 5-mV range.

Equally important is the advance we made in terms of

software implementation. To date, most efforts in writing

dynamic-clamp software have focused on real-time operating

systems (28,29,48) or on real-time hardware (49), with

few—and relatively slow—Windows implementations (50).

The reason for adopting a real-time operating system, gen-

erally at the price of sacrificing a convenient graphical user

interface, is the need for consistent real-time performance.

However, we have demonstrated here that recent advances in

hardware and software have made it possible to achieve

quasi-real-time performance under the Windows operating

system (Fig. 4), using off-the-shelf dual-processor computers

and low-cost National Instruments data acquisition cards.

Our software exploits the dual-processor architecture to run

the dynamic-clamp computational thread simultaneously

with a sophisticated graphical user interface featuring, for

example, real-time display of data and model parameters

(Data S1). Faster computers will allow solving yet more

complex models, whereas computer systems with several

processors will further improve the real-time and the multi-

tasking performance.

Fitting kinetic models with our software can be accom-

plished in two ways: 1), manually, by changing the parameters

of the model one by one, or by changing phenomenological

properties of the model, such as half-activation voltage or

inactivation time constant; or 2), automatically, by running a

Simplex optimizer, with user-defined free parameters and

cost function. We found that manually adjusting the prop-

erties of the model (cf. Eqs. 29–41) can be very efficient,

depending on the model type, starting parameters, and data

complexity. Very helpfully, the software recalculates the

properties of the model, and overlays the calculated curves
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over the reference experimental data (Data S1). On the other

hand, we found the automated fitting to be successful (Fig.

12), though critically dependent on several factors. Most

important is the stability of the preparation, since any change

in the properties of any other channel involved in the cellular

dynamics, or in the electrical properties of the patch, may

prevent finding the correct solution. Hence, the duration of

the experiment has to be kept to a minimum. Furthermore,

the choice of initial parameter values must be reasonable,

and should generate spiking; otherwise the optimizer has no

information about where to search next.

The dynamics of excitable cells can be rather complex,

from spontaneous action potentials to bursts of activity (27).

Here, we have focused on action potentials, as the most basic

dynamic behavior, but the technique can be applied to

bursting behavior, and can be extended to more complex

experimental protocols. Note that bursts of activity cannot be

averaged in the same way as action potentials, due to intrinsic

stochasticity. The solution is to fit not the waveform per se,

but features of the waveform, such as burst length, intraburst

spiking frequency, etc. Extracting these features is not too

computationally expensive, and our own tests showed that it

can be done in real time. Besides quantitative modeling, the

dynamic-clamp technique can also be used as a hybrid sim-

ulator, when one part of the model—the one presumably

unknown—is integrated by the cell, whereas the other is in-

tegrated by the computer.
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37. Csanády, L. 2006. Statistical evaluation of ion-channel gating models
based on distributions of log-likelihood ratios. Biophys. J. 90:3523–
3545.

38. Kienker, P. 1989. Equivalence of aggregated Markov models of ion-
channel gating. Proc. R. Soc. Lond. B. Biol. Sci. 236:269–309.

39. Bruno, W. J., J. Yang, and J. E. Pearson. 2005. Using independent open-
to-closed transitions to simplify aggregated Markov models of ion chan-
nel gating kinetics. Proc. Natl. Acad. Sci. USA. 102:6326–6331.

40. Patlak, J. 1991. Molecular kinetics of voltage-dependent Na1 chan-

nels. Physiol. Rev. 71:1047–1080.

41. Kuo, C. C., and B. P. Bean. 1994. Na1 channels must deactivate to

recover from inactivation. Neuron. 12:819–829.

42. Raman, I. M., and B. P. Bean. 1997. Resurgent sodium current and

action potential formation in dissociated cerebellar Purkinje neurons.

J. Neurosci. 17:4517–4526.

43. Magistretti, J., and A. Alonso. 1999. Biophysical properties and slow

voltage-dependent inactivation of a sustained sodium current in

entorhinal cortex layer-II principal neurons: a whole-cell and single-

channel study. J. Gen. Physiol. 114:491–509.

44. Raman, I. M., and B. P. Bean. 2001. Inactivation and recovery of

sodium currents in cerebellar Purkinje neurons: evidence for two

mechanisms. Biophys. J. 80:729–737.

45. Castelli, L., G. Biella, M. Toselli, and J. Magistretti. 2007. Resurgent

Na1 current in pyramidal neurones of rat perirhinal cortex: axonal

location of channels and contribution to depolarizing drive during

repetitive firing. J. Physiol. 582:1179–1193.

46. Kole, M. H., S. U. Ilschner, B. M. Kampa, S. R. Williams, P. C. Ruben,

and G. J. Stuart. 2008. Action potential generation requires a high

sodium channel density in the axon initial segment. Nat. Neurosci. 11:

178–186.

47. Colbert, C. M., and D. Johnston. 1996. Axonal action-potential

initiation and Na1 channel densities in the soma and axon initial

segment of subicular pyramidal neurons. J. Neurosci. 16:6676–6686.

48. Raikov, I., A. Preyer, and R. J. Butera. 2004. MRCI: a flexible real-

time dynamic clamp system for electrophysiology experiments.

J. Neurosci. Methods. 132:109–123.

49. Kullmann, P. H. M., D. W. Wheeler, J. Beacom, and J. P. Horn. 2003.

Implementation of a fast 16-bit dynamic clamp using LabView-RT.

J. Neurophysiol. 91:542–554.

50. Pinto, R. D., R. C. Elson, A. Szucs, M. I. Rabinovich, A. I. Selverston,

and H. D. I. Abarbanel. 2001. Extended dynamic clamp: controlling up

to four neurons using a single desktop computer and interface.

J. Neurosci. Methods. 108:39–48.

Real-Time Kinetic Modeling 87

Biophysical Journal 95(1) 66–87


