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ABSTRACT Analysis of cellular pathways requires concentration measurements of dynamically interacting molecules within the
three-dimensional (3D) space of single living cells. Förster resonance energy transfer (FRET) microscopy from widefield, from
confocal, and potentially from superresolution microscopes can access this information; however, these measurements are
distorted by the inherent 3D blurring of optical imaging, spectral overlap of fluorophores, and detection noise. We propose a
mathematical model of these processes and demonstrate, through simulation, how these distortions limit the dynamic range and
sensitivity of conventional FRET microscopy. Using this model, we devise and validate a new approach (called 3D-FRET
stoichiometry reconstruction, 3DFSR) for reconstructing 3D distributions of bound and free fluorescent molecules. Previous
attempts to reconstruct 3D-FRET data relied on sequential spectral unmixing and deconvolution, a process that corrupts the
detection statistics. We demonstrate that 3DFSR is superior to these approaches since it simultaneously models spectral mixing,
optical blurring, and detection noise. To achieve the full potential of this technique, we developed an instrument capable of
acquiring 3D-FRET data rapidly and sensitively from single living cells. Compared with conventional FRET microscopy, our
3D-FRET reconstruction technique and new instrumentation provides orders of magnitude gains in both sensitivity and accuracy
wherein sustained high-resolution four-dimensional (x,y,z,t) imaging of molecular interactions inside living cells was achieved.
These results verify previous observations that Cdc42 signaling is localized to the advancing margins of forming phagosomes in
macrophages.

INTRODUCTION

Understanding the molecular basis of cellular function re-

quires that the spatial and temporal organization of cellular

pathways be measured precisely inside living cells. Ac-

cordingly, Förster resonance energy transfer (FRET) mi-

croscopy is emerging as a powerful tool for imaging the

dynamics of protein interactions comprising these pathways

within living cells. These methods hold the promise of

measuring the concentrations of bound and free molecules

inside cells, thereby providing the information necessary for

mathematical modeling of the molecular pathways control-

ling cell function. However, the capability of FRET mi-

croscopy to report accurately the concentration of bound and

free molecules is impaired by the combined effects of spectral

mixing, optical blurring, and detection noise. Methods have

been developed to quantify the relative concentrations of

interacting proteins via FRET-induced changes in the fluo-

rescence spectrum (1–3), fluorescence polarization (4), and

fluorescence lifetime (5); however, these methods all suffer

from optical distortions and imperfect sectioning. Although

confocal microscopes have reduced z axis blurring relative to

conventional widefield microscopes, they have seen only

partial success in quantitative live-cell FRET microscopy

because of reduced signal/noise ratios (SNR), cumbersome

instrument parameters, and signal instability (6). These lim-

itations have driven the advancement of instrumentation, but

image analysis and reconstruction algorithms for quantitative

FRET measurements are lacking.

In the analysis of cellular pathways, the goal of FRET

microscopy is to convert fluorescence signals from donor-

and acceptor-tagged molecules into concentrations of bound

and free proteins. The imperfect sectioning and blurring of

the three-dimensional (3D) distribution of fluorescence sig-

nals in widefield and confocal microscopes, however, com-

plicates the interpretation of fluorescence intensities as

concentrations. This complication has motivated the use of

fluorescence lifetime microscopy (FLIM) and the develop-

ment of spectral-based ratiometric methods for FRET anal-

yses. In FLIM, the donor’s lifetime can be used to estimate

the apparent FRET efficiency by dividing the donor lifetime

in the presence of acceptor by its natural lifetime (5). For

spectral approaches, relative concentrations of bound and

free fluorescent proteins can be expressed as ratios of D-A

complex (or the product of the FRET efficiency, E, times the

apparent concentration of D-A complex, E[DA]) to total

donor [D] or total acceptor [A] (1). These lifetime and con-

centration ratio images are easy to interpret since they dis-

tinguish changes in concentration from changes in cell

thickness, which are otherwise poorly resolved due to out-

of-focus light (1,2,7). To move from these informative yet

inadequate ratiometric descriptions toward concentration

doi: 10.1529/biophysj.107.125385

Submitted November 7, 2007, and accepted for publication February 22,

2008.

Address reprint requests to A. D. Hoppe, University of Michigan, Dept. of

Microbiology and Immunology, 1150 W. Med. Ctr. Dr., Ann Arbor, MI

48109-0620. Tel.: 734-647-7293; Fax: 734-764-3562; E-mail: adhoppe@

umich.edu.

Editor: Alberto Diaspro.

� 2008 by the Biophysical Society

0006-3495/08/07/400/19 $2.00

400 Biophysical Journal Volume 95 July 2008 400–418



estimates, reassignment of out-of-focus light by image re-

construction techniques is needed.

Image reconstruction can significantly reverse blurring

distortions and reduce noise in both 3D widefield and con-

focal images (8). These reconstruction techniques make use

of prior knowledge of sample properties such as positivity

and of the microscope’s optical performance as described

by the point spread function (PSF). The PSF describes the

spatial redistribution of light produced by the microscope

when imaging an infinitely small point source. For both

widefield and confocal microscopes the PSF is anisotropic,

being much longer (hence lower resolution) along the z axis

than in the x and y directions. Imaging of intricate objects

in these microscopes results in the redistribution of fluores-

cence signals emanating from each point within the object to

the PSF distribution. The 3D image acquired by the micro-

scope is then the superposition of all redistributed (blurred)

points of the object. This process is described mathematically

by the convolution of the original object and the PSF. Con-

volution results in a distorted correspondence between the

distribution of signal collected in the image and the distri-

bution of fluorophore in the object. This problem cannot

be directly inverted to estimate the original object from the

blurred microscopy data. Rather, a number of iterative re-

construction algorithms have been devised to generate im-

proved estimates of the original object, including maximum

likelihood estimation by entropy maximization (MLE-EM)

(9,10), least squares minimization by steepest and conjugate

gradient descents (10), the iterative constrained Tikhonov-

Miller (ITCM) algorithm (11), and conjugate gradient

minimization of maximum a posteriori (MAP) functionals

(12). All of these techniques produce improved estimates of

fluorophore distribution while retaining the quantitative

nature of the microscopy data. These algorithms are formu-

lated in terms of log-likelihood functionals, which account

for the statistical properties of the detection noise and for

the imaging distortions described by the PSF. Minimization

of these functionals provides improved estimates for the

distribution of fluorophores that gave rise to the data. The

quality of these estimates depends on the noise level of

the data, the spatial frequencies sampled during data acqui-

sition, and the spatial frequencies transferred by the micro-

scope’s PSF.

These conventional approaches, however, do not apply to

FRET microscopy and microscopy involving spectrally

overlapping fluorescence signals. In these cases, multiple

images of the same sample must be collected at various

combinations of excitation and emission wavelengths. The

resulting data are a linear combination of fluorescence signals

from the various fluorophores (engaged in FRET or not)

within the sample. Direct reconstruction of these data by

existing techniques would provide improved estimates of the

mixed fluorescence signals but not the concentrations of the

individual fluorophores therein. The fact that FRET micros-

copy is composed of spectrally overlapping signals and linear

coupling between the fluorescence processes of the donor

and acceptor motivates the development of a combined 3D

reconstruction and spectral unmixing approach.

We applied maximum likelihood methods to achieve re-

construction suitable for 3D-FRET microscopy data. Direct

minimization of these log-likelihood functionals to data

corrupted by either Gaussian or Poisson noise was prob-

lematic. However, a solution using alternating functionals

applied directly to the data and to a spectrally unmixed ver-

sion of the data provided sensitive and accurate estimation of

the concentrations of donors [D], acceptors [A], and donor-

acceptor complexes [DA] (or the product of the FRET effi-

ciency E and [DA]). In particular, we propose a matrix model to

describe the effects of spectral overlap, optical distortion, and

noise on the formation of 3D-FRET microscopy data. This

model was used to devise an approach for 3D-reconstruction

of FRET microscopy data (3D-FRET stoichiometry recon-

struction; 3DFSR) capable of obtaining deconvolved, ML

estimates of the concentrations of [D], [A], and E[DA].

Furthermore, simulations suggest 3DFSR is highly robust

against noise and significantly improves concentration esti-

mation for both widefield and confocal microscopy while

outperforming conventional reconstruction approaches such

as deconvolution followed by spectral unmixing. 3DFSR

imaging was validated by both simulation and measurements

in living cells. Construction of a novel microscope capable

of multiplexed detection allowed sensitive and rapid ac-

quisition of four-dimensional (4D)(x,y,z,t) FRET data in

living cells. The combined application of this instrument and

3DFSR allowed sustained 4D imaging of small G-protein

signaling by measurement of the concentrations of interact-

ing fluorescent Cdc42 and fluorescent effector domain (P21-

binding domain; PBD) within a single living cell.

THEORY

Model for 3D image formation of multispectral
and FRET microscopy data

Estimation of fluorophore concentrations from fluorescence

microscopy data is complicated by three effects: 1), over-

lapping excitation and emission spectra of multiple fluo-

rophores; 2), blurring due to contributions of fluorescence

from neighboring points in the image; and 3), noise associ-

ated with detection of fluorescence. The first two effects can

be modeled mathematically by matrix operations and the

third by appropriate probability distributions.

Spectral mixing of FRET fluorescence

In microscopy, images generated with excitation and emis-

sion combinations can be used to estimate the quantities of

fluorophores in a sample even if the excitation and emission

spectra of the fluorescent molecules overlap. In this case, the
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spectral mixing in the microscope is described by a system of

linear equations in which the elements of the mixing matrix A
describe the excitation and emission contributions of each

fluorophore in vector x to each voxel in vector y

y ¼ Ax: (1)

This linear system of equations can be solved by obtaining a

least squares solution with or without constraints on x (13). In

the absence of constraints, this solution can be obtained by

multiplying both sides of Eq. 1 by the inverse of A (for square

A, determined) or by the Moore-Penrose pseudoinverse of A
(for an overdetermined A, e.g., having more rows than

columns). Alternatively, iterative methods have been devised

to maintain the nonnegativity of x (14). Recent work by

Neher and Neher (7) has shown that Eq. 1 can be extended to

include FRET-based processes. In fact, the equations of

FRET stoichiometry (1) that describe the fractions of

interacting donors and acceptors as apparent FRET efficien-

cies and the acceptors/donors molar ratio can be written in a

matrix form to generate A. FRET stoichiometry uses three

images obtained with three combinations of donor and

acceptor excitation and emission: IA (acceptor excitation,

acceptor emission), ID (donor excitation, donor emission),

and IF (donor excitation, acceptor emission). Four calibration

constants are obtained from pure samples of acceptor (a),

donor (b), and a donor-acceptor linked construct (g and j) of

known FRET efficiency. a and b correct for spectral cross-

over of donor and acceptor into the IF image to allow

estimation of sensitized emission (SE or the fluorescence

from the acceptor due to energy transfer from the donor)

(1,2,15):

SE ¼ IF � bID � aIA:

Second, g scales the acceptor excitation to donor excitation

and j scales the sensitized emission (16) to donor emissions

allowing estimates of the fraction of donors in complex times

the FRET efficiency (the apparent donor FRET efficiency,

ED), the fraction of acceptors in complex with donors times

the FRET efficiency (the apparent acceptor FRET efficiency,

EA), and the molar ratio of acceptors to donors (RM). With the

definition of SE, the equations of FRET stoichiometry (1) can

be written as

EA ¼
E DA½ �

A½ � ¼
gSE

aIA

; ED ¼
E DA½ �

D½ � ¼
SEj

SEj 1 ID

;

RM ¼
A½ �
D½ � ¼

j

g

aIA

SEj 1 ID

;

where [D] and [A] are the total concentration of donor and

acceptor, and E[DA] is the FRET efficiency times the con-

centration of donor-acceptor complex. Note that we now set

the term j/g of the original derivation of FRET stoichiometry

to j since the ratio is unnecessary (17). Given these equa-

tions, we can write the matrix form of FRET stoichiometry

for A in (Eq. 1) as (16)

ID

IA

IF

2
4

3
5 ¼

j 0 �j

0 g=a 0

jb g 1� bj

2
4

3
53

D½ �
A½ �

E DA½ �

2
4

3
5:

In this case, application of A�1 provides the unconstrained

maximum likelihood (least squares) estimate identical to that

provided by FRET stoichiometry for the spatially distorted

concentrations of [D], [A], and E[DA] if the noise in images

ID, IA, and IF was Gaussian. In microscopy, however, the

detection statistics tend to follow Poisson distribution; how-

ever, no analytical or numerical solutions have been pro-

posed for that case.

Blurring

Blurring can be described as the probability (pb,v) that pho-

tons emanating from voxel b with intensity y in the object

plane will be detected in voxel v of the imaging plane with

intensity z (10),

zv ¼ +
b

pb;vyb with; +
b

pb ¼ 1: (2)

The probabilities pb are obtained from the instrument-specific

PSF. Alternatively, Eq. 2 can be written as a matrix operation

as in Eq. 1 where the voxels of the image are arranged into a

vector y and the probabilities pb are arranged in a corre-

sponding matrix P. Restating Eq. 2 as a matrix operation we

have

z ¼ Py: (3)

Direct inversion or factorization of P to obtain a deblurred

estimate of y is not feasible because its structure makes it

difficult to obtain a sufficiently accurate P�1 (10), or P�1

computed by discrete Fourier transforms may not exist for

microscopy (12). As such, algorithms for deblurring seek to

find a better estimate of y via iterative methods with positivity

constraints on y and an assumed noise model. Examples

include the Richardson-Lucy (RL) algorithm (for Poisson

noise (9)) and the ITCM inversion (for Gaussian noise (11)).

Furthermore, the addition of regularization functional can

reduce the influence of noise and stabilize the solutions for y.

Algorithms for reconstructing imaging data have been ex-

tensively studied in the areas of medical and satellite imaging

as well as 3D microscopy (10,12). However, little research

exists on the 3D estimation of multiple fluorophores from a

mixture of fluorescence spectral components encountered in

the case of 3D-FRET microscopy.

Detection noise

The detection of photons in light microscopy introduces

noise into the data. This process can be described by drawing

data g from a noise distribution N that has an expectation

value given by the blurred distribution of fluorescence ar-

riving at the detector and constant background signal (b) (12)
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g ¼ NðPy 1 bÞ:

Commonly, the RL algorithm based on entropy maximiza-

tion (EM) can be used to deblur the image (estimate y) when

N is given by the Poisson noise model (9,11). In particular,

the RL algorithm iteratively estimates y by computing a

search direction d, which is then multiplied by y to generate

an improved y. This process continues until a fixed number

of iterations is reached or a quality factor is exceeded. A

limitation of this approach is that the EM form of this

algorithm is slow to converge. The RL algorithm can be

accelerated by techniques which scale the step size of each

iteration by testing changes in the log-likelihood functional

for various possible step sizes (overrelaxation) (9) or by

approximation of the step size from the log-likelihood func-

tional itself for conjugate gradient methods (12). The form of

these overrelaxed algorithms is

Generate an initial guess for y1
; then; for k ¼

1; 2 . . . until convergence;

1: dk ¼ P9
g

Pyk � 1

� �
compute the search direction;

2: yk11 ¼ ykð1 1 a
kdkÞ update the estimate; where

a ¼ 1 for RL or is estimated by overrelaxation

or changes in the log-likelihood functional:

For conjugate gradient, step 1 includes the previous search

direction.

Model for FRET microscopy

Taken together, the spectral mixing, blurring, and noise op-

erations give the following model for FRET microscopy:

g ¼ NðPAx 1 bÞ; (4)

where as before, x is the concentration of fluorophore in each

voxel. This model can be directly extended to multispectral

imaging for determined or overdetermined systems by sim-

ply changing the matrix A. In general, g is composed of

multiple images corresponding to various excitation and

emission combinations and would require matrix P to contain

multiple PSFs corresponding to the excitation and emission

configurations in the corresponding elements of g.

3D-FRET reconstruction

The goal for reconstruction of FRET microscopy data is to

estimate the vector x, which contains the 3D concentrations

of bound and free fluorophores that gave rise to the data

vector g. As mentioned above, there are numerous examples

in the literature of image reconstruction approaches that seek

to reconstruct x while neglecting the spectral mixing de-

scribed by the matrix A. Conversely, the subject of spectral

unmixing while neglecting blurring, has been extensively

studied (13,14). To date, a combined method for image re-

construction that estimates the 3D fluorophore concentration

in the presence of spectral mixing and blurring has yet to be

reported. Attempts to approximate this procedure have in-

cluded deconvolution to the blurred data followed by spectral

unmixing (18) or classification of chromosomes labeled with

mixtures of dyes based on color (19). Alternatively, x could

be reconstructed from spectrally unmixed data; however, this

would be an inferior approach since the unmixing process

corrupts the detection statistics, which must be accurately

modeled in the reconstruction process.

The log-likelihood functional

Estimation of x from Eq. 4 represents an ill-posed inverse

problem that must be solved by iterative methods. Unlike Eq.

1, which can be inverted by direct application of the inverse

or pseudoinverse of A, Eq. 4 involves convolution from

multiplication of matrix P and is therefore ill posed. Gener-

ally, image reconstruction algorithms strive to find the most

likely value of x given the data, either by direct application of

maximum likelihood (ML) methods or by MAP approaches

that seek the most likely posterior density of x given the data

g (ML) or the most likely density of x given the data g and

prior distribution p(x) to regularize the solution (MAP) (12).

For ML, we seek a solution for x with posterior density

p(xjg), which can be found by

x̂ML ¼ arg max
x

pðgjxÞ; (5)

or in the case of prior information about the distribution

of x (e.g., p(x)), we seek

x̂MAP ¼ arg max
x

pðgjxÞpðxÞ: (6)

Obtaining the ML or MAP estimates from the above equa-

tions is equivalent to defining a likelihood functional based

on the assumed noise model and for MAP an additional

penalty functional. The prior probability p(x) can be given

by various functionals that will penalize roughness in the

result to various degrees (12). We chose the entropy prior

for p(x) for regularization and easy implementation in the

reconstruction algorithm; however, other choices such as

Good’s roughness are possible (20). To make this mathe-

matical problem tractable, it is common to minimize the

negative logarithm of the log-likelihood functional.

The ML and MAP log-likelihood functional for inverting

Eq. 4 for 3DFSR or any data for which the component

mixtures can be represented by a linear matrix operation is

given for Poisson noise (MLP, MAPP) or Gaussian noise

(MLG, MAPG), when assuming an entropy prior for p(x)

without prior information about the object, are

for Poisson noise :

LMLPðxÞ ¼ +PAx� gT
lnðPAx 1 bÞ

LMAPPðxÞ ¼ +PAx� gT
lnðPAx 1 bÞ � lxT

lnðxÞ;
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for Gaussian noise :

LMLGðxÞ ¼ kPAx� gk2

LMAPGðxÞ ¼ kPAx� gk2 � lxT
lnðxÞ;

where l controls the influence of the regularization term. Note

that the terms that contain dot products (e.g., xTln(x) and

gTln(PAx)) result in the sum of the product of the vector

elements.

Minimizing these functionals can be accomplished by de-

termining the argument x at which their gradient d vanishes.

For simplicity, we omit the background term b from the

gradients. Background can be accounted for by adding b to

each instance of the forward projection PAx (e.g., PAx 1 b)

in the subsequent equations or by subtracting b in the case

where A�1 is applied to the data (e.g., A�1(g � b)).

For MLP,

d ¼ A9

+
m

am;n

0
B@

1
CAP9

g
PAx

� 1
� �

:

For MLG,

d ¼ A9

+
m

am;n

0
B@

1
CAP9ððPAxÞ � gÞ:

At first glance, it appears that a modified form of the RL

algorithm could be used for the MLP case:

RL-MLP

For k ¼ 1; 2 . . . until convergence

Step 1: dk ¼ A9

+
m

am;n

0
B@

1
CAP9

g

PAxk � 1

� �
ðA9 is divided

by the sum of the columns of A to conserve energyÞ;
Step 2: xk11 ¼ xkð1 1 a

kdkÞ; where a ¼ 1:

Alternatively, steepest descent or conjugate gradient algorithms

could be used, with the hope of obtaining faster convergence.

Surprisingly, we found that FRET data were poorly re-

constructed by EM or steepest descent minimization of the

MLP, MAPP, MLG, and MAPG functionals. This was true in

both the presence and absence of noise when the algorithm

was started with uniform images set to the mean value of each

unmixed estimate (Supplementary Material, Fig. S1). In

these cases, localized FRET signals embedded within non-

FRET regions were poorly recovered both spatially and

spectrally. This observation correlated with the spatial com-

ponent of the gradient (d) being very shallow for localized

FRET signals embedded within larger non-FRET volumes,

whereas the spectral components of d dominated in these

areas. We reasoned that data unmixed by A�1 could be used

to generate gradients sensitive to the spatial reconstruction

while eliminating the spectral component of the gradient.

This by itself, however, would return us to the original

problem of reconstructing with the incorrect noise model.

Preservation of the statistical properties of the ML and MAP

formalisms requires that we optimize the likelihood func-

tionals given above. To improve the performance, one could

imagine using spectrally unmixed estimates to generate a

better initial guess or to incorporate a second functional to

estimate x in areas where d is insensitive to the spatial

component of the gradient. Of these two approaches, we

found that the latter approach gave superior robustness

against noise. This led us to the following objective func-

tionals for the Poisson noise case:

L1ðxÞi ¼ kPxi � ðA�1g� bÞik
2 � lxT

i lnðxiÞ for each species i:

L2ðxÞ ¼ +PAx� gT
lnðPAx 1 bÞ � lxT

lnðxÞ
with gradients (omitting b),

d1i ¼ P9i ðPixi � ðA�1gÞiÞ and

d2 ¼ A9

+
n

am;n

0
B@

1
CAP9

g
PAx

� 1
� �

:

Note that we include the index i to distinguish each molecular

species (e.g., E[DA], [D], and [A]) contained within the

vector x or cognate A�1g.

The application of A�1 to the data corrupts the noise dis-

tribution; however, this corruption will tend toward a zero-

mean distribution for full A or a Poisson distribution for A
approaching the identity matrix. Since we are concerned with

the case of FRET, there will always be off-diagonal terms in

A motivating the unbiased least squares functional for L1,

rather than a biased Poisson functional.

We minimized these functionals by alternating between a

bounded steepest descent for L1 and EM for L2. One could

imagine designing the algorithm to use bounded steepest

descent for both functionals; however, in the case of Poisson

noise, the estimation of step size is considerably more com-

plicated and requires substantial computational effort (21).

For this reason, we chose to implement an EM step with

overrelaxation. Neglecting the regularization terms for sim-

plicity, the algorithm can be written as a steepest descent step

along d1 for each unmixed image i, followed by an over-

relaxed EM step along d2. When large overrelaxation factors

are applied in the second EM step, the estimated values for x
will be displaced by small offsets. To ensure that x remains

close enough to the previous value for the next step along d1,

we applied a second round of EM with no overrelaxation

(e.g., a ¼ 1). Owing to the negative terms in matrix A, a

second set of constraints was also imposed on the algorithm

to ensure E[DA] # [D] and E[DA] # [A]. This constraint is

physically meaningful as well, since E ranges from zero to

one and the concentration of complex must always be less

than or equal to the concentration of the total bound and free

donors and acceptors.
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A second approach that we tried was to start the recon-

struction by first minimizing L1 for some number of iterations

and then use these estimates to start the minimization of L2.

This approach was successful in generating good reconstruc-

tions; however, it created the problem of needing to determine

the number of required iterations for L1 minimization before

passing the estimates to the L2 minimization. Furthermore, we

found that noise propagated into the estimates faster using this

approach than with the alternating L1 and L2 reconstruction,

further motivating the alternating reconstruction approach.

The 3DFSR algorithm for Poisson noise, neglecting reg-

ularization terms for simplicity is given as

Compute x1 ðset x1 ¼ meanðA�1gÞÞ
For k ¼ 1; 2 . . . until convergence:

For each species (i) in x:
Step

1: dk

1i ¼ P9ðPxk

i
� ðA�1gÞ

i
Þ

L1 ðpreconditioned bounded line searchÞ;
2:Wi ¼ diagðxiÞ;
3: gi ¼ d9i Widi;

4: si ¼ �Widi;

5: ui ¼ �P9i di;

6: ui ¼ gi=u9i ui;

7:ai ¼ minðui;minsi,0ð�xi=siÞÞ ðnonnegativity boundÞ;

8: xkðL1Þ
i ¼ xk

i 1 aid
k

1i;

9: enforce constraint E½DA�#½D�; E½DA�#½A� on x:

If xE[DA] . xD, then xE[DA] ¼ xD.

If xE[DA] . xA, then xE[DA] ¼ xA.

10: dk

2
¼ A9

+
n

am;n

0
B@

1
CAP9

g

PAxkðL1Þ � 1

� �
ðL2 EM step

1 overrelaxationÞ;

11: § ¼ §
/ðkÞ ðset overrelaxation from numerical series

or estimate z from the likelihood functionalÞ;
12:a ¼ minð§;mind , 0ð�1=d2ÞÞ ðnonnegativity boundÞ;

13: xk11 ¼ xkðL1Þð1 1 adk

2Þ ðwhere;

a ¼ 1 or an overrelaxation parameterÞ:

If a , 1.1, refine estimate for L1 step (L2 EM refinement):

14: dkðL2RÞ
2 ¼ A9

+
m

am;n

0
B@

1
CAP9

g

PAxk11 � 1

� �
;

15: xk11 ¼ xk11ð1 1 dkðL2RÞ
2 Þ ða ¼ 1Þ;

end:

Termination of the iterations can be accomplished by

monitoring changes in the quality factor between the esti-

mates and the data such as the mean-square error (MSE) or

Cizar’s I-divergence (22). For this work, we used a fixed

number of iterations or plotted the MSE for evaluating the

convergence of the algorithm.

Overrelaxation parameter

Acceleration of this algorithm could be accomplished by es-

timating the step size, by numerical overrelaxation techniques

based on approximate changes in the likelihood functional, or

by estimating the maximum of the likelihood functional by the

steepest descent or conjugate gradient approaches. For the

multispectral model, both strategies are somewhat compli-

cated and computationally costly. Thus, to allow reconstruc-

tion of real data sets with reasonable computation times for our

unoptimized computer programs, we took advantage of the

robust nature of the MLP-EM step to allow assignment of

overrelaxation parameters for a from an alternating sequence

of numbers .1 but #8. This approach has been used previ-

ously in conventional maximum likelihood reconstruction and

found to give comparable performance (23,24) to the over-

relaxation method of Holmes and Lui (9). Infeasible solutions

were constrained by subjecting the choice for a to a non-

negativity bound of the forward projected images during re-

construction (step 12 in the 3DFSR algorithm) in a method

similar to that proposed by Kaufman (10). For 3DFSR re-

constructions this approach appeared to work well, in that

few differences were observed when comparing with non-

overlaxed reconstructions of the same data carried out for more

iterations. However, we expect that more precise means for

estimating the EM step size or alternative algorithms for

maximizing L2 such as Verveer’s method (21) will be needed

for optimal implementation of 3DFSR.

Photobleaching correction

In the widefield microscope, the effects of photobleaching

during acquisition can be corrected by equalizing the photon

flux in successive planes. This is possible since the PSF for

the widefield microscope has the property of summing to a

fixed value in each xy plane. Thus, the integral of the fluo-

rescence intensity in each xy plane will remain constant in the

absence of photobleaching provided that the image is wide

enough in the x and y dimensions to encompass the fluores-

cence emanating from the object with cone angle given by the

PSF. When imaging tissue culture cells spread on glass, this

requirement is often met. For example, a 1.33 NA objective

with half-cone angle of 60� imaging a field of 45 mm would

include the majority of fluorescence ;6 mm above and below

an 8-mm-tall, 20-mm-diameter cell centered in the image

volume.
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In the case of FRET, the photobleaching rates do not map

directly to each image. Since FRET modifies the excited state

lifetime of a fluorescent molecule, it also modifies the rate of

irreversible photobleaching such as reactivity with molecular

oxygen. Each bound or free species, therefore, bleaches with

its individual rate, and bleaching corrections must be applied

to the unmixed signals. Although previous photobleaching

correction methods neglect this well-described feature of

FRET, we implemented a simple and effective method. The

photon flux emanating from each donor, acceptor, or com-

plex species (indexed by i) can be measured as

FiðzÞ ¼
Z
ðA�1gÞidxdy:

These decays can then be mixed by multiplication with A,

then normalized and used to divide each plane of the data (IA,

ID, and IF) to correct for photobleaching as

g � ðzÞ ¼ gðzÞ: � AðmaxðFiðzÞÞ:=FiðzÞÞ

where ‘‘.’’ denotes element-wise multiplication or division

and the Fi elements comprise the vector to the right of A.

This approach is valid if the z axis collection is faster than

the overall dynamics of complex formation and dissolution.

MATERIALS AND METHODS

Computation

The computer simulations and algorithm development were carried out in

using MATLAB 7.3 (The Mathworks, Natick, MA) and the DIPImage

toolbox for MATLAB (http://www.diplib.org/, Quantitative Imaging Group,

Delft University of Technology, Netherlands) in the Linux operating system

(OpenSUSE 10.0, Novell, Waltham, MA). The computer was a custom-built

dual-Athlon (AMD) machine with 5 GB RAM. The MATLAB function for

3DFSR can be found at http://sitemaker.umich.edu/4dimagingcenter/3dfsr.

Simulation of images

Images were simulated by creating arbitrary distributions of [D], [A], and

E[DA] in oversampled 3D images by binary operations on spherical objects

created with the ‘‘rr’’ function in DIPImage. These binary spheres were then

added, subtracted, and scaled to form the test object shown in Fig. 1 as well as

other test objects, which included spherical shells and other structures not

shown in the figures. A simulated PSF was convolved with the test object,

and the resulting image was resampled to achieve the stated sampling fre-

quencies. Detection noise was simulated by scaling the blurred results and

passing them to the DIPImage ‘‘noise’’ function, which used the blurred

images as expectation values to generate the measured image drawn from

Poisson or Gaussian distributions. The mean SNR was defined as the square

root of the mean of the blurred image over the domain of the original object.

This is a functional definition which allows assignment of a single number to

the SNR for a complex object and is useful for comparing simulated images

since they always have the same 3D structure.

FIGURE 1 Model of 3D-FRET data. (A) A model of a 4.5-mm-diameter yeast cell with three distinct distributions of donor ([D]), acceptor ([A]), and donor-

acceptor complex times FRET efficiency (E[DA]) was generated. (B) Spectral mixing of fluorescence from each fluorescent species (via multiplication with

matrix A) gave rise to the fluorescence distributions detected in each imaging channel. These spectral mixtures were blurred by the imperfect detection of the

optical microscope (e.g., multiplication with matrix P). Here, blurring was modeled using a PSF simulated for the widefield epifluorescence microscope. To

simulate detection noise, the blurred distributions were used as expected values E to obtain measured value M from a Poisson distribution. Asymmetric 3D data

acquisition (resulting voxel dimensions were 67 nm, 67 nm, 201 nm) was simulated by resampling the model simulated after convolution. (C) The apparent

FRET efficiencies EA (E[DA]/A) and ED (E[DA/D]) and the molar ratio RM ([A]/[D]) were calculated from the corresponding rows of images to demonstrate

the impact of spectral mixing, blurring, and noise on the resolution of the apparent FRET efficiencies and RM images. Red lines in B indicate the axes used for

making the xz and xy slices. The xy slice was taken from the central plane. Scale bar is 1 mm.
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Image display

All images were displayed as xy, xz, and yz slices either with the conventional

‘‘gray’’ color map in MATLAB or with a modified color map called ‘‘jetb’’.

Jetb was created by changing the lower end of the commonly used ‘‘Jet’’

color map to black instead of dark blue (see color bars in the figures). The 3D

surface display in Fig. 7 used the MATLAB isosurface, isocaps, and patch

functions to create a ‘‘green’’ surface mapping the surface of the cell, ‘‘gray’’

mapping the distribution of yellow fluorescent protein (YFP)-Cdc42, and

pseudocolor showing the distribution of E[DA] complexes.

Cells, constructs, and transfection

COS7 cells were obtained from the American Type Culture Collection

(Manassas, VA) and maintained at 37�C under 5% CO2 in Dulbecco’s

Modified Eagle Medium supplemented with 10% heat-inactivated fetal bo-

vine serum, 100 units/ml penicillin, and 100 mg/ml streptomycin. Cell cul-

ture reagents were products of Invitrogen (Carlsbad, CA). Approximately

2.5 3 105 cells per coverslip were plated and transfected the day before

imaging using FuGene-6 according to the manufacturer’s recommended

protocol (Roche Diagnostics, Indianapolis, IN). Murine bone marrow-derived

macrophages were prepared as described (25) and transfected using the Amaxa

Nucleofector system (Amaxa, Gaithersburg, MD). The target particles for

phagocytosis were low-refractive index silica beads coated with streptavidin

(Bang’s Labs, Fishers, IN, NA¼ 1.43–1.46). These beads were opsonized for

phagocytosis by incubation of 1.4 3 106 beads with 8 mg polyclonal anti-

streptavidin immunoglobulin G (IgG) (Abcam, Cambridge, MA) in phosphate

buffer saline with 1% bovine serum albumin at 37�C for 30 min.

The YFP-Rac2(V12), YFP-Cdc42, cyan fluorescent protein (CFP)-PBD,

YFP-CFP, CFP-N1, and YFP-N1 plasmids were previously described (26).

All YFP molecules were actually monomeric citrine containing the Q69M

(pH desensitizing) and A206K (monomeric) mutations.

Imaging and the 4D-FRET microscope

Imaging was performed on a custom-built microscope (called the 4D-FRET

microscope, Fig. 4) consisting of a Nikon TE 2000 inverted microscope

body, equipped with a ‘‘stage up kit’’ to allow insertion of a custom-built

mechanical positioner for positioning two dichromatic reflectors in the op-

tical path below the objective. These beam splitters could be independently

aligned and adjusted. The top mirror (86006bs, Chroma Technology,

Rockingham, VT) reflected epifluorescence excitation launched from a liq-

uid light guide connected to a DG4 fast switching light source (Sutter In-

strument, Novato, CA). The lower mirror (535AF26) transmitted YFP

fluorescence, allowing it to pass through the microscope body and tube lens

and 2.53 Nikon magnifying lens to electron multiplying charge coupled

device (emCCD) camera1 (Cascade II, Roper Scientific, Tucson, AZ) while

reflecting CFP emission through a custom-built optical path containing a

Nikon tube lens and 2.53 magnifying lens fitted to the rear dovetail of the

microscope body. Light from this path was imaged onto a second identical

emCCD detector (camera2). Filter wheels from Prior Scientific (Rockland,

MA) were mounted between the 2.53 magnifying lens and cameras by

modifying the magnifying lens holder to mount directly to the filter wheel

assembly. These lens holders were also shortened to allow image formation

at the plane of the CCD chip. Excitation filters were S436/10x for CFP and

S492/18x for YFP and emission filters were S465/30m and S535/30m for

CFP and YFP, respectively (Chroma Tech). A 603 Plan Apo (violet cor-

rected) water-immersion objective (NA 1.2) with correction collar (Nikon)

was used for imaging. Focus was controlled by moving this objective with a

PIFOC (Physik Instruments, Kartsruhe, Germany). A motorized xy stage

(Prior) positioned samples, which were held at 37�C in a Leiden chamber

mounted in a heated microstage and regulated by a CL-100 temperature

controller (Harvard Apparatus, Holliston, MA). The microscope was con-

trolled by MetaMorph v6.5.3 (Universal Imaging, Malvern, PA). ‘‘Device

Streaming’’ in MetaMorph was employed to maximize data acquisition rates

through efficient coordination of the cameras, piezo focus, and DG4.

Image processing for 3DFSR of real data

Images from the two cameras were registered using an in-house program that

used the MATLAB Image Toolbox to create a projective transform from

images of small beads. This transform was then applied to rotate, translate,

and scale each image from camera 1 onto camera 2. Displacement was

generally less than two pixels in the xy plane. Images were corrected for

camera bias level by subtracting the mean of ;30 images collected from each

camera with the illumination blocked. The subtracted images were then

corrected for exposure time before analysis by 3DFSR. Simulated PSFs were

used for reconstruction of the data. Other than a small degree of astigmatism

in the reflected image on camera 2 (likely originating from poor flatness of

the dichromatic reflector) good agreement was observed between theoretical

and measured PSFs.

RESULTS AND DISCUSSION

Blurring limits the accuracy and sensitivity of
FRET microscopy

The model equation (Eq. 4) was used to simulate widefield

FRET imaging of a single cell containing a defined ar-

rangement of [D], [A], and E[DA]. A model cell was con-

structed to simulate a 4.5-mm-diameter spherical yeast cell

with [D] and [A] at equal concentration in the cytosol, a

1.4-mm-diameter empty vacuole, four 400-nm-diameter com-

partments containing equal concentrations of [D] only, [A]

only, [DA] only (with E ¼ 0.50), and a bright compartment

with [D] and [A] at 103 cytosolic concentration (Fig. 1 A).

The compartments were centered on the middle z section and

aligned in rows to allow easy production of xy, xz, and yz
slices through all compartments. Together, the images [D],

[A], and E[DA] form the vector x in Eq. 4. Other tested ar-

rangements of the organelles did not alter the results signif-

icantly (data not shown).

The spectral mixing of the model object was accomplished

by multiplication with the matrix A to generate the IA, ID, and

IF images of the cell (Fig. 1 A, second row). The parameters

for A were taken from a microscope in our lab (a ¼ 0.026,

b ¼ 0.657, g ¼ 0.037, and j ¼ 0.245). In the absence of

blurring, each of the compartments is clearly visible in the

spectrally mixed images indicating that spectral mixing is not

the limiting factor in the detection of FRET signals (Fig. 1, B
and C, ‘‘spectral mixing’’ row). Indeed, if this process is

reversed in the absence of noise by the application of A�1

(e.g., FRET stoichiometry), the original object can be re-

covered and the ED, EA, and RM terms return the correct

estimates (Fig. 1 B, corresponding row). Corruption of the

data by blurring and noise cannot be reversed by simple

matrix multiplication. Importantly, when neglecting noise

and blurring, the accuracy to which unmixing can recover the

donor, acceptor, and complex distributions will be limited

only by the accuracy to which A can be determined.

Blurring of FRET data results in severe spatial averaging

of localized FRET signals. Blurring by matrix P simulated by

convolving the spectrally mixed estimates with a simulated

PSF (imaging parameters NA ¼ 1.2, lex ¼ 434 nm, lem ¼

3D-FRET Microscopy 407

Biophysical Journal 95(1) 400–418



480 nm) using fast Fourier transforms. We focused on wide-

field microscopy since most live-cell FRET microscopy ex-

periments have been performed on such instruments. In this

work a single PSF was used; however, different PSFs for

each color channel could be modeled as well. The sampling

frequency was reduced to typical microscopy voxel dimen-

sions of 67 nm 3 67 nm 3 201 nm. After blurring, the

400 nm compartments are barely visible in the IA, ID, and IF

images (Fig. 1 A, third row), indicating that the blurring

greatly impairs detection of spectrally mixed signals. Fur-

thermore, if FRET stoichiometry is applied to these data even

in the absence of noise by multiplying by A�1 and computing

ED, EA, and RM, the 400 nm compartments show ED, EA, and

RM values far from the original object. In fact, the apparent

efficiencies (ED and EA) estimated from the blurred images

were more than an order of magnitude below their values in

the original images (blurred EA and ED ¼ 0.026, original ¼
0.50). These effects are a result of the spatial averaging oc-

curring between the cytosol and the FRET signal or high or

low ratios in the 400 nm compartments. The principal effect

of blurring is a redistribution of the fluorescence signals,

thereby reducing the expected measured ‘‘concentrations’’ of

fluorophores by ‘‘mixing’’ neighboring distributions even

though they may be distinct in the original object. In the

absence of spectral mixing, each signal could still be inde-

pendently observed; however, when combined with spectral

mixing, the spatial averaging induced by imaging severely

limits the detection of FRET signals localized within a vol-

ume of non-FRET signals.

In addition to spectral mixing and optical blurring, detec-

tion noise significantly degrades FRET signals. Detection

noise was simulated by drawing from a Poisson distribution

with the expected mean values for each voxel defined by the

spectrally mixed and spatially blurred images (Fig. 1 A,

bottom). Even moderate detection noise (mean SNR for ID¼
10.4, IA¼ 24.9, IF¼ 10.3) was sufficient to make the various

compartments nearly undetectable in the IA, ID, and IF im-

ages. Furthermore, unmixing these estimates with A�1 did

very little to recover these compartments as seen by ED, EA,

and RM values at or below the limit of visual detection (Fig.

1 B, bottom row). Together, the combined effects of spectral

mixing, blurring, and detection noise severely impaired the

detection of subcellular FRET signals, as demonstrated for

this model. This model represents a realistic FRET imaging

situation in which localized interactions are hidden within

delocalized signals from noninteracting molecules. The sit-

uations encountered in real FRET microscopy may be more

or less challenging depending on the strength of the inter-

action and the cellular morphology.

3DFSR outperforms independent deconvolution
and spectral unmixing

What is the best algorithm to recover the local concentrations

of bound and free donors and acceptors in a sample? To

address this question, we used the simulated cell in Fig. 1 to

compare the performance of 1), RL-deconvolution followed

by unmixing; 2), unmixing followed by RL-deconvolution;

and 3), 3DFSR reconstruction. Each algorithm was run

overrelaxed and unregularized for a fixed number of itera-

tions, and the MSE between the original object and the es-

timated object were calculated for [D], [A], and E[DA]

(Fig. 2). RL-deconvolution followed by unmixing gave poor

reconstruction of the FRET-positive compartment (Fig. 2 A).

In particular, the reconstruction of the spectrally mixed sig-

nals produced improved estimates of ID, IA, and IF; however,

unmixing by multiplication with A�1 showed that the FRET-

positive compartment was dim (Fig. 2 A and E[DA]) and that

the E[DA] image contained many spurious signals. Further-

more, the apparent efficiencies (Fig. 2 B, ED, and EA) showed

a FRET-positive compartment well below the expected value

of 0.50 and showed many spurious FRET signals in the range

of 0.10–0.20. Additionally, the MSE (Fig. 2 C) for the [D]

and [A] estimates showed different convergence trajectories

and optima despite [D] and [A] having nearly identical

structure. Furthermore, E[DA] diverged from the original

object because of spurious signals appearing in E[DA]. De-

spite the apparent divergence in the MSE, some reconstruc-

tion of the FRET-positive organelle was still obtained. This

can be seen when comparing the last rows of Fig. 1, A and B,

with the first rows of Fig. 2, A and B.

Unmixing followed by RL-deconvolution performed better

than the reverse approach. In particular, the FRET-positive

organelle gave EA and ED values well above those obtained

by RL/unmix approach (compare Fig. 2 B top and middle
rows). Furthermore, the MSE values for this approach were

improved over the RL/unmix approach as seen by the similar

trajectories for the [A] and [D] estimates and by the slowed

divergence for E[DA] (Fig. 2 D). However, many spurious

signals were evident in the E[DA], ED, and EA images (Fig. 2,

A and B, middle rows). These spurious signals, which were

observed in both the RL/unmix and unmix/RL approaches,

arose from the biased Poisson functional applied to data

whose noise statistics were altered by multiplication with

A�1 and were no longer Poisson distributed. The appearance

of spurious FRET signals was alarming since it suggests that

incorrect application of deconvolution to FRET data could

give rise to false-positive signals. Attempts to reduce the

appearance of these signals by regularization with the en-

tropy prior or filtering approaches gave only marginal im-

provements in performance (data not shown). Another

limitation of this approach was seen when examining simu-

lated cells with more complex distributions of [D], [A], and

E[DA]. In those cases, the estimates of [D], [A], and E[DA]

would lose correspondence from each other due to different

rates of convergence depending on object complexity (data

not shown). This problem could not be resolved by switching

to the unbiased Gaussian functional. These observations

motivated the derivation of the joined likelihood functionals

for 3DFSR.
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Our first approach to 3DFSR was to minimize the MLP or

MLG likelihood functionals either by an RL-like EM algo-

rithm (MLP-EM) or by steepest descent (MLG-SD). These

approaches gave poor spatial reconstruction and inaccurate

spectral assignment of the [D], [A], and E[DA] of the FRET-

positive compartment even in the absence of noise (Fig. S1).

Further investigation revealed that this behavior reflected the

relative magnitudes of the spatial and spectral components of

the gradient. In particular, if nearly diagonal matrices were

used for A, the spatial deconvolution gave good recon-

struction of each object, but as the nondiagonal components

of A were increased, the reconstruction of the FRET-positive

organelle suffered. Alternatively, in cases where the blurring

was reduced or eliminated by setting the PSF to a delta

function, accurate spectral unmixing was possible. These

observations lead us to conclude that early in the recon-

struction, the simultaneous optimization of spectral and

spatial components of the gradient may be inefficient for

minimization of the objective functionals. We concluded that

the reconstruction performance should be improved if one of

the spatial or spectral gradient components could be held

constant while progress was made along the other compo-

FIGURE 2 Comparison of reconstruction techniques for noisy FRET data. Images were simulated from the model (with SNR ID¼ 10.4, IA¼ 24.9, IF¼ 10.3,

for Poisson statistics), and three reconstruction approaches were applied to obtain estimates of [D], [A], and E[DA] (A) and ED, EA, and RM (B). Reconstruction

with the overrelaxed RL algorithm followed by unmixing (RL/unmix) produced images that showed poor reconstruction of the FRET-positive compartment and

many spurious signals in the cytosol (seen in the E[DA], ED, and EA images). Spectral unmixing before reconstruction by the RL algorithm (unmix/RL) produced

estimates of E[DA] that showed improved reconstruction of the FRET-positive compartment; however, numerous spurious signals were also observed in E[DA],

ED, and EA. 3DFSR outperformed direct application of the RL algorithm and produced excellent reconstruction of the [D], [A], and E[DA] concentrations as seen

by the FRET-positive compartment approaching the expected FRET efficiency of 0.50 (dark red color in ED and EA) and the lack of spurious signals in E[DA],

ED, and EA. The MSE between the reconstructed and simulated [D], [A], and E[DA] images indicated the convergence of the estimates to the original object for

RL/unmix (C), unmix/RL (D), and 3DFSR (E). Scale bar is 1 mm. Slices are from the same planes as in Fig. 1.
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nent. Since there is no obvious way to hold the spatial part of

the reconstruction constant, we decided to use the inverse of

A to hold the spectral part constant to allow progress along

the spatial direction (e.g., in the likelihood functional L1).

Alternating optimization of the L1 and L2 functionals

by 3DFSR provided accurate reconstruction of the FRET-

positive compartment while effectively suppressing spurious

signals. In particular, 3DFSR was able to accurately recover

the factor of 20 loss in both the peak value for the E[DA] (Fig.

2 A, bottom row) and the apparent FRET efficiency, as seen

by the 0.50 values estimated in both the ED and EA images

(Fig. 2 B, bottom row). Calculation of the MSE between the

estimates and original objects showed good convergence for

[D] and [A] and a superior convergence for E[DA]. The MSE

for E[DA] (Fig. 2 E) increased at later iterations, owing to a

large number of small deviations in the E[DA] estimate.

However, these small deviations were largely negligible, as

can be seen in the E[DA] and ED and EA images (Fig. 2, A and

B). The reduced number of iterations needed for convergence

was a result of 3DFSR taking effectively two or three steps at

each iteration: one for the steepest decent minimizing L1 and

one for the overrelaxed EM step minimizing L2 and possibly

a third nonoverrelaxed EM step to refine the L2 estimate

before the start of the next iteration.

Including the entropy prior helped suppress the spurious

noise, stabilize the solution for E[DA], and further decrease

the MSE (data not shown). Estimating the regularization

parameters is difficult, however, and will require future work.

If the regularization parameters are chosen too large, the re-

constructed results become more homogenous, resulting in

lower effective concentrations for highly localized signals.

Alternatively, if the regularization parameters are chosen too

small, the solution returns to the unregularized solution.

3DFSR provides improved sensitivity for the
detection of interacting molecules from
noisy data

To gauge the sensitivity of 3DFSR for recovering localized or

weak FRET signals from noisy data, we varied the noise by

varying the number of photons used to generate images with

33 oversampling along the z axis. These images were then

reconstructed with 15 iterations of 3DFSR or analyzed

directly by FRET stoichiometry (Fig. 3). For FRET stoichi-

ometry, the FRET-positive organelle was undetectable at

intermediate levels of noise (disappearing near SNR¼ 10). In

contrast, 3DFSR recovered the organelle from very noisy

data (SNR¼ 2.3, Fig. 3, B and C). Even at this noise level, the

contrast of the ED signal in the reconstructed image surpassed

that seen in the SNR¼ 14.8 image computed by conventional

FRET stoichiometry. Repeating these experiments with 10

stochastic realizations of the simulated noise for each noise

level showed that 3DFSR had a weak dependence on noise

level for images with average SNRs above 10 and for images

with SNR below 10, there was a nearly log-linear relationship

between SNR and the average ED value recovered from the

FRET-positive organelle (Fig. 3 D). This decrease in the

recovered FRET efficiency reflected two effects of noise on

the reconstruction. The first effect was that the shape of the

FRET-positive organelle was poorly reconstructed from low

SNR images. Typically, this resulted in a narrower organelle

for which less of the volume of the FRET-positive organelle

would be filled (compare Fig. 3 B SNR ¼ 2.3 and SNR ¼
46.6); hence, we recovered a lower average ED signal. The

second effect reducing ED average came from occasional

poor reconstruction of the FRET-positive compartment

(particularly for SNR 2.3 and 3.3) resulting in E[DA] and

hence ED values even in the center of the organelle ,0.50.

No false positives, e.g., FRET signals emerging from the

noise, were observed. Together, these measurements indicate

that 3DFSR can significantly improve the sensitivity of

FRET microscopy in the widefield microscope by approxi-

mately an order of magnitude.

Oversampled images (33) were used to illustrate the im-

pact of noise on reconstruction of a resolution limit sized

object. Since the subcelluar organelles had an initial diameter

of only 400 nm, we decided to use oversampled (e.g., 67 nm

rather than 201 nm spacing along the z axis) images to better

visualize the impact of noise on the reconstruction of these

compartments. The oversampling added a degree of im-

proved reconstruction over sampled data, but this improve-

ment was largely due to the 33 increase in number of

photons or the ;1.73 increase in SNR.

The SNR needed for accurate reconstruction of FRET

signals will depend on many factors, including the distribu-

tion of the [DA] complexes within the cell, backgrounds of

free [D] and [A], as well as the instrument parameters. For

these data, accurate estimation of E[DA] can be obtained by

3DFSR for data with SNR $10. Nonetheless, these data

represent a challenging problem, with only one out of 4 3

104 photons originating from E[DA] versus [A] 1 [D].

E[DA] distributions of greater abundance or larger volume

will be easier to recover by 3DFSR. However, it is con-

ceivable that some biological systems will have highly lo-

calized interactions with only a small subset of donor and

acceptor proteins participating in the interaction. In these

cases, the higher SNRs or greater z axis oversampling (ef-

fectively increasing SNR) will be needed to detect the in-

teraction accurately. With improved optical sectioning, such

as in a confocal microscope, the degree of spatial averaging

will be reduced, thereby improving detection of [DA] com-

plexes, albeit also requiring higher axial sampling.

Instrumentation for live-cell 4D(x,y,z,t) FRET
microscopy of protein interactions

Given the excellent performance of 3DFSR in response to

noise, we constructed an instrument capable of collecting

data fast enough to limit distortions due to cellular movement

and sensitive enough to avoid excessive photobleaching. The
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widefield instrument, referred to as the 4D-FRET micro-

scope, used two cameras and custom optics to allow simul-

taneous imaging of both donor and acceptor fluorescence

(Fig. 4). The detection of the FRET signal could thus be

multiplexed such that during illumination at the donor exci-

tation maximum, camera 1 recorded ID while camera 2 si-

multaneously recorded IF (which would otherwise require a

separate exposure). The illumination could then be switched

to the acceptor excitation maximum and IA could be recorded

on camera 2 (camera 1 could record either a blank image or a

third fluorophore). By taking advantage of the rapid switch-

ing of the DG4 and efficient hardware control afforded by

‘‘device streaming’’ in the MetaMorph software, we were

able to collect 3D stacks of images 512 3 512 3 30 planes

34 wavelengths in ;2 s repeatedly. Furthermore, this effi-

cient coordination combined with high quantum efficiency

(QE) emCCD cameras (QE ;90%) and on-chip em-ampli-

fication allowed small numbers of photons to overcome the

read noise, enabling in minimal exposure of the cells to ex-

citation light. In turn, this allowed sustained imaging, image

sampling with minimal photobleaching and phototoxicity

(e.g., Fig. 7).

3DFSR accurately reconstructs the distributions
of fluorophores and their interactions

The performance of 3DFSR was tested in live cells by two

approaches. The first test was to determine if 3DFSR could

reconstruct the concentrations of identically distributed [D],

[A], and E[DA] in the presence or absence of FRET. For this

test, cells expressing free CFP and YFP (which have identical

cytosolic distributions but do not show FRET (26)) were

imaged at multiple focal planes, and 30 iterations of 3DFSR

were applied to the data. Direct application of FRET stoi-

chiometry indicated no interaction (as seen by E[DA], ED,

and EA ;0) and a uniform molar ratio (Fig. 5 A). 3DFSR

produced deblurred estimates for [D] and [A] while accu-

rately reconstructing E[DA] and, therefore, ED and EA near

FIGURE 3 3DFSR improves accuracy and sensitivity

over conventional FRET microscopy at all noise levels.

Data simulated with various noise levels were reconstructed

with 15 iterations of 3DFSR. 3DFSR provided accurate

reconstruction of the FRET-positive compartment as seen

by the ED signals approaching 0.50 (A), whereas direct

application of FRET stoichiometry only allowed detection

of the FRET-positive compartment at high SNR (SNR

;14.8). (D) The mean and standard deviations from 10 real-

izations for the FRET-positive compartment and a region in

the cytosol indicated that 3DFSR could accurately recover

the FRET signal in the compartment (solid circles) while

correctly suppressing noise to zero (open circles), whereas

conventional FRET stoichiometry measured the FRET-

positive compartment to be well below the expected 0.50

at all SNR levels (solid triangles) and gave cytosol signals

near zero (open triangles). Diminishing values of ED with

decreasing SNR correlated with smaller size of the recon-

structed FRET-positive compartment. Scale bar is 1 mm. xy

and xz slices are from the same planes as in Fig. 1.
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zero (Fig. 5 A). Furthermore, the RM image remained as

uniform as the nonreconstructed result (Fig. 5 A), confirming

that 3DFSR reproduced the expected identical distribution of

[D] and [A] in the cytosol. The holes that appear in the RM

image arose from subcellular compartments in which the

reconstructed [D] and [A] signals dropped below the masking

level. Similar results were consistently observed in at least

nine cells, indicating the robustness of 3DFSR at re-

constructing the distribution of [D] and [A] in the absence of

FRET without generating false positives. In this test, we also

observed that 3DFSR was robust in that large deviations in

the [D]/[A] ratio between adjacent structures did not create

false-positive FRET signals. An example can be seen in Fig.

5 A, where a projection from an adjacent cell expressing only

acceptor crosses into the center cell expressing both donor

and acceptor. This jump in acceptor/donor ratio was en-

hanced in the RM image by 3DFSR, but this abrupt change

did not affect the E[DA] or ED estimates.

The second test was to determine if 3DFSR could accu-

rately reconstruct uniform FRET signals. Here, cells dis-

playing a uniform FRET efficiency of 0.37 throughout their

cytosol were obtained by expressing a covalently linked

donor and acceptor molecule whose FRET efficiency was

known from fluorescence lifetime (1). Direct application of

FRET stoichiometry to the raw data gave uniform images for

EA, ED, and RM in each xy plane. However, a small, but de-

creasing gradient was observed along the z axis for both the

ED and RM images, indicating that photobleaching of the

acceptor occurred at a nonnegligible rate during data acqui-

sition (Fig. 5 B). The accelerated photobleaching in the

presence of FRET is consistent with the acceptor molecule

spending more time in the excited state, leading to acceler-

ated photobleaching (5). Application of 3DFSR, which in-

cluded the photobleaching correction, accurately produced

sharpened images of [A], [D], and E[DA]. Furthermore,

3DFSR recovered the correct and uniform proportions of

each species as seen by the ED ¼ 0.37, EA ¼ 0.37 (not

shown), and RM ¼ 1.0 throughout the 3D space of the cell

(Fig. 5 B). This result was representative of the nine cells

analyzed. The intensity variations that can be seen in the ED

image (Fig. 5 B) can be attributed to noise in the non-

regularized nature of the reconstruction. Also, the gradient

induced by photobleaching was eliminated. This was unre-

lated to the noise enhancement.

To examine the performance of 3DFSR in the case where

donor and acceptor distributions are distinct or only partially

overlapping, we turned to our previously established FRET

system for detecting the activation of small Rho-family

GTPases. In particular, Rac2 and Cdc42 bind a domain from

PAK1 called ‘‘P21-binding domain’’ (PBD) when in their

activated, GTP-bound forms (26,27). Activating mutations in

Rac2 (e.g., Rac2(V12)) impairs its ability to hydrolyze GTP

to GDP, promoting its high affinity state for PBD and ex-

posing a C-terminal membrane tethering domain that targets

this protein to plasma membrane, nuclear envelope, and other

internal membranes (27,28). Thus, cells cotransfected with

YFP-Rac2(V12) and CFP-PBD have a largely membrane-

bound YFP-Rac2(V12) distribution and a cytosolic CFP-

PBD distribution except where YFP-Rac2(V12) recruits

CFP-PBD to the membrane, resulting in a FRET signal (26).

In cells expressing YFP-Rac2(V12) and free CFP, a pair

which should not produce FRET, direct application of FRET

stoichiometry showed no FRET in the cytosol and a non-

homogenous RM image (Fig. 6 A, top row). 3DFSR of these

same cells reconstructed E[DA] near zero, as expected, and

recovered much of the distributions of YFP-Rac2(V12) and

CFP, as can be seen by the enhanced contrast in the RM image

(Fig. 6 A, bottom row). Although the YFP-Rac2(V12) lo-

calization to the nuclear envelope was nearly undetectable in

the IA image of Fig. 6 A, after 3DFSR, the nuclear envelope

localization was clearly evident (as are numerous other small

vesicles). No false-positive FRET signals were observed over

nine reconstructions of different cells. For cells expressing

FIGURE 4 Diagram of the 4D-FRET microscope. The 4D-FRET micro-

scope was an inverted microscope optimized for rapid acquisition of three or

four fluorescence images at multiple planes of focus. Broken lines indicate

light paths. A water-immersion objective lens with correction collar mini-

mizes spherical aberration in live samples. The z focus is controlled by a

piezo drive that moves the objective lens. A fast light source switched

rapidly between two illuminations: (a) donor excitation (Dx) and (b) ac-

ceptor excitation (Ax). The switching of wavelengths and the z axis move-

ment of the piezo device are the only moving parts and both require 1–10 ms

to change. Excitation light is reflected onto the sample by dichromatic beam-

splitter I. Sample fluorescence passes through beamsplitter I to a second

dichromatic beamsplitter contained within the microscope via custom-built

optics and optomechanics. Dichromatic beamsplitter II transmits CFP emis-

sion to emCCD1 while reflecting the YFP emission to emCCD2. When

illumination a is in place, emCCD1 records the ID image and emCCD2

simultaneously records the IF image. When illumination b is in place,

emCCD2 records IA. Device streaming was used to switch illumination and

move the z focus (requiring a total of ;10 ms) during the read time after each

exposure, and the next image is captured. The cameras are frame-transfer

and run synchronously in streaming mode.
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YFP-Rac2(V12) and the binding domain CFP-PBD, direct

application of FRET stoichiometry recovered strong FRET

signals on internal and plasma membranes; however, the

contrast of the ED and RM images was poor (Fig. 6 B top row,

EA not shown) due to the blurring along the z axis. 3DFSR

reconstruction of these cells yielded sharp reconstructions of

the membrane-associated YFP-Rac2(V12), partially cyto-

plasmic CFP-PBD distributions, and membrane-associated

YFP-Rac2(V12)/CFP-PBD complexes (Fig. 6 B, bottom
row). These results were consistent over the five cells ex-

amined.

In addition to improving the contrast of these images,

3DFSR improved the z axis sectioning of the FRET and ratio

images. In cells expressing YFP-Rac(V12) 1 CFP-PBD, the

conventional FRET stoichiometry images EA and ED ap-

peared very similar at several z planes (compare raw ED in

Fig. 6 B with 6 C). However, in 3DFSR reconstructed im-

ages, the contrast in the apparent efficiency images (EA and

ED) and RM image was significantly improved. Furthermore,

individual z sections appeared more distinct than in non-

reconstructed data. This effect can be seen in the distinct

appearance between two planes after 3DFSR reconstruction

(compare images of decon. ED in Fig. 6 B with 6 C). The

improved contrast along the z axis demonstrates that 3DFSR

improves the recovery of individual z sections and helps

overcome a long-standing problem with the poor contrast and

z sectioning observed in apparent efficiency and ratio images

obtained from widefield FRET microscopy.

4D imaging of dynamic protein interactions
mediating signal transduction by 3DFSR

The goal of this work was to improve estimation of the 3D

concentrations of bound and free molecules relative to mor-

phological structures within single living cells. This was

achieved by 3DFSR combined with the optimized instru-

mentation of the 4D-FRET microscope. Previously, we had

shown by FRET that the small GTPase, Cdc42, was activated

and found in complex with PBD during phagocytosis (26).

The interaction between YFP-Cdc42 and CFP-PBD localized

near the leading edge of the forming phagosome, producing

weak signals that could only be observed when the phago-

FIGURE 5 3DFSR provides improved 3D resolution while accurately estimating ED, EA, and RM for uniformly distributed bound and free molecules. The

concentrations of [D], [A], and E[DA] were reconstructed by 3DFSR from widefield images of live cells expressing uniform free CFP and YFP (A) or a linked

CFP-YFP molecule (B). 3D stacks of ID, IA, and IF from cells expressing free CFP and YFP were used for direct calculation of FRET stoichiometry (top row,

ED and RM, EA images were very similar to ED). Thirty iterations of 3DFSR (including photobleaching correction) produced improved estimates of [D] and [A],

whereas the reconstructed estimates for E[DA] and ED indicated no complex. Furthermore, RM was precisely maintained. Cells expressing a linked construct

demonstrated a uniform ED of ;0.37 and RM ;1.0. 3DFSR (including photobleaching correction) generated improved estimates for [D], [A], and E[DA] and

accurately returned ratio images with values of 0.37 and 1.0 in all planes. The effects of FRET-enhanced photobleaching and its correction can be observed by

comparing the raw ED and reconstructed ED in (B). Scale bar is 5 mm.
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some was in the correct focal plane and phagosome extension

moved in a direction parallel to the coverglass. Using

3DFSR, we were able to capture the complete morphology of

the forming phagosome and the 3D distributions of molecular

interactions within the cell. The improved 3D resolution and

sensitivity afforded by 3DFSR allowed detection of the lo-

calized and transient interactions between YFP-Cdc42 and

CFP-PBD. Slices through the center of the cell before

phagocytosis indicated that YFP-Cdc42 was bound to CFP at

ruffles forming near the leading edge of the cell (Fig. 7 A).

Furthermore, display slices through the phagosome showed

that YFP-Cdc42 interacted with CFP-PBD at the advancing

margins of the forming phagocytic cup (Fig. 7 B), consistent

with our earlier observations. These measurements demon-

strate that 3DFSR and improved instrumentation enable

sensitive detection of dynamic protein interactions within

living cells.

3DFSR improves confocal FRET microscopy

Why bother with image reconstruction if one can simply use

a confocal microscope? Although the confocal microscope

greatly reduces blurring along z axis, it cannot perfectly im-

age the concentrations of localized interacting proteins. This

FIGURE 6 3DFSR accurately reconstructed the 3D distribution of interacting proteins with overlapping but different distributions. (A) In cells expressing

YFP-Rac2(V12) and CFP, the raw 3D images ID, IA, and IF showed YFP-Rac2(V12) distributed in the cytosol and partly on internal membranes. The ED image

indicated no FRET, and RM indicated modest differences in the distribution of the two proteins. 3DFSR estimates (A, rec.) showed improved 3D resolution of

the concentrations of [D] indicating CFP localized to the cytosol and [A] indicating YFP-Rac2(V12) was predominately localized to the nuclear envelope and

intracellular membranes. After reconstruction, no interaction between CFP and YFP-Rac2(V12) was observed (E[DA] and ED ¼ 0). Furthermore, the contrast

of the RM image was greatly increased, indicating the improved accuracy of 3DFSR in recovering the distributions of YFP-Rac2(V12) relative to free CFP. (B)

A cell expressing YFP-Rac2(V12) along with interaction partner CFP-PBD indicated FRET on plasma membrane and internal membranes by direct FRET

stoichiometry. The 3DFSR reconstructed YFP-Rac2(V12)/CFP-PBD complex (E[DA]) predominantly localized to intracellular membranes and plasma

membrane, indicating that Rac2(V12) recruited CFP-PBD to these membranes. Again, the RM image displayed an improved dynamic range after 3DFSR. (C) A

midsection slice through the ED image demonstrates that 3DFSR improves optical sectioning. The midsection 3DFSR ED slice reveals structures distinct from

the ED slice taken lower in the reconstructed stack in B; however, the raw ED image at the midsection appears nearly identical to the raw ED from lower in the

raw stack in B. Scale bar is 5 mm.
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can be seen when the model was blurred with a theoretical

confocal PSF (Fig. 8 A). In particular, the concentration of

complex (E[DA]) in the FRET-positive organelle is reduced

by the blurring, whereas the concentrations of [D] and [A] in

the larger cytosolic volume were largely unaffected. This

effect decreased ED to a value of ;0.15 rather than 0.50

(Fig. 8 C). The same effect can be seen for the bright or-

ganelle whose concentration for [D] is reduced by averaging

with its neighbors (Fig. 8 B). By including Poisson noise

typical of live-cell confocal experiments (SNR for ID ¼ 4.7,

FIGURE 7 3DFSR enabled 4D(x,y,z,t) imaging of dynamic molecular association within a living cell. 3D images of a bone marrow-derived macrophage

internalizing an IgG-coated 5 mm bead were collected at 30 s intervals and reconstructed by 30 iterations of 3DFSR. Surface reconstruction (green) shows the

surface of the cell, which was sliced open near the middle focal plane to reveal the concentrations of [A] (YFP-Cdc42, in gray) and the concentration of E[DA]

(E 3 [YFP-Cdc42/CFP-PBD] in pseudocolor) (A). (B) Time series of the reconstructed forming phagosome indicated that Cdc42 was active at the advancing

edges of the forming phagosome.

FIGURE 8 3DFSR improves confocal data and is superior low-pass filtering. Images of the model yeast cell were simulated by blurring with a confocal PSF

and Poisson detection noise (mean SNR ;7). (A) Analysis by conventional FRET stoichiometry on the raw data illustrates that the distribution of [D] and

detection of ED were just above the noise. Low-pass filtering with a Gaussian blur (s ¼ 67 nm) suppressed noise at the expense of resolution (as can be seen in

[D]) and accuracy as seen in ED. Alternatively, six iterations of 3DFSR recovered accurately the ED signal while suppressing noise and improving resolution. A

three-pixel-wide line scan (position shown by the yellow line in the [D] image) provides a comparison between the original object, FRET stoichiometry applied

to the raw data, FRET stoichiometry applied to low-pass filtered data, and 3DFSR for either [D] (B) or ED (C).
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IA¼ 11.4, IF¼ 4.4), we observed that even with the moderate

blurring in the confocal, the FRET-positive organelle was

difficult to detect (ED image in Fig. 8 A), albeit much better

than in widefield data (compare with Fig. 3 C). 3DFSR was

able to reverse the blurring to provide concentration estimates

that closely matched the original distributions of [D], [A],

and E[DA] and therefore accurately recovered the ED image

(Fig. 8): a factor of ;3.5 over confocal alone. The ability of

3DFSR to simultaneously improve the estimation of molec-

ular concentration and suppress noise is a property of the

deblurring with the correct statistical model and this im-

provement cannot be accomplished by any linear or nonlinear

filtering techniques. Indeed, low-pass filtering suppressed the

noise-induced degradation of the estimates (as seen in ED,

Fig. 8, A and C); however, this comes at the cost of reduced

resolution (Fig. 8, A and B) and reduced accuracy in the es-

timation of molecular concentrations (Fig. 8 C). Wavelet-

based denoising can somewhat preserve resolution while

suppressing noise (29); however, this technique cannot re-

verse blurring or improve concentration estimation. This is in

sharp contrast with the results achieved by 3DFSR, which

include suppression of noise and improvements in resolution

and concentration estimation. Additionally, it is possible that

the combination of 3DFSR with wavelet-based denoising

may yet provide superior image reconstruction (29).

3DFSR implementation and applications

Although the algorithm for 3DFSR presented here provides

substantial advances, its deployment in MATLAB/DIPImage

is not very efficient. Typical reconstruction times for 30 it-

erations of 3DFSR on images 512 3 512 3 25 were 5–10 h,

running on a single core of an Athlon CPU (such as for the

data in Figs. 5 and 6). 3DFSR requires 7.5 times as many

convolutions per iteration as conventional MLE deconvolu-

tion of a single image, indicating that about an 83 increase in

computational power will be needed for 3DFSR to run at a

similar rate. There is no obvious way to decrease the number

fast Fourier transformations required by 3DFSR, indicating

that acceleration will require deployment in a multiprocessor

environment with more efficient computer code. Another

possibility for accelerating the algorithm was alluded to in the

methods section, in which a partly deconvolved initial guess

for the 3DFSR algorithm was generated by first deconvolv-

ing with the unmixed likelihood functional (L1). This process

is analogous to ITCM reconstruction and should allow faster

generation of an initial approximation that can then be refined

by 3DFSR.

This work demonstrates that FRET microcopy and likely

also other multispectral data can benefit significantly from

image reconstruction. The extension of 3DFSR to multi-

spectral microscopy techniques such as chromosome paint-

ing and multispectral FISH should only require replacing the

matrix A with the appropriate matrix. Three-dimensional

reconstruction of multispectral data consisting of many

wavelength measurements will be challenging with the cur-

rent algorithm since the computational cost will scale linearly

with the number of recorded wavelengths and the number

of fluorescent species to be estimated. Nonetheless, for

3D-FRET or 3D-multispectral microscopy the number of spec-

tral images is usually minimized to allow rapid data collec-

tion, and for FRET it has been argued that the collection of

broad regions of the donor and acceptor spectrum improves

the detection of FRET signals over the collection of numer-

ous wavelengths (7).

What are the possible fluorophore pairs that can be used

with 3DFSR? Although we have not explored this in detail, an

examination of A and some simulations provides some clues.

In the extreme case where a donor and acceptor have essen-

tially no spectral overlap (such as Sapphire and mCherry), A
will be nearly diagonal (except for the upper right corner).

Here, 3DFSR will have little work in terms of spectral un-

mixing, and deburring operations will dominate. Importantly,

the step size for each (L2) iteration of 3DFSR is constrained

over the entire model, and thus, the convergence rates for [A],

[D], and E[DA] will be more similar than with independent

deconvolutions. Alternatively, for donors and acceptors that

display large degrees of spectral overlap (e.g., green fluores-

cent protein and YFP), the mixing matrix A will be full and

less well conditioned. Here, 3DFSR will outperform any ap-

proaches that utilize sequential unmixing and reconstruction

operations. However, it is important to point out that as the

spectral overlap between the fluorophores increases, higher

SNR input images will be needed to obtain results equivalent

to those from a system with spectral overlap. The CFP and

YFP data presented in this work represent an intermediate

case of spectral mixing that was successfully reconstructed by

3DFSR. More work will be needed to precisely define how the

relationship among noise, spectral overlap, and the accuracy

of determining A affect the performance of 3DFSR. The

figure of merit defined for noise by Neher and Neher (7,13)

should be a valuable tool for that endeavor.

As with any FRET technique, fluorescence components

present in the sample (e.g., autofluorescence) but omitted

from the analysis can give rise to false-positive FRET signals.

It is possible to extend 3DFRSR to include extra fluorescent

components by expanding the matrix A, the spectral mea-

surement vector g, and the estimation vector x. Such modi-

fications may improve detection of FRET signals in the

presence of competing fluorescence signals.

3DFSR will be most useful for measuring highly localized

protein interactions. Such interactions are frequently en-

countered in signal transduction and in the interactions of

host cells with viruses and bacteria. In these cases, localized

FRET signals are embedded in larger volumes of non-FRET

signals, and only approaches that limit or reassign out-

of-focus light will be able to improve the detection and

quantification of FRET in these structures. This advantage,

combined with the robustness of 3DFSR against noise, makes

this technique useful for imaging localized and dynamic
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structures in live cells that may otherwise be undetectable by

spectral FRET microscopy (e.g., FRET stoichiometry) or by

fluorescence lifetime measurements in widefield micro-

scopes. These gains, however, come at the cost of needing

more images and hence increased illumination leading to

photobleaching and potential phototoxicity in live-cell ex-

periments. The impact of increased data acquisition in live

cells may be somewhat offset by the robustness of 3DFSR

against noisier input data and therefore allow shorter image

exposures and faster acquisitions than used in z stack col-

lections for widefield or confocal FRET images. The main

disadvantage of 3DFSR is that it requires that the data be

collected faster than the movement of subcellular structures

or the formation and dissolution of the FRET complex. If

this cannot be achieved, distortions will propagate across

the z planes in the reconstructed data. Importantly, this was

not a factor in the imaging of Cdc42 activation during the

phagocytosis presented here. Hence, 3DFSR will be most

useful for localized and dynamic interactions when addi-

tional data acquisition and computational efforts can be

afforded.

In widefield FRET microscopy, interpretation of sensitized

emission images is confounded by variations in the sensitized

emission intensity arising from variations in cell thickness

(due to poor sectioning along the z axis) and changes in the

local concentrations of donors and acceptors. Although

3DFSR reassigns out-of-focus light, interpretation of E[DA]

while neglecting [D] and [A] distributions could still be

ambiguous since bright regions could arise from formation of

more D-A complexes or simply the accumulation all three

species. This ambiguity is resolved by calculation of the

apparent efficiencies since they reflect the fraction of bound

molecules. Although FLIM can used to measure ED (or to

even separate [DA]/[D] from E), RM and EA are usually not

recovered, leaving ambiguities in the interpretation of mo-

lecular associations. FRET stoichiometry and 3DFSR data are

easily converted into apparent efficiencies and, therefore, are

useful for measuring bimolecular associations in situations of

variable cell thickness and donor/acceptor ratios. In an in

vivo binding experiment, FRET stoichiometry was used to

generate a titration curves for the binding of acceptor and

donors (e.g., EA and ED) at acceptor/donor ratios ranging

from 10�2 to 102 (26). Similar performance would be ex-

pected for 3DFSR, provided exposure times were varied to

maintain sufficient SNR in IA, ID, and IF.

3DFSR provides a foundation for reconstruction of FRET

data obtained by superresolution microscopy. For super-

resolution microscopy techniques such as 4Pi (30), stimu-

lated emission depletion (STED) (31), and structured

illumination microscopy (32,33), reconstruction schemes are

very important to deal with harmonic sidebands (4Pi), noisy

data (STED), and image reassembly (structured illumina-

tion). These reconstruction approaches are of the same form

as the 3DFSR approach presented here. Although instru-

mentation for FRET microscopy does not yet exist for these

modalities, such experiments are likely to become feasible,

and reconstruction approaches will be needed.

3DFSR brings FRET microscopy one step closer to

quantitative analysis of cellular pathways. 3DFSR provides

orders of magnitude improvement for both sensitivity and

accuracy in the detection of localized FRET signals for wi-

defield microscopy and smaller, although significant gains

(factors of 2–5), for confocal microscopy. These gains when

combined with novel instrumentation allowed attainment of

one of the long-standing goals of FRET microscopy: sus-

tained, sensitive, and accurate measurement of submicron

localized molecular interactions throughout the 3D space of

living cells. This is evidenced by sustained 4D imaging of the

signal transduction of Cdc42 during phagocytosis, which

may otherwise be missed or inaccurately measured by con-

ventional FRET approaches. Furthermore, the improvements

in concentration estimation can be combined with methods

for calibrating fluorescence in terms of actual molar con-

centrations (34). This combination will facilitate the mea-

surement of parameters needed for quantitative modeling of

the chemistries occurring in real cellular pathways by partial

and ordinary differential equation models. Additionally, ap-

plication of 3DFSR to the analysis of protein interactions

inside living cells requires only a modest investment in in-

strumentation and computational resources, which should

make it a widely available technique for cellular pathway

analysis.
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