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ABSTRACT Comparing experimental generalized N-H S2 order parameters to those calculated from molecular dynamics
trajectories is increasingly used to judge force-field quality and completeness of sampling. Herein we demonstrate for the well-
investigated system hen egg white lysozyme that different experimental starting structures can lead to significant differences in
molecular-dynamics-derived S2 parameters that can be even larger than S2 parameter deviations due to different force fields.
Caution should thus be taken in general when simulated S2 parameters are compared to experimental data with the aim of
judging force-field quality. We show that adequately sampling flexible regions (;100 ns) and only calculating S2 parameters
averaged over short time windows proved necessary to obtain consistent results irrespective of the starting structure.
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Molecular dynamics (MD) simulations and NMR spin

relaxation spectroscopy are complementary tools to inves-

tigate the dynamics of biomolecules (1,2). Comparing exper-

imental NMR spin relaxation data to those calculated from

MD trajectories also allows assessing whether MD simula-

tions accurately reproduce structural and dynamical proper-

ties of the system (3). A comparison of experimental and

MD-derived N-H S2 order parameters (4) is increasingly

used to judge force-field quality in this regard (5–8).

Aside from simulation conditions (5) and the approach

used to extract S2 parameters (9), an influence of the MD

starting structure on the computed S2 parameters ought to be

expected too (10,11), considering that system dynamics and

(local) structure are intimately related (12). This influence

should become particularly pronounced in flexible parts of

the molecule, where conformational variability in experi-

mental structures is most likely to occur. Herein, we dem-

onstrate for hen egg white lysozyme (HEWL) that different

starting structures can lead to differences in MD-derived S2

parameters that can be larger than deviations due to different

force fields. Accordingly, caution should be taken when

simulated S2 parameters are compared to experimental data

with the aim of judging force-field quality.

HEWL is a well-investigated model system that has

become a standard for evaluating the quality of force fields

in terms of internal dynamics (6–8,13). For investigating a

starting structure dependence on calculated S2 values, we first

clustered 92 unbound wild-type HEWL crystal structures

with a resolution ,2.0 Å and 50 conformations of an NMR

ensemble (14) with respect to backbone torsion angles of re-

sidues Gly71 and Asn74 in the loop 2 region (residues 65–75).

The conformations are characterized by the backbone N-H

bonds of the two residues either pointing to the protein or to

the solvent, revealing in total four major loop 2 conformations

(cluster 1: 32 NMR structures, 37 crystal structures; cluster 2

and 4: 48 and 7 crystal structures; cluster 3: 18 NMR struc-

tures) (see Table S1 and Fig. S1 in Supplementary Material,

Data S1). Of the three clusters containing crystals structures,

we chose one crystal structure each as a starting structure (Fig.

1 a). All three structures have been crystallized in the same

space group. Visual inspection of the crystal packings did not

reveal any differences in stabilizing interactions by the crystal

environment involving the loop 2 region. Hence, we believe

that the conformational variance of loop 2 cannot be attributed

to differences in crystal packing. For reasons of comparison,

we also considered the first model of the NMR ensemble

1E8L (cluster 1).

For each structure we performed MD simulations with

periodic boundary conditions in the NVT ensemble using the

TIP3P water model at 300 K for a minimum of 30 ns with

AMBER9 (15) and applying the ff99 (16) and ff99SB (6)

force fields. The MD simulations of 1HEL were extended to

100 ns. S2 parameters were calculated for backbone N-H

bonds according to the isotropic reorientational eigenmode

dynamics approach (17). Using an alternative approach ap-

plied by Hornak et al. (6) did not result in qualitatively

different S2 values (see Fig. S8 in Data S1).

Initially, we analyzed the structural stability of loop 2 in

terms of backbone dihedral angle changes for residues Gly71

and Asn74 (see Figs. S2–S5 in Data S1). The backbone

dihedrals allow assigning each conformation from the MD

simulations to one of the four clusters. With respect to loop
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2, the trajectories originating from different starting struc-

tures revealed very different structural stabilities (Fig. S6 in

Data S1). 6LYT and 1IEE almost exclusively exist in a loop

2 conformation similar to that of cluster 2, with 1IEE

showing occasional transitions to the cluster 4 conformation

in the case of ff99. In contrast, 1HEL and 1E8L display

conformations that resemble those of cluster 1 and 3.

Frequent exchanges between these two conformations occur

in the case of ff99, but a more restricted loop 2 dynamics is

observed in the case of ff99SB. In no case, transitions

between cluster sets {1, 3} and {2, 4} are observed. As we

believe that the observed clusters are not due to differences

in the energetics of the crystal environments, this points to a

poor sampling of the backbone dihedral angle transitions of

the peptide bond between Arg73 and Asn74. From the

observed differences in the structural stabilities, one can

already anticipate computed S2 parameters of loop 2 to be

different across the trajectories due to varying internal

dynamics of that region.

Fig. 1 and Fig. S7 in Data S1 show calculated S2

parameters for the four different starting structures. In all

cases, S2 parameters of ordered regions agree across the

different simulations as well as with experiment (18) (RMSD ,

0.085; Table S2), irrespective of the force field used (Fig. S7

in Data S1). This observation is in line with previously re-

ported characteristics of the two force fields (5). In contrast,

major differences occur in the loop regions of HEWL

(residues 16–23, 65–75, 100–107, and 116–119) (Fig. 1, and

Fig. S7 in Data S1) and are most pronounced for the loop 2

region. This is not unexpected (6) if different force fields are

applied to generate trajectories originating from the same

structure (as in the case of 1IEE, Fig. 1 c). However, it is

disturbing that even larger S2 differences are observed if

trajectories were generated from different structures, but

using the same force field (Fig. 1 c). In our case, this holds

true for both force fields tested. A better agreement between

computed and experimental S2 for the loop 2 region of 6LYT

has been found for ff99SB compared to ff99 by Hornak et al.

(6), in agreement with similar findings on ubiquitin (5). In

contrast, in our case, both ff99 and ff99SB result in S2

parameters for 6LYT that very well agree with experiment

(RMSD¼ 0.047; 0.048). Similarly, a very good agreement is

found for 1IEE with ff99 and ff99SB (RMSD ¼ 0.064;

0.042). In contrast, 1HEL and 1E8L lead to too low S2 param-

eters irrespective of the force field used (RMSD . 0.175).

These results demonstrate that depending on the initial loop

conformation significant differences in computed S2 param-

eters are observed, if the whole trajectory is considered at once

as done previously (5,6). Obviously, an agreement between

computed and experimental S2 values should be considered

fortuitous in this case.

If a simulation exceeds in length the overall tumbling

correlation time, S2 parameters computed over the whole

trajectory can include motions that would not be reflected in

the experimental S2 values, leading to a bias in the computed

S2 values (5,19). Thus, we also computed S2 parameters from

the MD simulations after the isotropic reorientational eigen-

mode dynamics approach (17) for time windows of 1–5 ns in

1 ns steps. The S2 parameters were subsequently averaged

over all available time windows. No qualitative change of S2

parameters was observed for 6LYT and 1IEE. However,

in the case of 1HEL and 1E8L, increased S2 parameters

were found for the loop 2 region for both the ff99 and ff99SB

case, with the 1 ns S2 parameters providing the best results

FIGURE 1 (a) Residues 65–75 (loop 2) of the investigated HEWL

structures (1HEL (orange, cluster 1); 1E8L model 1 (cyan, cluster

1); 1IEE (green, cluster 2); and 6LYT (magenta, cluster 4)). The N

atoms of Gly71 and Asn74 are colored in yellow. Additionally, it is

indicated if the N-H bond points to the protein (p) or to the solvent

(s). (b) Experimental S2 values (18) (black) are compared to calcu-

lated values (green) from the 30 ns simulation of 1IEE with ff99SB.

Secondary structure elements are indicated by boxes (white,

helix; gray, b-sheet). (c) Comparison of experimental (18) (black)

and calculated S2 values (colored as in a) of loop 2 using ff99 and

ff99SB. The S2 values were either calculated over the whole 30 ns

trajectory (left panels) or averaged over time windows of 1 ns

length (right panels). The red line depicts 1 ns time window-

averaged S2 values of 1HEL over 100 ns.
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(RMSD ¼ 0.058–0.153; Table S3 in Data S1), as also found

recently (5,19). S2 parameters computed from the ff99SB tra-

jectories now much better agree with experiment (RMSD ¼
0.085 (1HEL); 0.058 (1E8L)) than those from the ff99 tra-

jectories (RMSD ¼ 0.153 (1HEL); 0.143 (1E8L)). Encour-

agingly, S2 parameters computed from different starting

structures are rather consistent in the ff99SB case. Overall,

when calculating S2 parameters over short time windows, an

improved description of internal dynamics by ff99SB over

ff99 becomes obvious.

Longer MD simulations should in principle help to over-

come a lack of adequate sampling and result in a better de-

scription of the dynamics of mobile protein regions (5). As an

attempt to further improve the agreement between computed

and experimental S2 values, we thus extended the trajectories

of 1HEL to 100 ns simulation length. Assigning the loop 2

conformations again to one of the four clusters revealed no

obvious change in the frequency of transitions between cluster

1 and 3 in the case of ff99 (Fig. S6 in Data S1). However, in

the case of ff99SB, cluster 1 conformations almost exclusively

prevail beyond a simulation time of 30 ns. The more restricted

dynamics of the loop 2 region in the case of ff99SB com-

pared to ff99 is also reflected in the S2 parameters. If calcu-

lated from time windows of 1 ns and subsequent averaging,

the thus-obtained S2 parameters from the ff99SB trajectory

agree well with those from 6LYT and 1IEE trajectories and

show the best agreement with experiment (RMSD ¼ 0.037).

In contrast, ff99 simulation-derived S2 parameters are still at

variance with experiment (RMSD ¼ 0.122).

Our results demonstrate that caution should be taken in

general when simulated S2 parameters are compared to

experimental data with the aim of judging force-field quality.

To assess the consistency of computed S2 parameters, tra-

jectories started from conformationally varying structures

should be evaluated in parallel whenever possible. Ade-

quately sampling flexible regions (;100 ns) with the aim to

obtain an accurate representation of the structure and dy-

namics and only calculating S2 parameters over short time

windows (;1 ns) furthermore proved necessary to obtain

consistent and accurate results irrespective of the starting

coordinates.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this
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