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The position of mRNA on 40S ribosomal subunits in

eukaryotic initiation complexes was determined by UV

crosslinking using mRNAs containing uniquely positioned

4-thiouridines. Crosslinking of mRNA positions þ11 to

ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and
þ9–þ11 and þ8–þ9 to h18 and h34 of 18S rRNA, respec-

tively, indicated that mRNA enters the mRNA-binding chan-

nel through the same layers of rRNA and proteins as in

prokaryotes. Upstream of the P-site, the proximity of posi-

tions �3/�4 to rpS5(S7p) and h23b, �6/�7 to rpS14(S11p),

and �8–�11 to the 30-terminus of 18S rRNA (mRNA/rRNA

elements forming the bacterial Shine–Dalgarno duplex) also

resembles elements of the bacterial mRNA path. In addition

to these striking parallels, differences between mRNA paths

included the proximity in eukaryotic initiation complexes of

positions þ7/þ8 to the central region of h28, þ4/þ5 to

rpS15(S19p), and �6 and �7/�10 to eukaryote-specific rpS26

and rpS28, respectively. Moreover, we previously deter-

mined that eukaryotic initiation factor2a (eIF2a) contacts

position �3, and now report that eIF3 interacts with posi-

tions �8–�17, forming an extension of the mRNA-binding

channel that likely contributes to unique aspects of eukar-

yotic initiation.
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Introduction

During translation, mRNA engages in extensive, functionally

important interactions with rRNA and protein components of

the small ribosomal subunit, which determine the start site

for initiation and ensure the accuracy of tRNA selection

during elongation. The path of mRNA on the prokaryotic

30S subunit has been visualized by X-ray crystallography of

ribosomal complexes that correspond to different states in

translation (Yusupova et al, 2001, 2006; Jenner et al, 2005,

2007; Selmer et al, 2006; Korostelev et al, 2007). Thus, mRNA

is threaded through a channel that wraps around the neck of

the 30S subunit, passing through non-covalently closed tun-

nels as it enters between the head and shoulder and as it exits

between the head and platform, leaving only nts �1–þ7

(relative to the þ1 A of the AUG initiation codon) exposed

on the interface surface. The A- (aminoacyl) and P (peptidyl)-

site codons are centred over the axis of helix 44 of 16S rRNA,

and a kink between them allows simultaneous pairing with

the anticodons of A- and P-site tRNAs without steric clashes.

mRNA nts þ7–þ15 pass through rRNA (h34, h28, the 50

hairpin loop and the 530 loop) and ribosomal protein ((rp)

S3p, S4p and S5p) layers of the narrow entry tunnel.

However, the contact between the head and the body formed

between h18 in the body and h34 and S3p in the neck, which

constitutes part of the mRNA entry tunnel, was observed in

70S ribosomes and in some but not all 30S subunit structures

(e.g. Frank et al, 1995; Clemons et al, 1999; Gabashvili et al,

1999; Schluenzen et al, 2000), indicating that it can poten-

tially function as a ‘latch’. It has been suggested that closing

of the tunnel could contribute to processivity and direction-

ality, whereas the open conformation could facilitate riboso-

mal attachment of mRNA during initiation (Schluenzen et al,

2000). The interactions of mRNA with the 30S subunit up-

stream of the P-site codon differ at the various stages of

translation. In initiation complexes, mRNA nts �5–�12 base

pair with 16S rRNA to form the Shine–Dalgarno (SD) duplex

located in a cleft formed by S11p, S18p and h20, h28, h37 and

the 723 bulge loop of 16S rRNA, and is oriented towards S18p.

Nucleotides �1–�4 containing the E-site codon are positioned

in the short exit tunnel between the head and platform and are

surrounded by S7p, h45, h28, and the 690 and 790 loops of 16S

rRNA. In the post-initiation state, initial elongation cycles

result in lengthening of the SD duplex and its reorientation

towards S2p. Further translation leads to melting of the SD

duplex and loss of stable interactions of the ribosome with

mRNA upstream of position �5. The E-site nucleotides �1–�3

are positioned on top of a bulge between h44 and h45 and near

h24 in initiation and post-initiation complexes, but have an

altered conformation in the latter, adopting an A-helical shape

that can base pair with the E-site tRNA, and no longer interact

with S7p. During the first stage in initiation, mRNA binds

prokaryotic ribosomes by forming the SD duplex, which is

oriented towards S2p as in post-initiation complexes, whereas

the rest of mRNA is still unbound.

By contrast, much less is known about the mRNA path on

eukaryotic ribosomes. There are fundamental mechanistic

differences between eukaryotes and prokaryotes in initial

ribosomal attachment of mRNA and selection of the initiation

codon (Pestova et al, 2007), so that knowledge of the
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ribosomal position of mRNA and its functional contacts with

components of the 40S subunit and with eukaryotic initiation

factors (eIFs) at different stages of initiation are of particular

interest. Ribosomal attachment to eukaryotic mRNAs is

mediated by eIFs instead of by the SD interaction.

Moreover, in contrast to 30S subunits that directly attach to

the initiation codon region of prokaryotic mRNAs, eukaryotic

43S preinitiation complexes (comprising a 40S subunit,

eIF2 �GTP/Met-tRNAMet
i , eIF3, eIF1 and eIF1A) first attach

to the capped 50-proximal region of mRNA and then scan

along the 50-untranslated region (50-UTR) to the initiation

codon where they form 48S initiation complexes with estab-

lished P-site codon–anticodon base pairing. Initial attach-

ment of 43S complexes is mediated by eIF4F, eIF4A and

eIF4B. eIF4F comprises eIF4E (cap-binding protein), eIF4A

(a helicase, whose activity is enhanced by eIF4B) and eIF4G

(a scaffold for eIF4E and eIF4A that also binds eIF3). eIFs 4F,

4A and 4B unwind the cap-proximal region of mRNA and

likely promote attachment of 43S complexes through the

eIF3–eIF4G interaction. The location of eIF4A/4B/4F on the

40S subunit is unknown, and the molecular mechanism by

which mRNA bound to eIF4F enters the mRNA-binding cleft

therefore remains unresolved. Subsequent scanning requires

eIF1, which promotes adoption of a scanning-competent

conformation by 43S complexes and enables them to recog-

nize and reject codon–anticodon mismatches (Pestova and

Kolupaeva, 2002; Lomakin et al, 2003, 2006). However, the

molecular mechanism of scanning, the ribosomal position of

mRNA in scanning 43S complexes and its potential contacts

with eIFs in these complexes, as well as the mechanism by

which eIF4A/4B/4F assist scanning remain unknown.

Initiation codon recognition in metazoans is strongly influ-

enced by flanking nucleotides: the sequence GCC(A/G)

CCAUGG (in which the initiation codon is underlined) is

optimal for initiation, and deviations from it at the �3 and þ4

positions (in bold) lead to initiation at the next downstream

AUG triplet by leaky scanning (Kozak, 1991). eIF1 is also

responsible for the ability of 43S complexes to discriminate

against AUG codons in poor context (Pestova and Kolupaeva,

2002; Pisarev et al, 2006). Purines at the þ4 and �3 positions

interact specifically with AA1818�1819 of 18S rRNA and with

the eIF2 a-subunit, respectively, and it was proposed that

these interactions may stabilize conformational changes that

likely occur in ribosomal complexes upon initiation codon

recognition (Pisarev et al, 2006). After 48S complexes have

formed, eIF5 triggers hydrolysis of eIF2-bound GTP, and

eIF5B then mediates displacement of factors from the 40S

subunit and joining with a 60S subunit, yielding an elonga-

tion-competent 80S initiation complex.

The position of mRNA on the 40S subunit, as well as its

interactions with translation components, except those of

nucleotides at positions �3 and þ4, is not known for riboso-

mal complexes at any stage of initiation. RNAse protection

studies have shown that, similarly to prokaryotic 70S ribo-

somes, eukaryotic 80S ribosomes also protect B30 nt of

mRNA, but that 48S complexes bind an additional 10–20 nt

of mRNA on its 50-side, likely through eIFs (Kozak, 1977;

Lazarowitz and Robertson, 1977). These additional contacts

outside the mRNA-binding cleft could be important for ribo-

somal attachment to or scanning on mRNA. The ribosomal

position of mRNA in initiation complexes upstream of the P-

site is particularly interesting also because eukaryotes lack

the SD interaction. To gain insights into the architecture of

eukaryotic initiation complexes, we characterized in detail

the ribosomal position of mRNA and its specific interactions

with eIFs in a stable assembly intermediate, the 48S initiation

complex, and in the final assembly product, the 80S initiation

complex, by site-directed zero-length UV crosslinking using a

panel of mRNAs containing 4-thiouridines (4SU) at unique

positions from �26 to þ11 relative to the initiation codon. The

obtained data are compared with the path of mRNA on the

prokaryotic 30S subunit.

Results

Contacts of mRNA with rps and initiation factors in 48S

and 80S initiation complexes

To define the path of mRNA on the 40S subunit and to

identify specific interactions of mRNA with the components

of initiation complexes assembled by scanning-mediated in-

itiation, a panel of mRNAs was employed that contained

uridines at single unique positions from �26 to þ11 relative to

the A of the initiation codon in addition to the uridine (þ2) in

the initiation codon (Table I; Figure 1A). Initiation codons

were flanked by B30-nt-long sequences comprising multiple

CAA triplets to minimize secondary structure and increase

initiation efficiency. mRNAs were transcribed in vitro in the

presence of [a-32P]ATP and 4SU, which can be specifically

crosslinked to proteins and nucleic acids by low-energy

(360 nm) irradiation, yielding ‘zero-length’ crosslinks (Favre

et al, 1998) that represent direct contacts of the nucleotide

with 48S complex constituents. As discussed elsewhere

(Sergiev et al, 2001a, b; Yusupova et al, 2001), interactions

of mRNA with prokaryotic ribosomes revealed using this

method correlate well with the crystal structures of the

mRNA/70S ribosome complex. The presence of 4SU in the

50-UTR of an mRNA does not impair ribosomal scanning and

the efficiency of 48S complex formation (Pisarev et al, 2006).

48S complexes were assembled from 40S subunits, eIFs 1, 1A,

3, 4A, 4B, 4F and eIF2 �GTP �Met-tRNAMet
i . To form 80S

initiation complexes, reaction mixtures were supplemented

with 60S subunits, eIF5 and eIF5B. Initiation complexes were

purified by sucrose density gradient centrifugation and irra-

diated. After crosslinking, ribosomal complexes were sub-

jected to a second round of sucrose density gradient

centrifugation, because a small proportion of them dissociate

during the procedure, leading to nonspecific crosslinking of

released mRNA with mRNA-binding components of initiation

complexes (e.g. eIF3). To identify crosslinked proteins, pur-

ified initiation complexes were treated with RNases and

analysed by SDS–PAGE and two-dimensional (2D) gel elec-

trophoresis. This technique previously allowed us to identify

specific interactions in 48S complexes of the nucleotide at

position �3 of mRNA with eIF2a and rpS5 (S7p), and of the
þ4 nucleotide with rpS15 (S19p) (Pisarev et al, 2006, 2007).

The 4SU residue that was present in all mRNAs at position
þ2 in the initiation codon is base paired with the initiator

tRNA anticodon and therefore should not crosslink to other

components of initiation complexes. Consistently, no cross-

linking with eIFs or rps was observed for control mRNA that

contained 4SU only at this position (Figure 1B, lane 12),

whereas crosslinking to mRNAs containing 4SU at additional

positions yielded specific crosslinking patterns (Figures 1B

and C; summarized in Figure 1G, compared to the contacts of

mRNA path on the 40S ribosomal subunit
AV Pisarev et al
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mRNA nucleotides with ribosomal proteins in the mRNA/

Thermus thermophilus 30S subunit in Figure 1H and mapped

onto the crystal structure of the mRNA/T. thermophilus 30S

subunit complex in Figure 5). In 48S complexes, nucleotides

at positions from �17 to þ11 crosslinked to several proteins

with molecular weights ranging from B6 to B32 kDa

(Figure 1B, lanes 2–11). The low molecular weights of cross-

linked proteins and the fact that the same crosslinking pattern

for each individual position was observed in 48S (Figure 1B)

and in 80S initiation complexes (Figure 1C) indicated their

ribosomal nature. They were attributed to distinct rps by 2D

gel electrophoresis taking into consideration the ‘northwest’

shift caused by covalently bound mRNA nucleotides, whose

identity was then confirmed by mass-spectrometry sequen-

cing of tryptic peptides (Supplementary Table 1). To simplify

presentation of 2D gel analysis, we assembled 48S complexes

on mRNA that simultaneously contained 4SU at positions
�14, �8, �4, þ5 and þ11 (Figure 1D), because crosslinking to

4SU at these positions (Figure 1E) covered the whole spec-

trum of rps that crosslink to individual mRNA positions from
�26 to þ11 (see below). Therefore, instead of showing

numerous 2D gels that correspond to each individual 4SU

position, we have presented a summarizing 2D gel for cross-

linking of mRNA containing 4SU at positions �14, �8, �4, þ5

and þ11 (Figure 1F), and will discuss the crosslinking of

individual positions using one-dimensional gels (Figures 1B

and C) as illustrations.

Thus, on the A-site side of the 40S subunit, mRNA cross-

linked to rpS2 (the eukaryotic homologue of S5p), rpS3 (S3p)

and rpS15 (S19p). rpS2 and rpS3 crosslinked most strongly to

position þ11 and much less so to positions þ8–þ10

(Figure 1B, lanes 10 and 11; Figure 1C, lanes 10–13). The

crosslinking intensity of rpS2 (the upper of the two closely

migrating bands in lanes 10–13 of Figures 1C and F) was

substantially weaker than that of rpS3 (the lower of these

bands; Figure 1C, lanes 10–13; Figure 1F). rpS15 crosslinked

to position þ5 (Figure 1B, lane 9; Figure 1C, lane 8;

Figure 1F) and as previously reported, also to position þ4

(Pisarev et al, 2006). On the E-site side of the 40S subunit,

mRNA crosslinked to rpS5 (S7p), rpS14 (S11p), rpS28 and

rpS26. rpS5 crosslinked to positions from �3 to �5, with

maximal efficiency to position �3 (Figure 1B, lane 8;

Figure 1C, lanes 4–6; Figure 1F). rpS14 crosslinked to posi-

tions �6–�8, with the highest intensity to positions �6/�7

(the upper band in Figure 1C, lanes 1–3, and the upper of the

two closely migrating bands in Figure 1B, lanes 6 and 7).

rpS28 crosslinked to positions �4–�8, with the highest in-

tensity to position �6 (the lowest band in Figure 1B, lanes 6–8

and Figure 1C, lanes 1–5). rpS26 crosslinked to positions
�7–�14, with the highest intensity to positions �7–�10

(Figure 1B, lanes 2–7; Figure 1C, lanes 1 and 2). No rps

crosslinked to positions �26, �2 or þ7 (Figure 1B, lane 1;

Figure 1C, lanes 7 and 9). Figure 1F is a summarizing 2D

electrophoresis gel illustrating crosslinking in 48S complexes

of all seven rps to mRNA simultaneously containing 4SU at

positions �14, �8, �4, þ5 and þ11. Taking into account the

‘northwest’ shift of crosslinked proteins, it is clearly seen that

this mRNA crosslinks to rpS2 (through position þ11), rpS3

(through position þ11), rpS5 (through position �4), rpS15

(through position þ5), rpS14 (through position �8), rpS26

(through positions �8 and �14) and rpS28 (through positions
�4 and �8). The radioactive spot that almost co-migrated with

rpS21 (bottom left corner in both panels of Figure 1F) most

likely corresponds to crosslinked rpS28 bound to additional

undigested nucleotide(s), thus accounting for the greater shift.

UV crosslinking of 48S complexes also revealed that in

addition to the previously reported crosslinking of eIF2a to

4SU or 6SG at position �3 (Pisarev et al, 2006), mRNA on the

E-site side of the 40S subunit also interacts extensively with

eIF3, yielding a distinctive pattern of radiolabelled eIF3

subunits that crosslink to positions �8–�17 (Figure 1B,

lanes 2–6). The most intense crosslinking was between

eIF3a and 4SU at position �14 (Figure 1B, lane 3). eIF3a

also crosslinked to position �17 albeit less strongly

(Figure 1B, lane 2). eIF3d crosslinked to 4SU at positions
�8, �10, �11, �14 and �17 with very similar intensities

Table I Sequences of mRNAs used for UV crosslinking

mRNA transcript (positions of U’s) Sequences

1 �26, +2 GUAA(CAA)7CCAUGA(CAA)9CGGCC
2 �17, +2 G(CAA)3UAA(CAA)4CCAUGA(CAA)9CGGCC
3 �14, +2 G(CAA)4UAA(CAA)3CCAUGA(CAA)9CGGCC
4 �11, +2 G(CAA)5UAA(CAA)2CCAUGA(CAA)9CGGCC
5 �10, +2 G(CAA)6CUA(CAA)2CCAUGA(CAA)9CGGCC
6 �8, +2 G(CAA)6UAACAACCAUGA(CAA)9CGGCC
7 �7, +2 G(CAA)7CUACAACCAUGA(CAA)9CGGCC
8 �6, +2 G(CAA)6CAUCAACCAUGA(CAA)9CCC
9 �5, +2 G(CAA)7UAACCAUGA(CAA)9CCC

10 �4, +2 G(CAA)8CUACCAUGA(CAA)9CGGCC
11 �3, +2 A(CAA)8CAUCCAUGA(CAA)9CCC
12 �2, +2 G(CAA)8UCAUGA(CAA)9CCC
13 +2 G(CAA)3CACCAUGA(CAA)8CGGCC
14 +4, +2 ACAA)9CCAUGU(CAA)9CCC
15 +5, +2 G(CAA)3CACCAUGAU(CAA)8CGGCC
16 +6, +2 G(CAA)8CCAUGACUA(CAA)8CCC
17 +7, +2 G(CAA)8CCAUGACAU(CAA)8CCC
18 +8, +2 G(CAA)3CACCAUGACAAU(CAA)7CGGCC
19 +9, +2 G(CAA)8CCAUGACAACUA(CAA)7CCC
20 +10, +2 G(CAA)8CCAUGACAACAU(CAA)7CCC
21 +11, +2 G(CAA)3CACCAUGA(CAA)2U(CAA)6CGGCC
22 �14, �8, �4, +2, +5, +11 G(CAA)5UAACAAUAACUACCAUGAUAACAAUAA(CAA)6CGGCC

The AUG initiation codons are underlined and the positions at which 4SU residues were incorporated are bold and italicized.

mRNA path on the 40S ribosomal subunit
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Figure 1 Contacts of mRNA with ribosomal proteins and initiation factors in 48S/80S initiation complexes identified by UV crosslinking.
(A) Structure of mRNAs employed for UV crosslinking. The positions of unique uridines relative to the initiation codon are indicated by
asterisks underneath the sequence. (B, C) Crosslinking of 32P-labelled mRNAs containing 4SU at indicated positions with components of 48S
(B) and 80S (C) initiation complexes assayed by SDS–PAGE and autoradiography. Separation of lanes in (B) by white lines indicates that they
were derived from three separate gels that were run under the same conditions. The positions of molecular weight (MW) markers are shown on
the left. The crosslinked ribosomal proteins and eIF3 subunits are indicated on the right. (D) 48S complex formation on mRNA simultaneously
containing 4SU at positions �14, �8, �4, þ5 and þ11 assayed by toe printing. The positions of uridines, of the AUG codon, of full-length cDNA
and of toe prints that correspond to 48S complexes are indicated. Lanes C, T, A and G depict corresponding cDNA sequences. (E) Crosslinking
of 32P-labelled mRNAs containing 4SU at positions �14, �8, �4, þ5 and þ11 with components of 48S complexes assayed by SDS–PAGE and
autoradiography. (F) Analysis by 2D electrophoresis of ribosomal proteins crosslinked to 32P-labelled mRNAs containing 4SU at positions �14,
�8, �4, þ5 and þ11. The panel on the left shows 2D gel stained with Simply Blue Safe Stain; the panel on the right shows an autoradiograph of
the same gel. Positions corresponding to radioactive spots on the right panel are shown in red in the left panel. Red arrows indicate the
‘northwest’ shift. The positions of ribosomal proteins based on sequencing data (Supplementary Table 1) or according to Madjar et al (1979)
are indicated on the left panel. (G) A diagram summarizing the strongest contacts of ribosomal proteins and eIFs with mRNA nucleotides at
different positions in 48S/80S initiation complexes. (H) Contacts of mRNA nucleotides at different positions with ribosomal proteins on the
prokaryotic 30S subunit in the crystal structure of the mRNA/T. thermophilus 30S subunit complex (Yusupova et al, 2001).
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(Figure 1B, lanes 2–6). Crosslinking of eIF3b to positions �14,
�17 and �26 was not consistently significantly over the

background (Figure 1B, lanes 1–3; data not shown), and we

are therefore reluctant to suggest that crosslinking of eIF3b

was specific. No labelling of other eIFs by crosslinking to

mRNA was detected.

Contacts of mRNA with 18S rRNA in 48S and 80S

initiation complexes

Sites of crosslinking in 18S rRNA of 4SU at different positions

in mRNA were identified in two stages. First, the approximate

region of crosslinking was determined by RNase H mapping

(Dontsova et al, 1992). For this, 18S rRNA was extracted from

irradiated 48S/80S initiation complexes, hybridized with

DNA oligonucleotides complementary to different regions,

incubated with RNase H and resolved by gel electrophoresis.

Attribution of 32P-labelled UV crosslinked fragments of 18S

rRNA took into account their reduced mobility due to the

covalently linked B70-nt-long mRNA. In the second stage,

the exact crosslinked nucleotide in 18S rRNA was identified

by primer extension inhibition using a primer chosen on the

basis of RNase H mapping. The positions of crosslinked

nucleotides in rabbit 18S rRNA are shown in Figure 3A,

summarized in Figure 3B and mapped onto the crystal

structure of the mRNA/T. thermophilus 30S subunit complex

in Figure 6.

As in the case of rps, crosslinking of individual mRNA

positions to 18S rRNA was identical in 48S and 80S initiation

complexes. Therefore to simplify presentation, only gels

that represent crosslinking in 48S complexes are shown

(Figure 2). 4SU at position �17 crosslinked to nts 1085–1113

of 18S rRNA (Figure 2A, lane 3). Primer extension analysis

identified the crosslinked nucleotide as U1107 of h26

(Figure 2B, lane 1). The control experiment (Figure 2B, lane

2) was done using 48S complexes assembled on mRNA

containing 4SU only at position þ2 in the initiation codon.

Position �14 also crosslinked to nts 1085–1113 (data not

shown) but so weakly that precise identification of the cross-

linking site by primer extension was impossible, suggesting

that position �14 mainly interacts with eIF3a (Figure 1B, lane

3). Positions �11–�8 crosslinked to the 30-terminal nts 1857–

1863 of 18S rRNA (Figures 2C and D; data not shown). No

substantial crosslinking with 18S rRNA was detected

for position �7 (data not shown). Position �4 crosslinked

to overlapping regions corresponding to nts 912–972 and

947–1052 (Figure 2E, lanes 2 and 3), suggesting that the

crosslinking site lay within 26 nt between nts 947–972 of the

apical part of h23, but the intensity of crosslinking was too

low for unambiguous identification of the exact crosslinking

site. Positions þ7 and þ8 crosslinked to nts 1676–1699

(Figure 2F, lanes 2 and 3); primer extension identified the

crosslinked nucleotides as CUUUGUA1684�1690 and A1692 of

h28 (Figure 2G, lanes 3 and 4). Crosslinking to CU1684�1685

was most efficient. Very weak crosslinking to these positions

was also observed for the flanking þ6 and þ9 positions

(Figure 2F, lanes 1 and 4; Figure 2G, lanes 2 and 5). Medium

intensity crosslinking occurred between positions þ8/þ9 and

C1484 of h34 (Figure 2G, lanes 2 and 3). 4SU at þ9–þ11

positions crosslinked to nts 489–662 (Figure 2H, lanes 2–4),

and primer extension analysis identified the crosslinked

nucleotides as U617 and A619 of h18 (Figure 2I, lanes 3–5).

Position þ10 crosslinked more efficiently than at positions

þ9 and þ11, and crosslinking of A619 was more intense than

that of U617.(Figures 3A and B)

In conclusion, these results indicate that on the E-site side

of the 40S subunit, mRNA is close to h26, the seven 30-

proximal nucleotides and the apical region of h23, whereas

on the A-site side of the 40S subunit, mRNA contacts nucleo-

tides in h28, h34 and h18, and as previously reported, in the

base of h44 (Pisarev et al, 2006).

Interactions of eIF3 with the 40S subunit

The crosslinking pattern of eIF3 subunits with mRNA posi-

tions �8–�17 suggests that eIF3d and eIF3a likely interact

with elements of the 40S subunit that form the mRNA-

binding channel. To gain additional insights into the riboso-

mal position of eIF3, we used the complementary approaches

of chemical/enzymatic footprinting and directed hydroxyl

radical cleavage of 18S rRNA in 40S/eIF3 complexes. eIF3

binds stably to 40S subunits in the presence of poly(U)

(Kolupaeva et al, 2005). Assembled eIF3/poly(U)/40S sub-

unit complexes were separated from unincorporated compo-

nents by sucrose density gradient centrifugation and

subjected to limited digestion with RNase T1 (which cleaves

RNA after unpaired G residues) or RNase V1 (which cleaves

double-stranded RNA without base specificity), or treated

with N-cyclohexyl-N0-(2-morpholinoethyl)-carbodiimide

methyl-p-toluene sulphonate (CMCT), which modifies un-

paired uracil and to a lesser extent guanine residues.

Consistent with eIF3’s binding to the protein-rich solvent

side of the 40S subunit (Siridechadilok et al, 2005), eIF3

protected very few sites in 18S rRNA from enzymatic clea-

vage. The strongest protection was in h16. Thus, eIF3 pro-

tected G537 from RNase T1 cleavage (Figure 4A, lanes 1 and 2;

Figure 4D) and the nearby C539 from RNase V1 cleavage

(Figure 4B, lanes 2 and 3; Figure 4D). Protection at the same

sites was observed in 43S complexes that contained 40S

subunits, eIF3 and eIF2 ternary complex (data not shown).

Interestingly, eIF3 did not protect UUU530�532 in the apical

loop of h16 (Figure 4A, lanes 3 and 4), which suggests that

eIF3 either interacts with the stem but not the apical loop of

h16, or that it does not directly interact with h16 but binds

closely enough to block access of RNases but not of the

smaller CMCT molecule. However, it is also possible that

protection from enzymatic cleavage resulted from conforma-

tional changes in 40S subunits induced by factor binding

rather than from direct interaction between h16 and eIF3.

The footprinting approach was complemented by directed

hydroxyl radical probing (Culver and Noller, 2000; Lomakin

et al, 2003; Unbehaun et al, 2007), in which locally generated

hydroxyl radicals cleave 18S rRNA in the vicinity of Fe(II)

tethered to cysteine residues on the surface of eIF3 through

the linker 1-(p-bromoacetamidobenzyl)-EDTA (BABE).

Native eIF3 contains 65 cysteine residues, some of which

might be surface-exposed and could therefore be conjugated

with Fe(II)–BABE. Derivatization of eIF3 did not affect its

activity in 48S complex formation (data not shown), and

cleavage of 18S rRNA was therefore analysed in 40S/[Fe(II)–

BABE]–eIF3/poly(U) and 43S complexes. Medium intensity

cleavage occurred at GC537�538 of h16 (Figure 4C, lanes 1 and

2; Figure 4D; data not shown). This site coincides with sites

of protection by eIF3 from RNase digestion (Figures 4A and

B). Although protection from enzymatic cleavage could the-

oretically be the result of conformational changes in rRNA
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induced by factor binding, the fact that h16 was also cleaved

by hydroxyl radicals strongly suggests that eIF3 is located at

least near this region of the 40S subunit.

Discussion

The results of UV crosslinking experiments presented here

and elsewhere (Pisarev et al, 2006) have revealed striking

parallels between the path of mRNA in eukaryotic initiation

complexes and on the prokaryotic ribosome, as well as

differences, some of which likely reflect unique aspects of

eukaryotic initiation. We will compare the data obtained in

the present study with the crystallographically visualized

mRNA path on the T. thermophilus ribosome containing P-

and E-site tRNAs (Yusupova et al, 2001, 2006; Figures 5 and

6), and with previously reported crosslinking data for pro-

karyotic 70S ribosomal complexes obtained using the same

zero-length crosslinking technique as employed here and for

eukaryotic 80S ribosomal complexes phased by cognate tRNA

obtained using mid-range nucleotide derivatives.
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Figure 2 Contacts of mRNA with 18S rRNA in 48S complexes identified by UV crosslinking. (A, C–F, H) RNase H digestion of 18S rRNA
crosslinked to 32P-labelled mRNAs containing 4SU at indicated positions in 48S complexes. 18S rRNA was digested with RNase H and DNA
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Ribosomal position and contacts of mRNA downstream

of the P-site

Efficient UV crosslinking of mRNA at position þ11 to rpS2

and rpS3 (homologues of S5p and S3p, respectively) indicates

that mRNA enters the mRNA-binding channel of eukaryotic

ribosomes through the same layer of proteins as in prokar-

yotic ribosomes.

UV crosslinking of positions þ9–þ11 to h18 (U617 and

A619) and of þ8/þ9 to h34 (C1484) was consistent with the

proximity of this region to the 530 loop of h18 and to U1196 of
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with eIF3. The positions of residues protected by eIF3 from RNase digestion or modified by CMCTare shown on the right. Lanes C, T, A and G
depict the sequence of mouse 18S rRNA. (C) Hydroxyl radical cleavage of 18S rRNA from Fe(II) tethered to cysteines on the surface of native
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h34 in the T. thermophilus ribosome (Yusupova et al, 2001)

and was directly analogous to UV crosslinking of positions
þ11/þ12 to h18 (G530, A532) and of positions þ8/þ9 to h34

(A1196) in the Escherichia coli ribosome (Dontsova et al, 1992;

Sergiev et al, 1997). This consonance suggests that mRNA

nucleotides at positions þ8–þ11 are located very similarly

with respect to the elements of h18 and h34 in prokaryotic

ribosomes and in eukaryotic initiation complexes.

In eukaryotic initiation complexes, mRNA positions
þ7/þ8, and particularly þ7, also crosslinked efficiently to

an extensive region of h28 (nts 1684–1690 and nt 1692) with

the maximum at CU1684�1685. However, in prokaryotes, posi-

tion þ7 is close only to the equivalent of nt 1689 in the T.

thermophilus ribosome (Yusupova et al, 2001) and consis-

tently, crosslinked to the equivalent of nt 1691 in the E. coli

ribosome (Dontsova et al, 1992), whereas 16S rRNA nucleo-

tides equivalent to CU1684�1685 of 18S rRNA and mRNA

position þ7 are too far apart to be crosslinked efficiently

(Yusupova et al, 2001). Interestingly, G926 of 16S rRNA (the

equivalent of G1203, located on the upper strand of h28

opposite CU1684�1685; Figure 3A) is positioned to interact

with the phosphate of the þ1 nt of the P-site codon in the

T. thermophilus ribosome (Yusupova et al, 2001). It has

therefore been suggested that interaction with G926 of the

30-tail of 16S rRNA, which results in mRNA mimicry (Carter

et al, 2000), might be important for induction of the active

conformation of the 30S subunit’s P-site responsible for

mRNA-independent recruitment of initiator tRNA (Yusupova
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et al, 2001). The observed crosslinking of mRNA positions
þ7/þ8 to CU1684�1685 in eukaryotic initiation complexes

suggests that G1203 would be too distant to interact with the
þ1 nt of the P-site codon. Importantly, crosslinking between

positions þ7–þ8 and h28 was no longer observed in eukar-

yotic 80S complexes that had undergone 2–3 elongation

events (Pisarev et al, in preparation), which indicates that

in elongation complexes, G1203 might be able to interact with

the þ1 nt of the P-site codon. In fact, crosslinking of the þ1 nt

to the equivalent of rabbit G1203 was observed in phased

human 80S ribosomal complexes (Demeshkina et al, 2000,

2003). The possibility that ribosomal contacts of the mRNA

P-site codon differ between initiation and elongation com-

plexes might reflect the specific needs of the eukaryotic

initiation codon selection mechanism. Crystallographic stu-

dies suggest that the absence of E-site tRNA induces changes

in the 30S subunit that include increased conformational

flexibility of h28 (Jenner et al, 2005). The lack of E-site

tRNA in 48S/80S initiation complexes characterized here

might thus account for the observed difference. However,

although the presence/absence of E-site tRNA seems to be a

likely explanation, it cannot be ruled out that the presence of

eIFs in 48S initiation complexes might also influence the

conformation of 40S subunits, changing the position of h28

compared to its position in elongating ribosomes, and that

such a change could even be preserved in 80S initiation

complexes. Thus, it has recently been reported that binding

of eIF1 and eIF1A to yeast 40S subunits induces opening of

the entry channel ‘latch’ formed between h18 in the body and

h34 and rpS3 in the neck, and establishment of a new

connection between the head and the body likely mediated

by h16 and rpS3 that also results in a slightly different

conformation of the beak (Passmore et al, 2007).

The previously reported crosslinking of mRNA at position
þ4 in the A site codon to C1696 and AA1818�1819 in h44 of 18S

rRNA (Demeshkina et al, 2000; Graifer et al, 2004; Pisarev

et al, 2006) is also consistent with the proximity of this

mRNA position to the equivalent region of 16S rRNA in

T. thermophilus ribosomes (Yusupova et al, 2001) and with

UV crosslinking of position þ4 to the equivalent of C1698 in E.

coli ribosomes (Rinke-Appel et al, 1993). We have suggested

that interaction of the þ4 nucleotide with AA1818�1819 likely

accounts for the þ4 nucleotide context rule (Pisarev et al,

2006). Although S12p lies directly under the þ5/þ6 positions

of mRNA (Yusupova et al, 2001) and its eukaryotic homo-

logue rpS23 has a similar location (Spahn et al, 2001a), and

although mutations in both S12p and rpS23 affect transla-

tional fidelity (Alksne et al, 1993; Anthony and Liebman,

1995; Synetos et al, 1996), neither protein crosslinks to

mRNA at this position. However, in contrast to prokaryotic

ribosomal complexes, in 48S/80S initiation complexes,

mRNA at positions þ4/þ5 crosslinked efficiently to rpS15,

a homologue of S19p (this study; Pisarev et al, 2006). S19p is

located in the head of the 30S subunit with its C-terminal tail

pointing towards the interface side but not reaching the A-site

codon (Wimberly et al, 2000). The fact that analogous cross-

linking of positions þ4–þ6 to rpS15 was also observed in 80S

complexes phased by cognate P-site tRNA (Graifer et al, 2004;

Bulygin et al, 2005) suggests that crosslinking of rpS15 in

initiation complexes might not be the result solely of initia-

tion-specific conformational changes in 40S subunits

(Passmore et al, 2007), but is likely due to N- or C-terminal

extensions in rpS15 relative to S19p, whose functional sig-

nificance is presently unknown.

Taken together, our crosslinking results indicate that the

overall ribosomal position of the mRNA downstream of the

P-site codon in eukaryotic 48S/80S initiation complexes

is similar to that of mRNA in prokaryotic 70S ribosomes.

Differences include the close proximity of mRNA positions
þ7/þ8 to the central portion of the lower strand of h28 and

of positions þ4/þ5 to rpS15.

Ribosomal position and contacts of mRNA upstream

of the P-site

The position of mRNA in eukaryotic initiation complexes

upstream of the P-site is particularly interesting because

eukaryotes lack the SD interaction. In eukaryotic 48S/80S

initiation complexes, mRNA positions �3/�4 and �6/�7

crosslinked efficiently to rpS5 (the homologue of S7p) and

rpS14 (the homologue of S11p), respectively, and position �4

also crosslinked to the apex of h23b (equivalent to the 690

loop of 16S rRNA). These results are consistent with the

proximity of this region of mRNA to S7p, S11p and the 690

loop of h23 in T. thermophilus ribosomal complexes

(Yusupova et al, 2001) and with crosslinking of positions
�2/�3 to the equivalent of rabbit G957 in the apex loop of

H23b in phased human 80S ribosomal complexes

(Demeshkina et al, 2000, 2003). Some of the other mRNA

interactions on the E-site side of the 40S subunit are also

comparable to interactions in prokaryotes. Thus, �8–�11

mRNA residues crosslinked to the 30-terminal nts 1857–

1863 of 18S rRNA, indicating that they occupy a position in

eukaryotic initiation complexes analogous to the mRNA and

rRNA elements of the SD duplex in prokaryotic initiation

complexes despite the lack of base-pairing potential

(Yusupova et al, 2001).

However, other upstream interactions are unique to eukar-

yotes. Thus, in 48S initiation complexes, mRNA position �3

also specifically interacts with eIF2a (Pisarev et al, 2006),

suggesting that in contrast to prokaryotic initiation com-

plexes, the E-site in eukaryotic 48S complexes is partially

occupied by an initiation factor, eIF2. This interaction is

important for 48S complex formation in the presence of

eIF1, and accounts for the �3 nucleotide context rule

(Pisarev et al, 2006). Positions �6 and �7/�10 also efficiently

crosslinked to eukaryote-specific rpS28 and rpS26, respec-

tively. Crosslinking of S26 to positions �4–�9 was previously

observed in phased human 80S ribosomal complexes with

RNAs containing mid-range nucleotide derivatives (Graifer

et al, 2004). The identification of rpS26 and rpS28 in contact

with mRNA in the immediate vicinity of rpS14 is consistent

with observations from cryo-EM analysis of yeast 40S sub-

units that additional protein density at the top of the platform

surrounds rpS14, leading to a stronger contact of the platform

with rpS5 in the head of the 40S subunit, which constitutes

part of the mRNA exit channel (Spahn et al, 2001a).

Moreover, UV crosslinking revealed specific interactions

between mRNA and two subunits of eIF3 in 48S complexes:

the most intense crosslinking occurred between eIF3a and

mRNA position �14, whereas eIF3d crosslinked to positions
�8–�17 with similar medium intensities. These data are

consistent with previous reports that eIF3 can be crosslinked

to b-globin mRNA in 48S complexes, that its 3d subunit is

close to 18S rRNA and that binding of eIF3 to the 40S subunit
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can be stabilized by mRNA (Nygård and Westermann, 1982;

Westermann and Nygård, 1984; Unbehaun et al, 2004;

Kolupaeva et al, 2005). They also suggest that eIF3d con-

tributes to formation of the mRNA-binding channel on the

40S subunit itself (as positions �8–�10 crosslink simulta-

neously to eIF3d and rps), and that eIF3a likely forms a

direct extension of it, which together might contribute to the

processivity of scanning and stabilize 48S complexes after

hydrolysis of eIF2-bound GTP but prior to subunit joining

(Unbehaun et al, 2004). Interaction between mRNA and eIF3

in 48S complexes most likely also accounts for observations

that whereas eukaryotic 80S initiation complexes protect

B30 nt flanking the initiation codon from RNAse cleavage,

48S complexes protect an additional 10–18 upstream nucleo-

tides (e.g. Kozak, 1977; Lazarowitz and Robertson, 1977).

The suggested eIF3/mRNA interaction upstream of the E-site

is in good agreement with models derived from cryo-EM

reconstructions that located the five-lobed eIF3 on the solvent

side of the 40S subunit, with its left arm pointing towards the

E-site (Siridechadilok et al, 2005). Our crosslinking data

therefore suggest that eIF3d and eIF3a likely contribute to

formation of the left arm of eIF3. The specificity of eIF3/

mRNA crosslinking is also consistent with the finding that the

N-terminal domain of eIF3a interacts with RPS0, placing it in

the vicinity of the mRNA exit channel on the solvent side of

the 40S subunit (Valásek et al, 2003), and with the cross-

linking reported here of mRNA position �17 to U1107 in the

eukaryote-specific expansion segment ES7 of h26 on the back

of the platform (Spahn et al, 2001a).

Enzymatic footprinting and hydroxyl radical cleavage ex-

periments indicate that eIF3 protects G537 and C539 in h16

from RNase T1 and RNase V1 digestion, respectively, and

that it also induces cleavage by hydroxyl radicals at

GC537�538. Although hydroxyl radical cleavage indicates

that eIF3 is indeed located in the vicinity of h16, it is not

possible to conclude unambiguously whether protection from

RNase cleavage is caused by direct contact of eIF3 with h16 or

if it results from conformational changes in the 40S subunit

caused by eIF3 binding. Moreover, whereas the eIF3/40S

model derived from cryo-EM reconstructions does not sug-

gest that eIF3 interacts with the shoulder (Siridechadilok

et al, 2005), according to another report, the C-terminal

domain of yeast eIF3a (TIF32) can specifically bind to a

fragment of 18S rRNA encompassing h16–h18 (Valásek

et al, 2003). In contrast to bacterial 30S subunits, in which

h16 is folded towards h18, h16 in eukaryotic 40S subunits is

rotated towards the back of the 40S subunit and points into

the solvent (Spahn et al, 2001a, b; Passmore et al, 2007).

Binding of eIF1/eIF1A, the HCV IRES and the CrPV IRES to

the 40S subunit all result in opening of the entry ‘latch’

between h18 in the body and h34/rpS5 in the neck and

concomitant establishment of a new connection between

h16 and rpS3, which suggests that these ribosomal conforma-

tional changes constitute general changes that occur during

initiation (Spahn et al, 2001b, 2004; Passmore et al, 2007). It

is therefore likely that binding of eIF3 to 40S subunits could

also result in similar changes, which might account for

protection of h16 from RNase digestion.

Taken together, our crosslinking results indicate that the

overall ribosomal position of mRNA upstream of the P-site

codon in eukaryotic 48S/80S initiation complexes is similar

to that of mRNA in prokaryotic 70S ribosomes. Differences in

mRNA contacts include interactions of eukaryotic mRNA

with eIF2 in the E-site, with eukaryote-specific rpS26 and

rpS28 on the platform and with eIF3 on the back of the

platform. The interaction of mRNA at position �3 with eIF2a
is essential for correct initiation codon selection (Pisarev

et al, 2006). Although it is very likely that other eukaryote-

specific contacts of mRNA with 40S subunit and eIF3 that we

detected in 48S complexes are employed to accommodate the

eukaryote-specific initiation stages of ribosomal attachment

to and scanning on mRNA, we cannot exclude that the

contacts between mRNA and initiation complex constituents

during attachment and scanning might differ slightly from

those in the assembled 48S complexes that are reported here.

We did not detect any crosslinking of mRNA with eIFs 4A/4B/

4F. Although it is possible that these factors had dissociated

from initiation complexes during sucrose density gradient

purification, it cannot be strictly excluded that they instead

interact with mRNA regions outside those investigated here

or that their interactions with mRNA differ during initial

attachment of 43S complexes, scanning and formation of

48S complexes.

Materials and methods

UV crosslinking experiments
48S/80S initiation complexes were assembled and purified by
sucrose density gradient centrifugation essentially as described
(Pisarev et al, 2006). Thus, to form 48S complexes, 100 ng of 32P-
labelled 4-thioU-containing mRNAs were incubated with 8 pmol
40S subunits, 10 pmol Met-tRNAi

Met, 5mg eIF2, 15mg eIF3, 2.5mg
eIF4A, 0.5 mg eIF4B, 2.5mg eIF4F, 0.2mg eIF1A, 0.2 mg eIF1 in 100 ml
buffer A (20 mM Tris pH 7.5, 100 mM KAc, 2 mM DTT, 2.5 mM
MgAc2, 0.25 mM spermidine) supplemented with 1 mM ATP and
0.4 mM GTP for 10 min at 371C. To obtain 80S initiation complexes,
48S complexes were further incubated with 10 pmol 60S subunits,
5 mg eIF5 and 5mg eIF5B for 10 min at 371C. Assembled ribosomal
complexes were purified by centrifugation through 10–30% sucrose
density gradients prepared in buffer A in a Beckman SW55 rotor at
53 000 r.p.m. for 75 min. The presence of [32P]mRNA in gradient
fractions was monitored by Cherenkov counting. Equal amounts of
counts (B200 000 c.p.m.) of peak fractions were irradiated at
360 nm for 30 min on ice using a UV-Stratalinker (Stratagene).
After UV irradiation, 48S complexes were subjected to a second
round of sucrose density gradient centrifugation.

To analyse crosslinked proteins by one-dimensional electrophor-
esis, crosslinked ribosomal fractions were treated with RNase A and
subjected to electrophoresis in NuPAGE 4–12% Bis-Tris-Gel
(Invitrogen) followed by autoradiography. UV crosslinked rps were
further identified by acidic-SDS 2D gel electrophoresis exactly as
described (Madjar et al, 1979; Pisarev et al, 2006). The identity of
rps was confirmed by LC-nanospray tandem mass spectrometry of
peptides derived by in-gel tryptic digestion at an in-house facility.

Identification of crosslinked nucleotides in 18S rRNA was done
exactly as described (Pisarev et al, 2006). Regions of 18S rRNA
crosslinked to 32P-labelled mRNA were first identified by RNase H
digestion of 18S rRNA hybridized with a panel of B20-mer DNA
oligonucleotides complementary to different regions of 18S rRNA
using a previously described strategy (Dontsova et al, 1992). 18S
rRNA fragments were separated by electrophoresis in 12%
denaturing gel. Crosslinked fragments were attributed to corre-
sponding regions of 18S rRNA taking into account the reduced
mobility of crosslinked rRNA fragments due to the covalently bound
mRNA. Precise identification of crosslinked nucleotides in 18S
rRNA was done by primer extension inhibition using AMV RT and
primers chosen on the basis of RNase H digestion.

Chemical and enzymatic footprinting analysis of eIF3/40S
subunit complexes
Binary eIF3/40S complexes were assembled by incubating 30 pmol
40S subunits, 50 pmol eIF3, 3mg poly(U) RNA in 100 ml buffer A for
10 min at 371C (Kolupaeva et al, 2005), purified by sucrose density

mRNA path on the 40S ribosomal subunit
AV Pisarev et al

&2008 European Molecular Biology Organization The EMBO Journal VOL 27 | NO 11 | 2008 1619



gradient centrifugation and then either enzymatically digested by
incubation with RNase V1 (final concentration 0.9 U/ml) for 15 min
at 371C or with RNase T1 (final concentration 0.5 U/ml) for 11 min
at 371C or modified by incubation with CMCT. Cleavage/modifica-
tion sites in 18S rRNA were identified by primer extension using
AMV-RT.

Directed hydroxyl radical cleavage of 18S rRNA
in [Fe(II)–BABE]–eIF3/40S subunit complexes
eIF3 was derivatized with Fe(II)–BABE as described (Culver and
Noller, 2000; Lomakin et al, 2003) by incubating 300 pmol eIF3 with
1 mM Fe(II)–BABE in buffer B (80 mM HEPES pH 7.5, 100 mM KCl,
5% glycerol, 2.5 mM MgCl2) for 20 min at 371C. Fe(II)–BABE-
derivatized eIF3 was separated from unincorporated Fe(II)–BABE
on YM-30 microcons.

Binary [Fe(II)–BABE]–eIF3/40S subunit complexes were as-
sembled by incubating 40 pmol 40S subunits and 50 pmol Fe(II)–
BABE-derivatized eIF3 with 5 mg poly(U) RNA for 10 min at 371C in
200 ml in buffer B. Complexes were isolated by centrifugation in a
Beckman SW55 rotor for 2 h at 41C and 42 000 r.p.m. in 10–30%
linear sucrose density gradients in buffer B adjusted to 4 mM MgCl2.

Gradient fractions that contained 40S subunits were analysed for
the presence of eIF3 by SDS–PAGE and Coomassie staining
(Kolupaeva et al, 2005) and used for directed hydroxyl radical
probing. To generate hydroxyl radicals, the reaction mixture was
supplemented with 0.025% H2O2 and 5 mM ascorbic acid and
incubated on ice for 10 min. Reactions were quenched by addition of
10 mM thiourea. 18S rRNA was analysed by primer extension.

Construction of plasmids and methods for purification of
translation components are described in Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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