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Abstract: Nanoparticles of ~10 nm in diameter made with chitosan or lactic acid-grafted 

chitosan were developed for high drug loading and prolonged drug release. A drug encapsulation 

efficiency of 92% and a release rate of 28% from chitosan nanoparticles over a 4-week period 

were demonstrated with bovine serum protein. To further increase drug encapsulation, prolong 

drug release, and increase chitosan solubility in solution of neutral pH, chitosan was modified 

with lactic acid by grafting D,L-lactic acid onto amino groups in chitosan without using a catalyst. 

The lactic acid-grafted chitosan nanoparticles demonstrated a drug encapsulation efficiency of 

96% and a protein release rate of 15% over 4 weeks. With increased protein concentration, the 

drug encapsulation efficiency decreased and drug release rate increased. Unlike chitosan, which 

is generally soluble only in acid solution, the chitosan modified with lactic acid can be prepared 

from solutions of neutral pH, offering an additional advantage of allowing proteins or drugs to 

be uniformly incorporated in the matrix structure with minimal or no denaturization.
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Introduction
A number of polymeric nanoparticles have been synthesized and studied in the past 

few years as promising drug delivery systems to improve delivery efficiency and 

reduce side-effects of drug toxicity (Uhrich et al 1999; Ranney 2000; Soppimath et al 

2001). Nanoscale drug systems can circumvent the rapid recognition by the immune 

system and deliver drugs to cells with high efficiency compared with microparticle-

based system (LaVan et al 2003). Among those investigated, chitosan-based materials 

have drawn considerable attention in view of chitosan’s excellent biocompatibility, 

biodegradability, and reactive surface functional groups for easy surface modification 

(Dodane and Vilivadam 1998; Paul and Sharma. 2000; Janes et al 2001; Drury and 

Mooney 2003). The positively charged amino groups of chitosan tend to adhere to the 

negatively charged cell surfaces, facilitating the penetration of chitosan nanoparticles 

across the cell membrane (Artursson et al 1994; Borchard et al 1996; Janes et al 

2001). 

Chitosan–drug nanoparticles have been prepared by a number of methods as 

reviewed by Janes et al (2001). 5-fluorouracil drug was incorporated in chitosan 

nanoparticles by chemical crosslinking with glutaraldehyde, targeted at anticancer 

drug delivery (Ohya et al 1994). Alternative methods were sought after the discovery 

of the negative effect of glutaraldehyde crosslinking on cell viability and the degraded 

integrity of the incorporated drug. Bodmeier et al (1989) and Calvo et al (1997) used 

an ionic gelation method to prepare chitosan particles with sizes ranging from micron 

to submicron. In this method, an anionic cross-linking agent, sodium tripolyphosphate 

(TPP), was introduced into an aqueous solution of chitosan in acetic acid (Calvo et al 

1997; Majeti 2000; Janes et al 2001; Kumar et al 2004; Zhang et al 2004). The major 
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advantage of this method is the ease in manipulation of 

particle size by changing pH values. Berthold et al (1996), 

Calvo et al (1997), and Janes et al (2001) synthesized chitosan 

nanoparticles using desolvating agents (eg, sodium sulfate) 

through the interaction of chitosan with sulfate. Though 

many advances have been made on the synthesis of chitosan 

nanoparticles and their use in short-term (eg, weeks) drug 

delivery (Calvo et al 1997; Janes and Alonso 2003; Xu and 

Du 2003; Zhang et al 2004), long-term (eg, months) drug 

release by nanoparticles remains a major challenge.

In the present study, chitosan-based nanoparticles with 

a high degree of size uniformity were prepared by grafting 

D,L-lactic acid on chitosan to serve as a drug carrier for 

prolonged drug release. The lactic acid-grafted chitosan 

(LA-g-chitosan) was prepared by dehydrating the solvent 

cast thin film of chitosan containing lactic acids. The LA-g-

chitosan nanoparticles were fabricated via a co-precipitation 

process by LA-g-chitosan in ammonium hydroxide to 

form coacervate drops. The structure of nanoparticles was 

investigated by transmission electron microscopy (TEM). 

The chemical structure and bonding were studied by nuclear 

magnetic resonance (NMR) and Fourier transformed infrared 

(FTIR) spectroscopy. Bovine serum albumin (BSA) was 

used as a model protein to examine the drug absorption and 

release characteristics of both chitosan and LA-g-chitosan 

nanoparticles in phosphate buffer saline (PBS) at pH 7.4. 

Experimental procedure
Materials
Chitosan from crab shells with 88% of deacetylation (weight 

average molar mass MW 190 kDa and Brookfield viscosity 

200–800 cps in 1% solution with 1% acetic acid), BSA 

(MW 68 kDa), and D,L-lactic acid (90% aqueous solution) 

were purchased from Sigma-Aldrich (St Louis, MO, USA). 

Coomassie Blue G 250 was purchased from Bio-Rad 

Laboratories (Hercules, CA, USA). 

Preparation of la-g-chitosan 
copolymer
To prepare LA-g-chitosan copolymer, chitosan powder was 

first mixed with an aqueous solution of lactic acid, and the 

mixture was stirred overnight using a magnet stirrer to create 

a final solution at a chitosan concentration of 2 wt.%. The 

solution was placed in polystyrene petri dishes and maintained 

at 70°C for 5 hours for film formation. The as-produced film 

(~0.08 mm in thickness) was heated at 80–90°C under high 

vacuum for 5 hours, and the grafted copolymer was formed 

as a result of the dehydration of the chitosan lactate salts 

and the formation of the corresponding amide linkages. The 

unreacted lactic acid and oligo(lactic acid) (OLLA) were 

removed from the grafted chitosan polymer using a Soxhlet 

apparatus by washing with chloroform and methanol solvents 

for 48 hours each.

characterization of la-g-chitosan 
copolymer
NMR spectroscopy and polarized Fourier transformed 

infrared (FTIR) spectroscopy were used to characterize 

the chemical structure and bonding characteristics of LA-

g-chitosan copolymer, respectively. For NMR, samples of 

10–20 mg each were prepared by dissolving LA-g-chitosan in 

0.7 mL of D2O containing 0.5 M DCl/D2O. 1H-NMR spectra 

were acquired with a Bruker AV-301 spectrometer.

For FTIR spectroscopy, a dried 5-mg sample was mixed 

with 300 mg dry KBr and pressed into a pellet using a macro 

KBr die kit. The solid pellet was placed in a magnetic holder 

and the system was purged with air before testing. FTIR 

spectra of 200 scans at 4 cm–1 resolution were acquired using 

a Nicolet 5DX spectrometer equipped with a deuterated 

triglycine sulfate (DTGS) detector and a solid transmission 

sample compartment. Spectrum analysis and display were 

performed using standard Nicolet and Microcal Origin 

software.

The ninhydrin assay was used to determine the percentile 

decrease of free amino groups in LA-g-chitosan versus pure 

chitosan, which was defined as the percentage of free amino 

groups in chitosan that had reacted with lactic acid. Both 

0.1 mg/mL solutions of chitosan and LA-g-chitosan were 

prepared in a mixture of CH3COOH (3% w/v) and HCl (1% 

w/v) under constant stirring at 20°C for 24 hours. Acetate 

buffer (0.5 mL, 4 M, pH 5.5) was then added to the resulting 

polymer solutions (0.1–0.5 mL, corresponding to 10–50 µg 

of chitosan or LA-g-chitosan). All the sample solutions 

were prepared in 5-mL glass tubes capped with a rubber 

septum. Ninhydrin reagent (2 mL, Sigma) was added to the 

sample solutions prepared above, and the tubes containing 

solution mixtures were maintained in a boiling water bath 

for 30 minutes. The solutions were then cooled down to 

room temperature, and UV absorbance of the solutions 

was acquired at 570 nm. A standard absorbance curve was 

generated using D-glucosamine (Sigma) solutions (100% 

free amino groups).
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Preparation of chitosan and  
la-g-chitosan nanoparticles
Chitosan nanoparticles were prepared by dissolving chitosan 

powder in 0.2 M acetic acid to produce a 2 wt.% solution, 

followed by addition of the solution in ammonium hydroxide 

solution at pH 8.5–9.0. A constant solution flow rate of 

0.1 mL/min was maintained using a mini-pump. As the acetic 

chitosan solution was introduced into the basic solution, the 

opalescent suspension was formed under vigorous magnetic 

stirring at room temperature. The particles were separated 

from the solution by centrifugation. After separation, the 

particles were washed with deionized water until a pH of 

7.4 was reached. LA-g-chitosan nanoparticles were prepared 

by dissolving LA-g-chitosan film in 0.2 M acetic solution 

and then following the same procedure as for chitosan 

nanoparticles.

Bsa absorption on nanoparticles
BSA absorption on nanoparticles was carried out in PBS at 

pH 7.4 at room temperature. 200 mg of nanoparticles were 

dispersed in 6 mL of PBS solution under sonication, and BSA 

was added at varying concentrations of 0, 1.0, 2.0, 3.0, 4.0, 

or 5.0 mg/mL. The nanoparticle suspension was then left 

for 24 hours in a rotating agitator. After protein adsorption, 

the nanoparticles were separated by centrifugation, and the 

amount of free protein in the supernatant was measured. The 

supernatant in 96-well plates was analyzed using a modified 

Coomassie blue protein assay and by UV spectroscopy at 

590 nm. A calibration curve was generated at each time 

interval using nanoparticles without BSA loaded to correct for 

the intrinsic absorbance of chitosan. The BSA encapsulation 

efficiency (AE) of the process was calculated as follows:

T
AE = 

(T – F)
 × 10

where T is the total amount of BSA added in PBS and F is the 

amount of free BSA left in supernatant after the nanoparticles 

were removed from the solution. For each BSA concentration, 

the samples were examined in triplicate, and results were 

presented as mean value ± standard deviation.

Morphology and structure 
characterization of nanoparticles
The morphology and size distribution of nanoparticles were 

examined by TEM (CM 100 TEM) at an accelerating voltage 

of 40 kV. Samples were prepared by depositing a drop of 

chitosan nanoparticle suspension on a copper grid fitted with 

a carbon support film and dried under vacuum.  

in vitro release of Bsa from 
nanoparticles
BSA loaded nanoparticles were placed in a test tube 

containing 6 mL of PBS at pH 7.4 and incubated at 37°C 

for 24 hours. At specified time intervals, 1 mL out of 6 mL 

solution was removed to a siliconized 1.5-mL microcentrifuge 

tube, and the medium in the test tube was replenished with 

1 mL of fresh PBS. The amount of BSA released from the 

nanoparticles was evaluated by the modified Coomassie blue 

protein assay method as noted above. All release tests were 

run in triplicate, and the results were reported as mean value 

± standard deviation.

Results and discussion
characterization of la-g-chitosan 
polymer
Two types of LA-g-chitosan copolymer films were obtained 

depending on the amount of lactic acid used. Copolymer films 

obtained with a lactic acid/chitosan mole ratio lower than 1.5 

(Table 1) were transparent and readily soluble in solutions 

with pH up to 7.5, while those with a lactic acid/chitosan 

ratio higher than 1.5 were light brown and yielded swollen 

hydrogels under the same condition. Compositions and 

other material properties of these LA-g-chitosan copolymers 

are shown in Table 1. During the dehydrating process, the 

formation of amide and polycondensation of lactic acid 

took place at the same time. The unreacted lactic acid and 

oligomeric lactic acid in the reaction mixture were washed 

out as impurities using excess chloroform and methanol. 

Table 1  la-g-chitosan copolymers with different compositions

 No. Mole ratio % degree of Water solubility
  (acid/amine substitution or
  group)a percentage of
   decrease of
   amino groupsb

 chitosan – 13.2c soluble in ph <6 
 c1 1.5 35.8 soluble in ph <7.5
 c2 2.9 – slightly soluble at ph 7.5
 c3 5.9 – insoluble at ph 7.5 
 c4 11.6 – insoluble at ph 7.5

aDifferent ratios of reactants were maintained by adding different amounts of lactic 
acid in a fixed amount of chitosan (0.5 g). Degree of substitution was not calculated 
for the la-g-chitosan with a higher fraction of lactic acid because these samples 
were not soluble in water.
bestimated by ninhydrin assay. 
cDegree of substitution in unmodified chitosan, ie, 13.2 corresponds to the degree 
of deacetylation.
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Figure 1 shows FTIR spectra of chitosan and LA-g-

chitosan with two different ratios of lactic acid to chitosan. 

The peaks at 1655 and 1325 cm−1 in the IR spectrum of 

chitosan (a) correspond to amide I and amide III, respectively. 

The peak at 1585 cm−1 is the free amino band of chitosan. 

The two peaks at 902 and 1157 cm−1 are the result of the 

saccharide structure of chitosan. The peak at 1377 cm−1 is the 

characteristic band of CH3 symmetrical deformation mode. 

The LA-g-chitosan spectrum (b) has a broad band around 

1591 cm−1, owing to the overlapping of the peaks from the free 

amino band of chitosan and the amide that couples chitosan 

and lactic acid oligomers. The peak at 1736 cm−1 is attributed 

to carbonyl of ester or carboxylic groups on the lactic acid 

side chains. When LA-g-chitosan was prepared with a high 

content of lactic acid (c), the broad band around 1591 cm−1 

was absent and multiple peaks appeared corresponding to 

the N-acetylated and free amino groups of chitosan. The 

increased intensity of the amide I peak (1655 cm−1) indicated 

an increase in amidation resulting from the reaction of 

chitosan with increased amount of lactic acid. The peak of 

the amino groups shifted slightly from 1591 to 1598 cm−1, 

while the intensity of the corresponding peak of the carbonyl 

group at 1740 cm−1 increased. Compared with the reported 

IR spectrum of lactic acid and their oligomers (Kister et al 

1998), the well-resolved peaks at 1452 and 1315 cm−1 were 

attributed to -CH3 and -CH groups in LA-g-chitosan. 

Figure 2 shows 1H-NMR spectra of chitosan and LA-

g-chitosan. The characteristic peaks from LA-g-chitosan 

associated with chitosan and lactic acid segment were 

assigned as follows according to the data reported in the 

literature on pure chitosan and lactide oligomer (Rashkov et 

al 1996; Schwach et al 1997; Sashiwa et al 2003). Chemical 

shifts for chitosan: δ 4.9–5.2 (br, H-1), 3.45–3.90 (br, H-3, 

Figure 1  infrared spectra of (a) chitosan, (b) la-g-chitosan with acid/amine 
ratio=1.5 (sample c1, Table 1), and (c) la-g-chitosan with acid/amine ratio=11.6 
(sample c4, Table 1).

Figure 2  1h-nMr (nuclear magnetic resonance) spectra of (a) chitosan and  
(b) la-g-chitosan (sample c1)

H-4, H-5, and H-6), 2.95 (0.85H, br s, H-2), 1.85 ppm (br 

s, NHAc). Chemical shifts for LA-g-chitosan: δ 5–5.15 (br, 

H-1 of GlcN), 4.90–5.00 (q, -CH of lactyl unit), 4.25 (q, 

-CH of hydroxylated lactyl unit), 3.50–4.0 (m, H-3, H-4, H-

5, and H-6), 2.90–3.10 (br s, H-2), 2.05 ppm (br s, NHAc), 

1.40–1.50 (d, -CH3 of lactyl units), 1.30–1.40 (d, -CH3 of 

hydroxylated lactyl units). NMR spectra shown in Figure 

2 were taken at 20°C. The appearance of a new H-2 proton 

signal at 3.22 ppm from LA-g-chitosan corresponding to 

N-alkylation of chitosan (Kumar et al 2004) confirms the 

bonding between chitosan and lactic acid. Since two peaks 

corresponding to lactyl units connected to the chitosan and 

the hydroxylated lactyl units are well separated, the 1H-NMR 

spectra can be used to measure the degree of polymerization 

of LA (number of lactyl units) side chain grafted onto the 

chitosan. For example, the number of lactyl units for sample 

C1 shown in Table 1 was evaluated to be 1.52. When the 

number of methyl proton in hydroxylated lactyl unit is set 

to 3, the number of lactyl units multiplied by the repeat unit 

weight of 72 g mole−1 yields the length of LA side chain 

110 g mole−1.

characterization of nanoparticles
Figure 3 shows an exemplary TEM image of LA-g-chitosan 

nanoparticles at two magnifications. TEM images of pure 

chitosan nanoparticles were not presented since they 

appeared similar to the LA-g-chitosan nanoparticles. From 

TEM images, both chitosan and LA-g-chitosan nanoparticles 

were spherical and have an average diameter of ~10 nm 



international Journal of nanomedicine 2006:1(2) 185

chitosan nanoparticles for drug delivery

and a fairly uniform size distribution. Advantages of using 

small-size particles as a carrier system include high cellular 

uptake, good suspensibility, and easy penetration into arterial 

walls (Labhasetwar et al 1997). Furthermore, the particles 

with smaller sizes have larger surface area to volume ratios 

and thus may have a high drug-loading capacity and a slow 

drug-diffusion rate. 

Protein encapsulation and interaction 
with chitosan 
Drug AE of chitosan and LA-g-chitosan nanoparticles in  

BSA solutions of different concentrations was evaluated 

following the procedure outlined above. The AEs of both 

chitosan and LA-g-chitosan nanoparticles in BSA solution 

with an initial BSA concentration of 1 mg/mL were measured 

to be 92% and 96%, respectively. The high AEs of chitosan 

and LA-g-chitosan may be attributed to the small size of 

particles that have a high surface to volume ratio and high 

electrostatic interaction between the negatively charged 

moieties on BSA and the positively charged amine groups 

on chitosan. The fact that LA-g-chitosan nanoparticles had 

a higher AE than chitosan nanoparticles may be attributed 

to additional hydrophobic interactions of the LA-g-chitosan 

particles with BSA. In the present work, no linker molecules 

were used to bind BSA with the polymer and thus only the 

adsorption owing to the electrostatic attractions between 

BSA proteins and nanoparticles and the direct entrapment 

of protein into the polymer matrix would contribute to 

the drug loading. This helps retain protein integrity and 

biofunctionality. Our preliminary results on polyacrylamide 

gel electrophoresis showed that the integrity of the BSA 

released from the nanoparticles was retained throughout the 

release period (data not shown). 

Protein release study
Figure 4 shows the percent cumulative release rate of BSA 

from chitosan and LA-g-chitosan nanoparticles loaded with 

BSA at different concentrations, over a 4-week period. 

For both types of nanoparticles, the protein release rates 

increased with increased BSA loading concentrations. The 

release of BSA from nanoparticles is mainly driven by the 

protein concentration gradient. The encapsulation of high 

Figure 3  Transmission electron micrograph of la-g-chitosan nanoparticles.

Figure 4  Bovine serum albumin (Bsa) release profiles of (a) chitosan and (b) la-g-chitosan nanoparticles at different Bsa loading concentrations. Data shown are the 
mean ± standard deviation (n=3). 
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concentration produced a greater concentration gradient 

between the polymer and release medium leading to a higher 

diffusion rate (Miyazaki et al 1988; Janes et al 2001; Xu 

and Du 2003). Consequently, these results show that it is 

possible to modulate the protein release rate by adjusting 

the initial protein concentration. All the drug-release profiles 

exhibit an initial burst release, presumably from the particle 

surface, followed by a sustained release driven by diffusion 

of the protein through the polymer wall and polymer 

erosion. The release profiles of chitosan and LA-g-chitosan 

particles are similar, but the BSA release rate from chitosan 

nanoparticles is significantly higher than from LA-g-chitosan 

nanoparticles. For example, the burst releases from chitosan 

and LA-g-chitosan loaded with BSA at a concentration 

of 1 mg/mL were about 15% and 10%, respectively. The 

BSA releases from chitosan and LA-g-chitosan over a 4-

week period at BSA concentration of 1 mg/mL were 28% 

and 15%, respectively. The sustained BSA releases from 

both chitosan and LA-g-chitosan nanoparticles might be 

attributed to strong intermolecular interactions, including 

hydrogen bonding and dipole–dipole interactions between 

chitosan and BSA molecules. Previous studies (Miyazaki et 

al 1988; Janes et al 2001; Xu and Du 2003) suggested that 

the mechanism of association of proteins with chitosan is, 

at least, partially mediated by the ionic interaction between 

chitosan and protein macromolecules. It is known that lactic 

acid oligomers are hydrophobic, and introduction of this 

hydrophobic moiety to chitosan could substantially alter the 

physicochemical properties of the chitosan nanoparticles 

for BSA absorption. Thus, the slower drug release from LA-

g-chitosan than chitosan might be attributed to additional 

intermolecular forces, including hydrophobic interactions 

and hydrogen bonding. More in-depth research is needed to 

reveal and confirm the underlying mechanism and their roles 

in association of BSA with LA-g-chitosan.

Summary 
Spherical and uniformly dispersed chitosan and lactic 

acid-modified chitosan (LA-g-chitosan) nanoparticles 

with a mean diameter of ~10 nm were prepared. Albumin 

encapsulation efficiency as high as 92% and 96% was attained 

for chitosan and LA-g-chitosan nanoparticles, respectively. 

The BSA release profiles of both chitosan and LA-g-chitosan 

nanoparticles exhibit an initial burst release, followed by a 

sustained quasi-linear release. The chitosan nanoparticles 

have a protein release rate of 28% over a 4-week period and 

predicated complete protein release up to 3 months, while 

LA-g-chitosan nanoparticles had a protein release rate of 15% 

at the same protein concentration over a 4-week period and 

predicated complete release up to 6 months. By incorporating 

the lactyl segment into the chitosan backbone, the resulting 

nanoparticle reduces the burst release, but the release pattern 

was similar to that of the pure chitosan nanoparticles. Since 

most proteins and cell membranes are negatively charged, 

these nanoparticles are also expected to be potential vehicles 

to associate more easily with other proteins and subsequently 

internalized by the target cells than negatively charged 

nanoparticles.
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