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Organization of the Arp2/3 Complex in Hippocampal Spines
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Changes in the morphology of a dendritic spine require remodeling of its actin-based cytoskeleton. Biochemical mechanisms underlying
actin remodeling have been studied extensively, but little is known about the physical organization of the actin-binding proteins that
mediate remodeling in spines. Long-term potentiation-inducing stimuli trigger expansion of the spine head, suggesting local extension
and branching of actin filaments. Because filament branching requires the Arp2/3 complex, we used quantitative immunoelectron
microscopy to elucidate the organization of ARPC-2 (Arp2/3 complex subunit 2), an essential component of the complex. Our data from
CA1 hippocampus indicate that Arp2/3 concentrates within spines in a previously unrecognized torroidal domain, apparently specialized
to mediate actin filament branching.
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Introduction
Spines, actin-rich protrusions that emerge from the dendritic
shaft of excitatory neurons in the mammalian forebrain, are the
primary locus of synaptic contacts. Spines can change their size
and shape in response to synaptic activity (Lippman and Dunae-
vsky, 2005). Recent in vitro evidence shows that long-term poten-
tiation (LTP) induction protocols lead to spine enlargement (Ko-
pec et al., 2006; Park et al., 2006; Harvey and Svoboda, 2007);
moreover, the synapses on these enlarged spines express more
AMPA-type glutamate receptors (Matsuzaki et al., 2001; Kasai et
al., 2003). That similar conditions obtain in vivo is suggested by
ultrastructural evidence that larger spines have larger postsynap-
tic densities (PSDs) (Harris and Stevens, 1989), and that larger
PSDs host more AMPA receptors (Kharazia and Weinberg, 1999;
Takumi et al., 1999; Nusser, 2000). Therefore, spine size is tightly
linked to synaptic strength, implying machinery within the spine
that coordinates modifications in synaptic efficacy and spine size.
Changes in spine morphology require remodeling of the actin
filaments comprising the “spinoskeleton” (Chen et al., 2007;
Lynch et al., 2007). That actin remodeling itself may play a causal
role in LTP (Fifkova and Delay, 1982) is supported by evidence
that spines enlarge before AMPA receptors accumulate at the
spine surface (Kopec et al., 2006), and more directly, by evidence
that blocking actin remodeling pharmacologically interferes with
LTP (Fukazawa et al., 2003).

The actin cytoskeleton is reorganized dynamically via an elab-
orate network of biochemical cascades. Filament branching re-

quires the actin-related protein 2/3 (Arp2/3) complex (Goley and
Welch, 2006; Pollard, 2007). After activation, this evolutionarily
conserved supramolecular assembly initiates a new “daughter”
actin filament, branching from the side of an existing “mother”
filament. The Arp2/3 complex plays a central role in a wide range
of basic processes throughout the eukaryotes, including cell mi-
gration, phagocytosis, exocytosis, and endocytosis (Bretschnei-
der et al., 2004; Hurst et al., 2004; Toshima et al., 2005; Zuo et al.,
2006; Cai et al., 2007; Galletta et al., 2008). Recently, Arp2/3 was
shown also to play a key role in regulating the morphology of
dendritic spines (Kim et al., 2006). Recent work suggests consid-
erable organization within hippocampal spines (Blanpied et al.,
2002; Cooney et al., 2002; Rácz and Weinberg, 2004, 2006; Rácz et
al., 2004; Park et al., 2006), leading us to wonder whether com-
partmentalization of Arp2/3 within the spine might help to main-
tain this internal organization. Using immunoelectron micros-
copy, we show here that Arp2/3 complex subunit 2 (ARPC-2; an
essential component of the Arp2/3 complex) (Mullins et al., 1997;
Gournier et al., 2001) in the spine head concentrates in a re-
stricted domain likely to play a special role in actin remodeling.

Materials and Methods
Experiments were performed on adult Sprague Dawley rats; housing and
experimental procedures complied with Institutional Animal Care and
Use Committee guidelines. Animals anesthetized with pentobarbital (60
mg/kg, i.p.) were perfused intracardially with saline, followed by a mix-
ture of depolymerized paraformaldehyde (PFA) (4%), glutaraldehyde
(0.2– 0.5%), and picric acid (1%) in 0.1 M phosphate buffer, pH 7.4 (for
EM), or 4% PFA (for LM). Fifty micrometer coronal Vibratome sections
were processed for immunohistochemistry (Rácz et al., 2004; Rácz and
Weinberg, 2004, 2006).

The primary antibody was a polyclonal rabbit anti-ARPC-2 (also
called p34 in mammals, and arc35 in yeast) generated against a peptide
corresponding to amino acids 285–298 of human ARPC-2 (Upstate Bio-
technology #07-227). This widely used antibody has been well character-
ized (Di Nardo et al., 2005; Kempiak et al., 2005; Hotulainen and Lappa-
lainen, 2006). Western blot analysis confirmed that the antibody
recognizes a single band in rat brain homogenate, migrating at �34 kDa
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(supplemental Fig. 1, available at www.jneurosci.org as supplemental
material).

Electron micrographs of 125 randomly selected immunolabeled spine
profiles, including synapses, were taken from proximal and middle re-
gions of CA1 stratum radiatum from three animals. Membrane perime-
ters, profile areas, and distances were measured using NIH ImageJ (v1.38;
see http://rsb.info.nih.gov/ij). To determine “axo-dendritic” position of
immunogold particles, we defined the lateral edges of the PSD for a
random sample of clearly defined synapses and measured the distance
from each gold particle lying within this synaptic region to the postsyn-
aptic membrane (supplemental Fig. 2, inset, available at www.
jneurosci.org as supplemental material) (Valtschanoff and Weinberg,
2001; Rácz and Weinberg, 2004).

Using the same micrographs, we measured distances of gold particles
from the closest point on the spine plasma membrane and from the
geometric center of the spine profile (defined as the bisection of a line
from the PSD center to the furthest point on the spine profile) to deter-
mine “radial position” (see Fig. 3A, inset).

Normalized radial position, rN (the fraction of the distance from the
center to the plasma membrane), was computed according to the follow-
ing equation:

rN � 1 � � r1

r1 � r2
� ,

where r1 is the radial distance from the membrane to the particle, and r2

is the radial distance of the particle from the geometric center of the
spine. Therefore, 1.0 corresponds to a particle at the plasma membrane,
and 0 corresponds to a particle at the spine center. Only particles lying
within the spine were considered.

To investigate “tangential” distribution of ARPC-2 within the spino-
plasm, we identified the point on the plasma membrane closest to each
particle and determined the distance from there to the PSD edge, mea-
sured along the membrane (see Fig. 4 A, inset). To compensate for dif-
ferences in spine sizes, we normalized particle positions, such that 0
corresponded to the PSD edge and 1.0 to a point equidistant from both
edges of the PSD (Fig. 4 B, inset).

Data were collected in Microsoft Excel for additional analysis; Kalei-
dagraph (Synergy Software) and CricketGraph (Cricket Software) were
used to compute statistics and generate graphs. We detected no signifi-
cant differences in data from different animals ( p � 0.2; two-sided t
tests) and therefore pooled the data. Line graphs were smoothed digitally,
using a three-point weighted running average. For all but the end points,
yj(smoothed) � [y( j � 1) � 2yj � y( j � 1)]/4. For the end points, y1(smoothed)

� (2y1 � y2)/3, and yn(smoothed) � [y(n � 1) � 2yn]/3.

Results
Immunostaining for the Arp2/3 complex was widespread
throughout the gray matter of the brain. Staining was prominent
in areas with numerous spiny neurons. In the hippocampus,
staining was remarkably strong in the CA1 subregion (Fig. 1A).
ARPC-2 immunostaining in CA1 concentrated in the cell bodies
and dendrites of pyramidal neurons, sparing the nucleus (Fig.
1B,C). Numerous intensely stained puncta were visible at high
magnification (Fig. 1D), raising the suspicion that ARPC-2
might be associated with spines.

To obtain a clearer understanding of its subcellular organiza-
tion, we performed immunogold labeling for ARPC-2, using pre-
embedding methods to optimize sensitivity. After labeling with
silver-enhanced 1.4 nm gold, numerous electron-dense particles
were seen in dendrites and spines, and occasionally in axon ter-
minals. Particles were seen throughout the spine, seemingly more
common away from the plasma membrane (Fig. 2A–D). Particles
in spines and dendritic shafts were often associated with filamen-
tous structures resembling F-actin, especially at branch points
(Fig. 2C,D). Particles were also associated with vesicular struc-

tures occasionally visible within spines or in shafts near the spine
neck (Fig. 2E,F).

We performed quantitative analysis to determine whether the
Arp2/3 complex is restricted to specific spine domains. Because
the domain defined by the synapse may exhibit distinct proper-
ties, we compared gold particles lying within the wedge defined
by the lateral edges of the PSD and the geometric center of the
spine with particles lying outside of this area (Fig. 3A). Finding no
obvious differences, we pooled the two samples for subsequent
analysis. ARPC-2 concentrated away from the plasma membrane
but also lay away from the geometric center of the spine, peaking
between 20 and 100 nm from the plasma membrane (Fig. 3A).
Data were generally consistent among animals (means of 66.7 �
3.2, 62.6 � 3.7, and 59.9 � 4.4 nm). Pooling data from the three
animals, the label was an average of 63.3 � 2.1 nm from the
plasma membrane (n � 263 particles). These data suggest that

Figure 1. Immunoperoxidase staining for ARPC-2 in hippocampus. A, Low-magnification
view; staining is strongest in CA1. B, Higher-magnification view shows laminar staining. pyr,
Pyramidal layer; rad, stratum radiatum; l-m, stratum lacunosum-moleculare. C, Pyramidal cell
layer of CA1. Staining is prominent in perikarya and apical dendrites but spares nuclei. D, High
magnification reveals immunopositive puncta in the neuropil of stratum radiatum, likely cor-
responding to dendritic spines. Scale bars: A, 1 mm; B, 250 �m; C, D, 50 �m.
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the Arp2/3 complex concentrates in a shell between the plasma
membrane and the center of the spine.

Gold particles were uncommon �100 nm from the mem-
brane (Fig. 3A). However, these data come from spine profiles of
different radii (range, 80 – 470 nm; median, 177 nm). To pool the
data more effectively, we normalized radial position (see Materi-
als and Methods). Labeling again concentrated in a radial zone
close to the plasma membrane (Fig. 3B). Further adjustment to
correct for unequal bin areas did not change our conclusion that
Arp2/3 concentrates in an intermediate zone between the center
and the plasma membrane (supplemental Fig. 3A, available at
www.jneurosci.org as supplemental material).

We examined the distance of particles from the membrane,
and from the spine center, as a function of spine radius (Fig. 3C).
Unexpectedly, we found no relationship between spine size and
distance to the membrane (r 2 � 0.01) but a very strong relation-
ship between spine size and distance to the center (r 2 � 0.76; p �
0.001). We conclude that the antigen tends to lie at a fixed dis-
tance from the plasma membrane, independent of spine size.

We then asked whether the Arp2/3 complex has a preferred
“angular” location with respect to the axis defined by the PSD.
We found that ARPC-2 was sparse in the wedge defined by the
synaptic specialization, instead concentrating in a region 200 –

400 nm from the PSD edge, measured along the membrane (Fig.
4A). Because this tangential distance was correlated with the total
perimeter of the spine (data not shown), we normalized particle
positions such that 0 corresponded to the PSD edge and 1.0 to the
point equidistant along the perimeter of the spine from both
edges of the PSD (Fig. 4B, inset). We considered only particles
lying away from the spine center (normalized radial distance �
0.4) (Fig. 3B, supplemental Fig. 3B, available at www.
jneurosci.org as supplemental material), because the true tangen-
tial position of the few particles lying in the center is inherently
poorly defined. Pooling these data, we found that ARPC-2 con-
centrated in a region 0.4 – 0.6 normalized units from the PSD
(Fig. 4B) (mean, 0.44 � 0.02; n � 189 particles). We conclude
that in three dimensions, ARPC-2 concentrates within a donut-
shaped zone lying halfway between the plasma membrane and
the center and halfway between the PSD and the spine neck (Fig.
4C).

Discussion
Methodological constraints
The Arp2/3 complex contains ARPC-2 and six other proteins
assembled into a tightly linked biochemical package (Robinson et
al., 2001), suggesting that ARPC-2 is a reliable probe for this
complex, although this has not been demonstrated directly in
brain. Proteomic studies have identified Arp2/3 subunits within
the PSD (Li et al., 2004; Peng et al., 2004). Our results also suggest
the Arp2/3 complex is present (although sparse) within the PSD.
However, because pre-embedding techniques may fail to detect
antigens within the PSD, because of limited access of antibodies
(Lorincz et al., 2002; Rácz and Weinberg, 2004), pre-embedding
may underestimate the fraction of antigen lying within the PSD.

The intrinsic noise of the immunogold technique can be re-
duced by averaging data from a large unbiased sample. This ap-
proach revealed unexpected features of the spatial organization
of the Arp2/3 complex within the spine head. By focusing on
average values, we may have failed to detect heterogeneity among
spines. However, because the averaging process should attenuate
any nonrandom organization detected, the true distribution of
Arp2/3 in vivo likely peaks even more sharply within the domain
we identified. An error is introduced by examining random single
sections to estimate antigen distribution, rather than serial sec-
tions. That this error is relatively modest is suggested by the
strong correlation between spine size and PSD length (r � 0.68)
(supplemental Fig. 4, available at www.jneurosci.org as supple-
mental material), similar to, although less impressive than, the
r � 0.88 from fully reconstructed CA1 spines (Harris and
Stevens, 1989). Therefore, our method should provide a good
qualitative estimate of protein organization but is likely to under-
estimate the true extent of ARPC-2 compartmentalization.

The techniques used here provide an averaged “snapshot” of a
dynamic process, which reflects the most common distribution
of the Arp2/3 complex in spines, but misses transients. However,
even in very dynamic systems like the leading edges of migrating
cells, the spatial location of Arp2/3 must be highly restricted to
maintain typical actin treadmilling (Svitkina and Borisy, 1999;
Atilgan et al., 2005; Shao et al., 2006). Therefore, the restricted
spatial organization within the spinoplasm seen here likely rep-
resents the focus of activity of the Arp2/3 complex.

Actin dynamics and the spinoskeleton
Activity-dependent changes in spine morphology are tightly
linked to long-term synaptic plasticity (Fifkova and Delay, 1982;
Matus, 2000; Knott et al., 2006; Chen et al., 2007; Harvey and

Figure 2. Preembedding immunogold labeling in dendritic spines. A, B, Immunogold par-
ticles (arrows) within the spine cytoplasm, typically lying away from the membrane. C, D,
Particles coding for ARPC-2 were often associated with thin filaments, in the vicinity of branch
points (arrows). E, Labeling associated with a likely endosome in a spine profile. F, Gold particles
associated with filamentous structures and a coated vesicle (arrow) within a dendritic shaft.
Another gold particle is associated with a vesicle lying in the neck of a spine from this shaft. Scale
bars, 250 nm.
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Svoboda, 2007). Underlying these shape
changes is a complex interplay of molecu-
lar cascades triggered by synaptic input,
leading ultimately to reorganization of the
actin cytoskeleton (for review, see Carlisle
and Kennedy, 2005; Calabrese et al., 2006;
Schubert and Dotti, 2007; Honkura et al.,
2008). Recent studies suggest that Arp2/3
plays a crucial role in synaptic plasticity:
disruption of WAVE-1 (Wiskott-Aldrich
syndrome protein family member 1), an
upstream activator of the Arp2/3 complex,
impairs learning and memory (Soderling
et al., 2003, 2007). Moreover, loss of
WAVE-1 also leads to abnormal spine
morphology (Kim et al., 2006).

During morphogenesis, filopodia are
thought to transform into mature,
mushroom-shaped spines (Ethell and Pas-
quale, 2005) as a result of the protrusive
force created by actin polymerization
(Tada and Sheng, 2006). A linear bundle of
actin reported in the spine, densest in the
neck, may represent the primordial axis of
the original filopodial extension (Fifkova
and Delay, 1982; Smart and Halpain,
2000). Honkura et al. (2008) found that a
dynamic pool of actin treadmills at the pe-
riphery, whereas a stable actin pool resides
at the base of the spine. In this context,
evidence that Arp2/3 plays a key role in the
expansion of the head associated with ma-
ture dendritic spines might be predicted
(Kim et al., 2006). The data reported here
show that the Arp2/3 complex is restricted
primarily to a torroidal domain within the
spinoplasm, presumably representing a
zone specialized for branch-point creation
(Kiehart and Franke, 2002; Goley and
Welch, 2006). Growth of filaments from
this domain may generate the forces neces-
sary to cause protrusion of the spine mem-
brane during activity-dependent spine
morphing, as observed in model systems
(Pollard, 2007).

Endocytosis and the Arp2/3 complex
in spines
Specialized endosomal compartments
have been reported in hippocampal spines
(Blanpied et al., 2002; Cooney et al., 2002).
We reported previously that three key en-
docytic proteins localize in a lateral do-
main of dendritic spines (tangential dis-
tance, �0.4 – 0.6 normalized units),
corresponding to the functionally defined
“endocytic zone,” a region that plays a spe-
cial role in the activity-dependent endocy-
tosis necessary for synaptic trafficking of
receptors (Perez-Otano and Ehlers, 2004;
Rácz et al., 2004; Lu et al., 2007). Recent
evidence from non-neuronal systems im-
plicates the actin cytoskeleton in regulated

Figure 3. Radial organization of labeling. A, Stacked histogram shows labeling in relationship to the spine membrane; data
from the PSD wedge (inset) are shown in black. Immunogold particles concentrated 20 –100 nm from the membrane. B,
Histogram shows distribution of normalized positions (0 corresponds to a particle at the spine center; 1.0 to a particle at the
plasma membrane) (for details, see Materials and Methods). Particles concentrated between 0.4 and 0.8 normalized radial units
within the spine head (see inset; black dot represents gold particle, and the arrow represents distance from the particle to the
membrane). C1, Scatterplot: radius of the spine head is unrelated to distance to the plasma membrane; the line shows least-
squares linear regression fit (r � 0.09). C2, In contrast, note the striking relationship between spine radius and distance to spine
center (r � 0.87).

Figure 4. Organization of ABPs in spines. A, Tangential distribution of ARPC-2 (see inset and Materials and Methods). ARPC-2
was sparse near the synapse, peaking 200 – 400 nm from the PSD. B, Normalized particle positions: 0 corresponds to PSD edge,
and 1.0 corresponds to the point equidistant from both edges of the PSD (inset). Particles concentrate �0.4 – 0.6 U away from
the PSD. C, Schematic representation of the Arp2/3 complex-enriched domain. D, Graph showing spatial distribution of cofilin
(white squares), the Arp2/3 complex (black squares), and cortactin (white circles) within spines. Cofilin concentrates closest to the
plasma membrane [postembedding immunogold data from Rácz and Weinberg (2006)], Arp2/3 at an intermediate position, and
cortactin peaks farthest from the membrane [preembedding (Rácz and Weinberg, 2004)].
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endocytosis (for review, see Kaksonen et al., 2006; Smythe and
Ayscough, 2006; Galletta et al., 2008); moreover, Arp2/3
complex-mediated actin polymerization is a prerequisite for
clathrin-coated vesicle formation and movement (Merrifield et
al., 2004; Martin et al., 2006). Recent in vitro experiments show
that proper regulation of Arp2/3 is important for NMDA
receptor-mediated endocytosis of AMPA receptors (Rocca et al.,
2008). The present in vivo results support this finding, raising the
intriguing possibility that this Arp2/3 complex-rich domain may
contribute to efficient regulation of postsynaptic endocytosis.

Organization of actin-binding proteins within the spine
Actin-binding proteins (ABPs) within the spine exhibit remark-
able spatial segregation. Previous work found that cofilin concen-
trates at the plasma membrane (Rácz and Weinberg, 2006; Zhou
et al., 2007), where filament growth is likely restricted by its de-
polymerizing activity. By activating cofilin, long-term
depression-evoking stimuli lead to spine shrinkage (Zhou et al.,
2004, 2007); conversely, stimuli that trigger LTP also inactivate
cofilin, permitting stable spine enlargement (Meng et al., 2003;
Lang et al., 2004). In contrast, cortactin concentrates in the spine
core, and its loss decreases spine density (Hering and Sheng,
2003), consistent with the suggestion that the core is stabilized by
cortactin (Rácz and Weinberg, 2004). The present data indicate
that the Arp2/3 complex concentrates in an annulus within the
spinoplasm, presumably representing a zone specialized for actin
branching. Together, these data (summarized in Fig. 4D) suggest
a previously unrecognized compartmentalization of actin regu-
lation in dendritic spines.
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