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Abstract In everyday life we often encounter situations in

which we can expect a visual stimulus before we actually see

it. Here, we study the impact of such stimulus anticipation on

the actual response to a visual stimulus. Participants were to

indicate the sex of deer and cattle on photographs of the

respective animals. On some trials, participants were cued on

the species of the upcoming animal whereas on other trials

this was not the case. Time frequency analysis of the

simultaneously recorded EEG revealed modulations by this

cue stimulus in two time windows. Early ð�100 msÞ spectral

responses ð�20 HzÞ displayed strongest stimulus-locking

for stimuli that were preceded by a cue if they were suffi-

ciently large. Late ð�300 ms; 40 HzÞ responses displayed

enhanced amplitudes in response to large stimuli and to

stimuli that were preceded by a cue. For late responses,

however, no interaction between cue and stimulus size was

observed. We were able to explain these results in a simu-

lation by prestimulus gain modulations (early response) and

by decreased response thresholds (late response). Thus, it

seems plausible, that stimulus anticipation results in a pre-

tuning of local neural populations.

Keywords Beta � Gamma � Gain � Threshold �
EEG � Vision

Introduction

Our environment is constantly changing. However, in most

cases these changes do not come as a surprise. We usually

make predictions to know in advance what might happen in

the next moment (Bar 2007). How is such anticipatory

activity integrated with the upcoming stimuli? Can we

identify different modes of such integration processes?

As a plausible correlate for such integration between

sensory information and information stored in memory,

high frequency (20–90 Hz) brain activity has been sug-

gested (Herrmann et al. 2004b). These authors have

argued, that high frequency oscillatory brain activity is

enhanced if sensory input matches with stored object

templates. In such a case, it is assumed that feedback from

the locus of the match to earlier stages of visual processing

results in activity reverberating within the visual system.

Current findings suggest that such reverberating activity

can be measured from the scalp (Herrmann et al. 2004a;

Morup et al. 2006) as stimulus-locked, so called evoked c
responses (usually �30�90 Hz at a latency around

�90 msÞ: Several authors also reported later amplitude

modulations of high frequency brain activity (Tallon-

Baudry et al. 1996, 1998; Lachaux et al. 2005; Gruber

et al. 2002; Gruber and Müller 2005; Keil et al. 2001;
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Busch et al. 2006a; Hoogenboom et al. 2006; Sederberg

et al. 2003). These later, so called induced c responses have

been interpreted as being related to later stages of per-

ceptual processing (Herrmann et al 2004b) in which more

abstract, high level object representations are available

(Tallon-Baudry and Bertrand 1999).

Evoked c responses are usually regarded as being domi-

nated by low level sensory processes (Basar et al. 2001;

Karakaş and Başar 1998) that can be modulated by attention

(Busch et al. 2006b; Tiitinen et al. 1993; Debener et al.

2003). Consequently, modulations of evoked c responses by

several physical characteristics of a stimulus have been

reported (Busch et al. 2004; Fründ et al. 2007a; Schadow

et al. 2007). In these studies, evoked c responses could

mainly be characterized as a transient period during which

ongoing activity was locked to the onset of the stimulus. How

can such early responses be modulated by the anticipation of

the identity of a stimulus? Obviously these responses cannot

start to lock to the stimulus before it is actually being pre-

sented. An alternative could be to silently pretune the neural

populations involved in processing the stimulus by changing

their response gain (Salinas and Sejnowski 2001; Chance

et al. 2002). In this case, the impact of a stimulus on these

populations should be enhanced, leading to an interaction of

stimulus parameters and stimulus anticipation.

Due to their longer latency to the stimulus, induced c
responses could be shaped by feedback to a much larger

extend than evoked c responses. If such feedback were

purely excitatory, it would usually result in a decrease

of the response threshold in the target neural popula-

tions. In contrast, if the (excitatory) feedback were

balanced by inhibition this would result in a modulation

of response gain in the target population (Chance et al.

2002). Both these effects have been observed in animal

experiments (Reynolds and Chelazzi 2004). Further-

more, signals at high-level visual areas display

invariance to size and translation (e.g. Desimone et al.

1984). Thus, one might expect that the effects of

feedback from high level visual areas are relatively

independent of the size of a stimulus.

Some studies have investigated EEG correlates of cue

processing (Fan et al. 2007; Lai and Mangels 2007; Luck

et al. 1994; Martinez et al. 2006; Yamaguchi et al. 2000).

However, these studies focused on the effect of spatial cues

and the spread of the effects of spatial cues along spatially

extended objects (Martinez et al. 2006). In addition, only

one of these studies (Fan et al. 2007) analyzed their data

with respect to spectral dynamics. Unfortunately, these

authors did not clearly differentiate between stimulus

locked, evoked responses and amplitude modulated,

induced responses. Thus, the precise relation between high

frequency electroencephalographic responses and cue

directed attention can still be sharpened.

In the current study, we investigated evoked and

induced electroencephalographic responses from human

participants. On some trials, the participants were cued

about the category of the stimulus before it appeared on the

screen, on other trials this was not the case. In addition,

stimuli were presented at different sizes. This enabled us to

differentiate stimulus-related from cue-related responses.

We expected early responses to show the signatures of gain

modulation. This should manifest in an enhanced modu-

lation by the cue for large stimuli. In contrast, we expected

later responses to show signatures of both the abovemen-

tioned types of feedback. As outlined above, such

responses should show threshold modulation (from purely

excitatory feedback) as well as gain modulation (due to

balance by inhibition). Feedback effects originate from

areas which display more invariant responses with respect

to physical stimulus features. Thus, we expected later

responses to be affected by the cue irrespective of the size

of the stimuli. The data were compared to a simple model

of neural population responses.

Methods

Participants

Twelve healthy volunteers participated in the current study

after giving their written informed consent. All participants

had normal or corrected to normal vision and reported

being free of current or past neurologic or psychiatric

disorders. Participants received money or course credits for

their participation. The experiments were conducted in

accordance with the Declaration of Helsinki and the local

ethics committee of the University of Magdeburg.

Experimental procedure

During the experiment, participants observed a set of pic-

tures of male and female cattle and deer. For every

combination of species and sex a total of 66 different color

photographs were presented on a medium gray back-

ground. These 66 different photographs were scaled to

either 545 9 470 pixels (�13� 11� visual arc) or

170 9 131 pixels (�4� 3� visual arc) to yield either large

or small stimuli, respectively. This resulted in a total of 528

different stimuli (2 species 9 2 sexes 9 66 photographs

9 2 sizes). Participants judged the sex of the depicted

animals under two different conditions. In one block they

were naive about the species of the upcoming animal

(uncued trials); in another block, participants were cued on

the species of the upcoming animal 500 ms before the

onset of the animal’s photograph (cued trials). The cue

consisted of the name of the species and was presented in
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bold letters at the center of the screen. On 80% of the cued

trials the cue was valid, meaning that the presented animal

was indeed the same as indicated by the cue. There were

only few invalid trials (20% of the cued trials). Thus, only

uncued and validly cued trials were analyzed.

Cueing the species of the animals rather than the sex

allowed us to induce preparation for the visual analysis of the

images rather than motor preparation. However, information

about the species of the animals is beneficial because it cues

the sex defining feature (antlers for deer, udder for cattle).

Stimuli were presented for 500 ms with an inter stimu-

lus interval varying randomly between 2,000 and 3,000 ms.

Participants responded by pressing a button with one hand

if the animal was male and pressing another button with the

other hand if the animal was female. Response hands were

counterbalanced across participants. Participants were

instructed to fixate a small black fixation cross at the center

of the screen during the whole experiment and to avoid eye

blinks. A schematic illustration of the paradigm can be

found in Fig. 1.

Data acquisition

During data acquisition, participants sat in an electrically

shielded and sound attenuated room (IAC, Niederkrüchten,

Germany). The stimulation monitor was placed outside the

cabin behind an electrically shielded window. All devices

inside the cabin were battery operated to avoid line

frequency interference (50 Hz in Germany). The electro-

encephalogram (EEG) was measured from 62 scalp

locations according to an extended 10–20 system. The nose

served as reference. Electrooculographic activity was

measured from one electrode below the orbital rim and

another electrode lateral from the right eye in order to

detect artifacts due to eye movements. Activity was mea-

sured using sintered Ag/AgCl electrodes mounted in an

elastic cap (Easycap, Falk Minow Services, Munich, Ger-

many) and amplified by means of a Brain Amp amplifier

(Brain Products, Munich, Germany). Electrode impedances

were kept below 5 kX. The EEG signals were filtered

between 0.02 and 500 Hz and stored on a computer hard

disk at a rate of 1 kHz for offline analysis. Digitized EEG

data were transferred to a computer outside the recording

cabin by means of a fiber optic cable. An additional digital

high-pass filter with a cutoff frequency of 0.5 Hz was

applied offline to reduce slow shifts in the baseline. An

automatic artifact rejection was computed which excluded

trials from further analysis if the standard deviation within

a moving 200 ms time window exceeded 40 lV in any

channel. The automatic artifact rejection was supplemented

by visual inspection to ensure that only trials without

artifacts were included in the subsequent analysis.

Data analysis

A time frequency representation of the EEG signals was

derived using a complex valued wavelet transform (Herr-

mann et al. 2005). The wavelet transform was computed by

convolving the raw EEG signal with a set of scaled and

translated versions of a complex modulated gaussian. At

40 Hz the wavelet had a time resolution of 2rt = 50 ms and

a frequency resolution of 2rf = 13 Hz. The exact time

frequency resolution of the wavelet depended on the ana-

lyzed frequency. The wavelets were normalized to have

unit energy. From the wavelet transformed data three

quantities were derived: (i) the amount of evoked activity,

that is the absolute value of the wavelet transform applied

to the averaged evoked potential, (ii) the total activity,

which is the average modulus of the wavelet transform

applied to the single trials, and (iii) the strength of stimu-

lus-locking. Stimulus-locking was quantified by a time

frequency version of the so called mean resultant length

(Fisher 1993) as has been done before (e.g. Tallon-Baudry

et al. 1996; Fründ et al. 2007c). A stimulus-locking value

of 1 indicates perfect locking across trials, while a stimu-

lus-locking value of 0 indicates a constellation in which the

Fig. 1 Illustration of the

experimental procedure. In cued

trials (dashed box), participants

received a written cue 500 ms

before stimulus onset. This was

not the case for uncued trials

(solid box)
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phases exactly cancel out each other, as it is the case for a

uniform distribution of phases across trials. This resulted in

a representation of the responses from every participant in

the plane spanned by time and frequency. These planes

were transformed to a dB-scale in case of evoked and total

responses indicating the change relative to a baseline that

extended from 200 to 100 ms before the onset of the

stimulus. Stimulus-locking was related to the same baseline

by simply subtracting the average stimulus-locking from

this time window.

As response frequencies vary considerably, but rather

consistently between individuals (Fründ et al. 2007c), we

decided to analyze oscillatory activity at peak frequencies.

For the analysis of early activity, these individual response

frequencies were selected as the maximum in a time win-

dow between 60 and 160 ms. For the analysis of late

activity, individual response frequencies were selected

from a time window between 200 and 300 ms after the

onset of the stimulus. As we were looking for stimulus-

locked and/or amplitude modulated responses in the

gamma band, we initially determined response frequencies

from a range of 25–90 Hz. In this frequency range, no

stimulus-locked responses exceeded the noise level. How-

ever, very consistent modulations of stimulus-locked

activity could be observed in the beta band. Therefore,

evoked activity was analyzed with individual response

frequencies determined from a frequency range between 15

and 25 Hz.

The impact of the two factors SIZE (large versus small

stimuli) and CUE (valid cue versus no cue) on EEG mea-

sures was tested by means of an analysis of variance

(ANOVA) for repeated measurements. For the ANOVA,

data were pooled across channels from a posterior region of

interest (channels O1, O2, Oz, P3, P4, Pz, P7, P8, PO3,

PO4, POz, P5, P6, P1, P2).

Simulation

The results from the EEG analysis were compared to a

simple model of gain modulated cells. This model con-

sisted of an array of 100 9 100 units—each of which was

described by an input–output mapping given by a Naka–

Rushton function (Naka and Rushton 1966; Wilson

1999)—relating output strength y and input strength x in

the form

y ¼
ð½x� h�þÞ

2

g2 þ ð½x� h�þÞ
2
; ð1Þ

where h is a threshold that determines the minimum value,

for which the unit will respond at all. Here, [�]+ denotes

rectification. The parameter g is inversely related to the

gain of the input/output relation. Smaller gs result in

stronger increases in output strength with increasing input.

Naka–Rushton functions are usually regarded as a good

approximation to the input/output behavior of neural pro-

cessing elements (e.g. Wilson 1999, p. 19). Note that there

are no interconnections between the different units.

Therefore, this model can make predictions about changes

in the input/output behavior of neural populations but not

about their interconnections.

To simulate the effects of different modes of processing,

the parameters g and h in Eq. 1 were varied. As a baseline

condition reflecting the no cue condition of the EEG

experiment, these values were arbitrarily set to h ¼ g ¼
0:5: We will refer to this condition as the baseline condi-

tion (see Fig. 2). The cue condition of the EEG experiment

could in principle be modeled by either increased gain or

decreased threshold. Our simulation was intended to reveal

which of the two mechanisms simulates the EEG data more

closely. To simulate increased gain due to stimulus antic-

ipation, we set g = 0.25 for a subset of units, keeping h
constant (gain+ condition in Fig. 2). The mechanism of

decreased threshold was simulated by setting h = -0.1

while at the same time setting g = 1 to simulate balanced

input (Chance et al. 2002) (threshold-, gain- condition in

Fig. 2). Both these modulations were performed on a

subset of 30 9 30 cells in the total array of model neurons.

The effect of gain and threshold modulations on the

response properties of the underlying populations is illus-

trated in Fig. 3. Stimuli could either be presented inside or

outside the modified region.

For all 100 9 100 pixels, Gaussian white noise with

standard deviation r = 0.25 served as input data x. In order

to simulate the effect of a stimulus, a value of 1 was added

to the noise either for a square region of 20 9 20 (large

stimulus) or 10 9 10 pixels (small stimulus). This is

illustrated in Fig. 4 for a large stimulus. Pixels that are set
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Fig. 2 Different types of input–output mappings used in the simu-

lation. ‘‘Baseline’’ refers to the simulation of the no cue condition of

the EEG experiment, ‘‘gain+’’ corresponds to the condition with

increased gain, and ‘‘threshold-, gain-’’ corresponds to the condition

with decreased gain and threshold, both reflecting different possible

implementations of the cue condition of the EEG experiment
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to 1 can be thought of as matches between sensory input

and the structure of the receptive field of the respective

unit. Gaussian white noise with standard deviation

r = 0.25 was added to each pixel. The input and output

strength can be though of as spike counts of averaged local

field potentials. More technical details of the simulation

can be found in the appendix.

Results

Modulations of high frequency spectral EEG components

were observed in two time windows. An early modulation

was found between 15 and 25 Hz in a time interval

between 60 and 160 ms, and a later modulation was found

between 30 and 90 Hz in a later time window between 200

and 300 ms. In the following we will describe these

modulations in more detail.

Early modulation

Although previous studies have reported stimulus related

modulations in the c frequency range (e.g. Busch et al.

2004, 2006b; Tallon-Baudry et al. 1996; Spencer et al.

2004), the current data did not contain any systematic

responses at frequencies above 30 Hz.

In contrast, modulations were observed in the b fre-

quency range (15–25 Hz). In this frequency range, most

participants elicited a response peak in the time frequency

planes that was concentrated in time as well as in frequency

(see Fig. 5). Averaging across different participants

smeared these relatively concentrated peaks across multi-

ple frequencies (Fig. 6a). As these responses were mainly

defined by locking to the stimulus, we will here focus on

effects on stimulus-locking. Stimulus-locking in the b
frequency range was strongly enhanced in response to large

stimuli as compared to small stimuli (F1;9 ¼ 32:79;

P\0:001; see Fig. 6). In addition, stimulus-locking was

stronger in cued trials as compared to uncued trials

(F1;9 ¼ 18:87;P\0:01; cued versus uncued for large

stimuli: t10 = 4.38, P \ 0.001, cued versus uncued for

small stimuli: t10 = 3.43, P \ 0.01). This effect was par-

ticularly salient for large stimuli (SIZE 9 CUE interaction,

F2;9 ¼ 7:01;P\0:01). We also compared at what time

after stimulus onset stimulus-locking was most pronounced
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Fig. 3 Effects of gain and threshold modulation. (a) Two different

response functions that differ in gain. The blue curve has a lower gain,

the red curve has a higher gain. (b) Example responses for a poisson

spike process with low gain response function. Gray box: weak input

corresponding to the gray vertical line in part (a). Black box: stronger

input corresponding to the black vertical line in part (a). On the right,

the corresponding spike counts are illustrated as bars. (c) Example

responses for a poisson spike process with high gain. Remaining

conventions are like in (b). (d) Two different response functions that

differ in threshold. The blue curve has a lower threshold, the red curve

has a higher threshold. (e) Example responses for a poisson spike

process with low threshold. Gray box: weak input corresponding to

the gray vertical line in part (d). Black box: stronger input

corresponding to the black vertical line in part (d). (f) Example

responses for a poisson spike process with high threshold. Remaining

conventions are like in (e)

Fig. 4 An example of an input stimulus to the simulation. The large

(20 9 20 pixels) stimulus is presented in white noise
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between the different conditions. These response latencies

were strongly modulated by the size of the presented stim-

ulus, with shorter latencies for large stimuli (large stimuli: 77

± 12 ms, small stimuli: 110 ± 21 ms, F1,9 = 30.69,

P \ 0.001, see also Fig. 6b). As can be inferred from the

topographic maps displayed in 6b, stimulus-locking was

constrained to electrodes over the occipital region.

Late modulation

A clear response in total c activity was observed about

200–300 ms after stimulus onset. As Fig. 7a shows, this

response was clearly separated from lower frequency

activity. However, the amplitude increase that was cap-

tured by the total activity extended over a fairly broad

range of frequencies in all but one participant (similar to

Fig. 7a). This late response was significantly stronger in

response to large stimuli as compared to small stimuli

(F1;9 ¼ 28:46;P\0:01). In addition to this strong modu-

lation, a small but consistent modulation of total c activity

by the presence or absence of the cue was observed (F1,9

= 8.01, P \ 0.05, cued versus uncued for large stimuli:

t10 = 3.6, P \ 0.01, cued versus uncued for small stimuli:

t10 = 6.30, P \ 0.001). In contrast to the early response,

this cue effect was relatively independent of the size of the

stimuli (no significant SIZE 9 CUE interaction, F2,9 = 2.11,

ns). This late spectral response was relatively similar across

a wide region of the scalp (see Fig. 7b).

Simulation results

Neural responses can be modulated with respect to their

threshold (i.e. at which level of input does a neuron start to

fire) and their gain (i.e. how fast does the output rate increase

with increasing input). We simulated a population of

100 9 100 neural units in order to find out which of the two

mechanisms is more likely involved in the generation of our

EEG effects. In a subset of this population, threshold and/or

gain were modified. In addition, a subset of the simulated

populations (not necessarily overlapping) received input,

simulating that a stimulus excited the receptive fields of the

cells. In Fig. 4 such an input pattern is shown. Fig. 2 dis-

plays input–output relations of the simulated populations for

different threshold–gain constellations. The solid line

labeled ‘‘baseline’’ represents a baseline condition reflecting

the no cue condition of the EEG experiment. To simulate

pretuning of neural populations, we increased the gain of the

input–output relation. Thus, without a sufficiently strong

stimulus this should not change the behavior of the popu-

lations. However, if a stimulus is presented the responses of

this population should increase much faster. This is evident

from the increased slope of the dashed curve in Fig. 2

labeled ‘‘gain+’’. Finally, we added a third condition which

is mainly characterized by a shift in the response threshold

towards weaker inputs. This is labeled ‘‘threshold-, gain-’’

in Fig. 2. In addition, and to match the experimental results,

the gain of the input–output relation for this condition had to

be reduced.

The responses of the model to the stimulus presented in

Fig. 4 for two different conditions are displayed in Fig. 8.

It can be observed that responses are enhanced if the locus

of pretuning matches that of the stimulus. No response

enhancement is observed if gain+ pretuning is applied to an

area that does not match the stimulus. In order to allow a

more rigorous comparison we replotted average responses

across the whole array in Fig. 9. In the absence of a

stimulus, the anticipatory modulation does not seem to

make any difference in the large scale response (see the

bars labeled ‘‘no stimulus’’ in Fig. 9). This is in accordance

with the situation observed before the stimulus was pre-

sented. Without any modulation, the model displays higher

responses for large stimuli as compared to small stimuli

(‘‘baseline’’ in Fig. 9). For gain+ modulation, however, a

strong enhancement of the responses is observed if the

stimulus matches the modulation of the populations. Sim-

ilar to the stimulus-locking data in the b band, this

enhancement is particularly salient for large stimuli. In

the threshold-, gain- condition, an enhancement of the

responses can also be observed. However, now the
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response enhancement is rather similar for large and small

responses, resembling the total responses observed in the c
band.

Discussion

In the present study, we investigated high-frequency

spectral responses to natural images with respect to stim-

ulus anticipation. We observed both, stimulus-locking and

total amplitude responses in our data. Stimulus anticipation

effects were observed for the stimulus-locking of spectral

responses in the b band primarily for large stimuli. In

contrast, total c responses were modulated by size and

stimulus anticipation relatively independently. These

results have qualitative counterparts in a model of gain

modulated population responses.

Spectral responses at high frequencies

In the current experiment, we observed stimulus-locked

responses in the b range that depended on bottom-up and

anticipatory modulation resembling what had previously

been reported as an interaction of bottom-up and top-down

processes for stimulus-locked c responses (Busch et al.

2006b). In contrast to these earlier results, the frequency of

the stimulus-locked responses was much lower—nearly

half that of previous reports. The most obvious difference

between these previous reports and the current report

comes from the stimulus material. Previous reports on
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Fig. 6 Early stimulus locking
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(a) Time frequency

representations of stimulus

locking in response to cued
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stimuli (upper row) and small
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locking is much more
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stimulus-locked spectral responses often used rather simple

stimulus configurations like geometrical shapes (Busch

et al. 2004; Fründ et al 2007b) or gratings (Bodis-Wollner

et al. 2001; Busch et al. 2006b; Fründ et al. 2007a; Scha-

dow et al. 2007) and observed response frequencies

between 30 and \90 Hz. Other studies that applied more

complex stimuli (Busch et al. 2006a; Gruber and Müller

2005; Lachaux et al. 2005; Tallon-Baudry et al. 1997;

Vidal et al. 2006) either did not observe stimulus-locked c
responses at all, or did not find these responses to be

modulated by experimental manipulations. Our results are

in line with these findings in that we did not find any

stimulus-locked c responses at all. The properties that

would be expected for a stimulus-locked c response,

dependence on size (Busch et al. 2004; Fründ et al. 2007c)

and an interaction between size and attention (Busch et al.

2006b), were found in a somewhat lower frequency range

in the b band. A possible interpretation for this might be

that the stimulus-locked response has shifted its frequency.

Such downward shifts with increasing stimulus complexity

have been proposed by several authors (Chen and Herr-

mann 2001; Olufsen et al. 2003; von Stein and Sarntheim

2000). These authors argue that in order to integrate

information from remote cortical areas, the information

that is integrated needs to be carried by spectral compo-

nents of lower frequency. For instance Busch et al. (2004)

−0.4 −0.2 0.2 0.4
−1

1

2

3

4

5

6

Pz

+0 +5dB

large stim
ulus                               sm

all stim
ulus

valid cue no cue
(a) Time frequency representations

(b) Time courses and topographies
no cuevalid cue

large stim
ulus

sm
all stim

ulus

s

dB

map: 200 − 300 ms

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

10

20

30

40

50

60

70

80

90

F
re

qu
en

cy
 [H

z]
F

re
qu

en
cy

 [H
z]

−3

−3

−2

−1

0

1

2

3

−2

−1

0

1

2

3

large stimulus, valid cue
large stimulus, no cue
small stimulus, valid cue
small stimulus, no cue

Legend:

[dB]

[dB]

Time [s]Time [s]
0.0 0.2 0.4

4.00.04.02.00.0

0.0 0.2 0.4

0.2−0.4

−0.4−0.4 −0.2

−0.2

−0.2

−0.2−0.4

F8

Fig. 7 Late stimulus related

spectral amplitude modulations

(dB-scale) in the c band.

(a) Time frequency

representations of total c
activity in response to cued

(left) and uncued (right) large

stimuli (upper row) and small

stimuli (lower row). (b) Time

courses (left) and topographic

maps of total c activity. Maps

are arranged in the same way

as the time frequency

representations in part

(a). Note that cue related

increases are—albeit

weak—observed irrespective

of stimulus size
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observed a decrease in response frequency if the size of the

evoking stimulus increased, although this effect was not

significant. In a recent study, Fründ et al. (2008) found

slightly lower response frequencies for stimuli with higher

pixel-wise entropy. It is thus conceivable that the frequency

of stimulus-locked oscillations is adapted to the demands

of a particular perceptual task. The determinants of such

frequency shifts are yet unclear. More experimental work is

needed to identify the determinants of such frequency

shifts.

The observed late enhancement of spectral power in the

c band (see Fig. 7) is consistent with previous reports in

terms of frequency and latency (Busch et al. 2006a; Gruber

and Müller 2005; Rodriguez et al. 1999; Tallon-Baudry

et al. 1997). Such responses that consist of a power

enhancement that is not accompanied by any stimulus-

locking have been termed induced c responses (Basar-

Eroglu et al. 1996; Tallon-Baudry and Bertrand 1999).

They seem to play a pivotal role for a wide variety of

cognitive phenomena such as attention (Fries et al. 2001),

memory (Gruber and Müller 2005; Howard et al. 2003;

Sederberg et al. 2003), object recognition (Tallon-Baudry

and Bertrand 1999), gestalt perception/binding (Uhlhaas

and Singer 2006), multistable perception (Mathes et al.

2006), and associative learning (Miltner et al. 1999).

Models of visual perception have associated such induced c
responses with the refinement of an initial coarse catego-

rization of sensory input (Herrmann et al. 2004b; Körner

et al. 1999) or with the activation of an associative network

representing the semantic categorization of a stimulus

(Tallon-Baudry and Bertrand 1999). These interpretations

would suggest induced c responses to be relatively inde-

pendent of physical stimulus factors. Here we demonstrate,

that this is not the case. In contrast, induced c responses

highly depended on the size of the stimulus. However, in

contrast to the evoked responses (Busch et al. 2006b) the

top-down effect imposed by the cue did not seem to

interact with this size modulation.

Gain and threshold modulation

We simulated two different types of modulations of the

input–output relation of neural processing units. In one

condition, the gain of the model units was modulated,

while in another condition, the threshold and the gain of

the units was modulated. In the first case, global responses

were dependent on the size of the stimuli, while in the

second case, global responses were independent of stimu-

lus size. These findings are remarkably similar to the EEG

data. The anticipatory modulation of the evoked spectral

response depends on the size of the stimulus, while this is

not the case for the induced spectral response. These

simulation results seem to suggest that the anticipation of a

stimulus initially results in an increase of the gain of neural

populations. This is consistent with the similarity between

the evoked response and the behavior of the simulation in

the ‘‘gain+’’ condition with increased input gain. The

similarity between the induced response and the ‘‘thresh-

old-, gain-’’ condition of the simulation seems to suggest

that the induced response originated from a combined

decrease of both, input gain and firing threshold.

In the current model, the gain and threshold modulations

were generated by changing the respective model param-

eters. The biophysical mechanisms that could underlie

these modulations are still under debate. Threshold mod-

ulations can be explained rather straightforward; excitatory

inputs decrease the threshold, inhibitory inputs increase the

threshold (Chance et al. 2002). The crucial point is about

gain modulation which requires multiplicative interactions

between neurons. Shunting inhibition, which drives the

membrane potential closer to the cell’s resting potential

rather than depolarizing or hyperpolarizing the cell, has

Fig. 8 Responses of the model under different conditions. Left: the

area of pretuning (gain+ condition) matches the input area, right:

there is no pretuning at all. The area of pretuning is marked by a thin

black line
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Fig. 9 Barplot of the simulation responses under different conditions.

The gain+ and threshold-, gain- conditions resemble the early b and

late c responses, respectively
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been discussed as a possible implementation of multipli-

cation/division of neural responses (Carandini and Heeger

1994). It has however been pointed out, that this mecha-

nism cannot account for such effects in the context of

spiking neurons (Koch 1999, p. 23). Two alternative

mechanisms to implement gain modulation have been

discussed. The first of these mechanisms is based on the

effects of background activity of a cell (Chance et al.

2002). If this background activity consists of strong

excitatory input which is balanced by strong inhibitory

input, the gain of the input–output relation of that cell is

diminished (Chance et al. 2002). These authors have

derived an equation for the input–output relation of a leaky

integrate and fire neuron (Abbott and Chance 2005). Using

this equation for our simulation yielded qualitatively sim-

ilar results. The noise that comes with such balanced input

has recently been shown to account for contrast normali-

zation in the primary visual cortex of cats (Finn et al.

2007). A second mechanism that could implement gain

modulation is synchrony of inhibitory cells (Tiesinga et al.

2004). Cells that receive highly synchronous inhibitory

input appear to have a higher input gain than cells for

which the inhibitory input is temporally uncorrelated. This

latter mechanism is in good accordance with the fact that

the signals described in the current report show temporal

structure—they are relatively concentrated in the spectral

domain. Thus, in conclusion, different mechanisms exist

that could implement a modulation of gain in a neural

system. Although we cannot decide which particular

mechanism implemented the gain modulation in the current

data, it seems plausible that the observed effects (at least

for evoked activity) can be explained as modulation of the

input gain of the underlying cells. In contrast, the increase

in induced high frequency activity seems to be consistent

with a general increase in feedback activity that is in part

driving the target cells closer to the threshold, in part

reducing the input gain of the neural populations.

Relation to neural population models

The current model does not explicitly simulate individual

spikes. Instead, it considers responses that are pooled

across a group of cells. Dynamics of such models have

been discussed by several authors (David and Friston 2003;

Freeman 1975; Jansen and Rit 1995; Jirsa and Haken 1997;

Nunez and Srinivasan 2006; Robinson et al. 1997, 1998,

2001; Rennie et al. 2000). Although these models incor-

porate a nonlinear response function similar to the one in

Eq. 1, they typically emphasize dynamical aspects that

arise if different populations of neurons interact. In the

current paper we completely disregarded any dynamical

properties of the neural populations. This enabled us to

study the impact of the response function in separation.

Indeed, it was possible to explain certain aspects of the

experimentally observed responses simply by changes in

the response function. In this way, the current approach

complements the above dynamical models. It remains to be

investigated, how transient changes of the response func-

tion change the dynamics of interacting neural populations.

Relation of anticipatory effects to cueing

In the literature about cueing there is a controversy as to

whether the anticipatory effect of a cue triggers a change of

the perceptual efficiency (e.g. Luck et al. 1994) or alters

information selection at later stages of processing (Eckstein

et al. 2002; Shimozaki et al. 2003). The interpretation of the

cueing effect on stimulus-locking in the b frequency range

as gain modulation is compatible with the former idea. This

is in accordance with data that suggest effects of attention as

early as the C1 (Khoe et al. 2005). However, the relatively

late effects on induced high frequency power seem more

consistent with the latter idea that (at least part of) the per-

ceptual process is completed when processing is altered by

the cue. Thus, it seems plausible that valid cueing facilitates

the transmission of neural signals from early processing

stages to late processing stages (Lai and Mangels 2007).

These authors argue that this improved transmission results

in stronger signals at these later stages which result in pos-

sible behavioral benefits. In a spatial cueing experiment, Fan

et al. (2007) observed increased c band power after cueing

spatial locations. Our data suggest, that similar effects can

be observed in relation to more semantic cueing such as

observed in contextual cueing (Chun 2000).

Conclusion

We demonstrated that cueing triggers different aspects of

high frequency responses. An early stimulus-locked

response that was most pronounced in the b frequency

band seemed consistent with pretuning the gain of neural

populations. In addition, a later increase in induced c
activity was interpreted as an increase in feedback activity.

Appendix: Implementation of the model

Local processing is modeled as a mapping F : R100�100 !
R

100�100; that maps a stimulus X 2 R
100�100 on a spatial

pattern Y 2 R
100�100 of neural activity. Measurement of the

EEG (data shown in Fig. 9) is modeled by a linear form

M : R100�100 ! R;MðXÞ ¼
P100

k;l¼1 Xk;l=104: Interactions

between stimulus driven and internal processes were

modeled by either varying the stimulus X or the mapping F.

The stimulus consisted of a field of real values X = {Xk,l},

where Xk;l�Nð1; 1=4Þ if m � k; l � l . Otherwise,
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Xk;l�Nð0; 1=4Þ; where Nðm; rÞ indicates a normal dis-

tribution with expectation value m and standard deviation

r. For large stimuli we set m = 35, l = 55, for small

stimuli, we set m = 40, l = 50. The mapping F : x 7!y as

given by Eq. 1, was applied to every element of X in order

to obtain the simulated neural activity Y. The parameters g

and h in Eq. 1 were allowed to vary with space, thus g; h 2
R

100�100: The baseline condition corresponds to

gk;l ¼ hk;l ¼ 1=2; k ¼ 1; . . .; 100; l ¼ 1; . . .; 100. In the

gain+ condition, we set gk,l = 1/4 for g� k; l� n. In the

threshold-, gain- condition, we set gk;l ¼ 1; hk;l ¼ �1=10

for g � k; l � n. If stimuli were modeled to be presented

inside the modified region, we set g = 30, n = 60. If

stimuli were modeled to be presented outside the modified

region, we set g = 60, n = 90.
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