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Summary
Choosing the most valuable course of action requires knowing the outcomes associated with the
available alternatives. The striatum may be important for representing the values of actions. We
examined this in monkeys performing an oculomotor choice task. The activity of phasically active
neurons (PANs) in the striatum covaried with two classes of information: action-values and chosen-
values. Action-value PANs were correlated with value estimates for one of the available actions, and
these signals were frequently observed before movement execution. Chosen-value PANs were
correlated with the value of the action that had been chosen, and these signals were primarily observed
later in the task, immediately before or persistently after movement execution. These populations
may serve distinct functions mediated by the striatum: some PANs may participate in choice by
encoding the values of the available actions, while other PANs may participate in evaluative updating
by encoding the reward value of chosen actions.
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Introduction
Neural activity in a number of brain areas is related to the values of rewards humans or animals
gain, as well as the choices they make using their estimates of these values (Schultz, 2000;
Sugrue et al., 2005; Daw and Doya, 2006). A growing body of evidence suggests that the basal
ganglia is important for maintaining value representations to guide actions (Hikosaka et al.,
2006). Phasically active neurons in the dorsal striatum can be modulated by reward properties
(Cromwell and Schultz, 2003; Hassani et al., 2001), by changes in reward contingencies
(Kawagoe et al., 1998; Lauwereyns et al., 2002a) as well as association learning (Pasupathy
and Miller, 2005; Tremblay et al., 1998; Williams and Eskandar, 2006), and respond in a
manner consistent with a role in biasing actions (Lauwereyns et al., 2002b; Watanabe et al.,
2003; Samejima et al., 2005). These data suggest that striatal PANs promote the selection of
valuable actions by modulating activity in the thalamus and midbrain.

However, in the oculomotor caudate, a nucleus of the striatum, it is not known how the activity
of PANs reflects the values of actions during choice behavior. Simultaneous measurements of
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striatal activity and estimates of subjective values would thus be useful for testing whether
PANs encode a subject’s estimates of the values of actions. In addition, such measurements
would allow us to more precisely define the types of value-related information these neurons
encode. PANs could, for example, encode action-values, the values associated with potential
actions. Basal ganglia models often posit that striatal PANs encode a quantity like action-value
that biases the selection of actions associated with more valuable outcomes (Doya, 2000).
Alternatively, striatal PANs could encode chosen-values, the value of the option the decision-
maker selects (Morris et al., 2006; Padoa-Schioppa and Assad, 2006). A neuron encoding
chosen-value cannot support action selection because its activity is contingent on the action
ultimately executed. Chosen-value representations may be useful for evaluating the outcomes
of actions to promote learning (Morris et al., 2006; Niv et al., 2006; Sutton and Barto, 1998)
or modifying movements to reflect the value of the action (e.g., reaction time). Do PANs in
the oculomotor caudate reflect one or both of these value representations when animals choose
amongst actions associated with changing reward values?

To answer this question, we recorded from PANs in the oculomotor caudate while monkeys
performed a choice task that elicited matching behavior (Herrnstein, 1961). We estimated the
action-values and chosen-values associated with each action both at the level of the sequential
blocks of trials presented to the monkeys as well as at the level of individual choices, and used
these estimates to determine whether PANs tracked action-values or chosen-values. We found
that the activity of a significant number of PANs was correlated with action-values and that
the activity of a second group of PANs was correlated with chosen-values. Action-value related
activity was more prominent prior to movement execution while chosen-value related activity
was more prominent following movement execution. These results support the idea that some
striatal neurons bias action selection, and provide evidence that a second novel group of striatal
neurons may have an evaluative role, reporting the reward values associated with chosen
actions.

Results
We recorded from PANs in the caudate nucleus of monkeys performing an oculomotor choice
task where the values of the two available alternatives varied (Figure 1A). The choice task was
based on the concurrent variable-interval schedules used to study Herrnstein’s matching law
(Herrnstein, 1961), which describes how many animals, including humans, choose amongst
alternatives that differ in value (Davison and McCarthy, 1988; Williams, 1988). Monkeys
allocate their choices in proportion to the relative probability or magnitude of rewards in this
type of task (Corrado et al., 2005; Lau and Glimcher, 2005). Here, we varied the relative
magnitude of rewards in blocks of roughly 130 trials while keeping the average probabilities
of reward for each alternative equal. Once a reward was arranged for an alternative, it remained
available until it was next chosen, similar to the reinforcement schedules used to elicit matching
behavior in free operant experiments (Nevin, 1969). We found that monkeys matched their
choices to the relative magnitude of rewards obtained from each alternative (Figure 1B).
Moreover, their choice behavior following transitions to different relative magnitudes of
reward quickly stabilized (Figure 1C). These results contrast with the behavior animals exhibit
under variable-ratio schedules, where rewards are not held between choices; under those
contingencies animals often learn to exclusively choose the better alternative, with little or no
variation in relative choice as a function of the relative value of that alternative (Herrnstein
and Vaughan, 1980; Samejima et al., 2005). That choice was lawfully related to relative reward
magnitude during matching indicates that the monkeys acquired and maintained information
about the consequences of their actions. This is consistent with the idea that their choices were
based on the relative values they placed on the two actions.
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We hypothesized that caudate PANs encode the values associated with specific actions.
However, a correlation between neuronal activity and value does not necessarily mean that a
neuron participates in the action selection. Identifying neurons that could be related to action
selection requires distinguishing between what we term action-value and chosen-value. The
difference between these two value representations is illustrated in Figure 2A. Action-values
represent the potential outcomes available to the decision-maker, and can be used to select
actions associated with these outcomes. Chosen-values cannot support action selection since
they do not unambiguously reflect the value of one of the available actions. However, neurons
encoding chosen-values may be useful for both evaluating and executing chosen actions.
Hypothetical responses action-value or chosen-value neurons are illustrated in Figure 2B,
where the responses are separated by the action chosen and whether the contralateral action-
value was greater than the ipsilateral action-value. Action-value neurons reflect the value
associated with a particular action irrespective of which action is selected. Chosen-value
neurons, on the other hand, reflect the reward value associated with the selected action. Padoa-
Schioppa and Assad (2006) first noted chosen-value activity in the orbitofrontal cortex (OFC),
where they found that OFC chosen-value neurons encoded the chosen-value of whichever
option was selected. It is important to note that the fundamental property of chosen-value
activity is value sensitivity that depends on choice. Thus, the hypothetical chosen-value neuron
illustrated in Figure 2B is only one of the possible types of chosen-value neuron. For example,
another chosen-value neuron might respond most for contralateral choices only when that
action is most valuable (high response in upper left quadrant) but be insensitive to the value
of the ipsilateral target when it is chosen (low response in all other quadrants). Both because
movement selectivity is common in the caudate nucleus and because we had no a priori reason
to exclude the possibility that different types of chosen-value neuron might occur, we tested
the possibility that different types of chosen-value neurons might be found in the caudate.

Relating caudate activity to blockwise estimates of value
We used the programmed reward magnitudes set by the reinforcement schedule to generate
estimates of the chosen-values and action-values for each session (Figure 2A), which we refer
to as blockwise value estimates. Although these value estimates do not vary from trial to trial
as the animals’ internal estimates probably do, they have the advantage of being essentially
model free.

Individual PANs were active at idiosyncratic and highly repeatable times during each trial
(Hikosaka et al., 1989a; Lau and Glimcher, 2007). To analyze this activity, we identified the
time of peak activity for each neuron, and used the first times to half-maximal response
preceding and following this peak to define an analysis window. We used multiple linear
regression including blockwise value estimates as covariates to categorize individual neurons
into three exclusive populations: 1) non-value, 2) action-value or 3) chosen-value. We also
refer to non-value neurons that responded differentially according to movement direction as
choice-only (Figure 2B).

Neurons categorized as action-value and chosen-value are plotted in Figure 3. For each
category, the firing rates for two example PANs are plotted in each row, sorted by chosen action
and whether the contralateral action-value was greater than the ipsilateral action-value. Both
example action-value neurons are more active when the reward associated with the
contralateral target is larger than that associated with the ipsilateral target; however, the neuron
in Figure 3A exhibits this difference before the onset of the choice cues, whereas the neuron
in Figure 3B exhibits this difference after the onset of the choice cues. The two example chosen-
value neurons (Figure 3C–D) are more active when the ipsilateral target is chosen and that
target is associated with the larger reward. In contrast to action-value neurons, the neuron in
Figure 3C is also more active when the contralateral target is chosen and that target is associated
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with the larger reward; this neuron reflects the value of whichever action was selected. The
neuron in Figure 3D also differs from action-value neurons; its activity reflects the value of
the ipsilateral action when it is chosen (p<0.05, t-test) but does not reflect value when the
contralateral action is chosen (p>0.10, t-test). Figure 3E and 3F display neurons that were
direction selective (p<0.05, F-test) but not value sensitive (p>0.05, t-test). The examples in
Figure 3A–D show that different neurons can encode value at different points in a trial, from
before cue presentation to after saccade execution. They are also representative in illustrating
that neurons sensitive to value can exhibit additive changes in firing rate due to choice (Figure
3B).

We included a number of additional covariates in our regression analysis to protect against
potential confounds: the direction, latency and speed of movements (Itoh et al., 2003; Watanabe
et al., 2003) as well as reward outcome (Apicella et al., 1991). The parameters for these
additional covariates were estimated alongside the value covariates, and summarized in Table
1. A significant number of PANs encoded information about choice (i.e. movement direction)
and obtained reward in addition to value (Table 1).

We found that 62% of task-related PANs covaried significantly with action-value or chosen-
value (p<0.05, F-test). To summarize the regression analysis and examine how substantially
value influenced neuronal activity, we quantified the magnitude of firing rate changes due to
changes in value. For each neuron, we subtracted from the raw firing rate on each trial the
predicted effect due to all variables except value. This partial residual isolates the effect of
value on firing rate by holding constant the effects due to all other covariates. We then averaged
the partial residuals across trials and neurons for each category. Since neurons could increase
or decrease firing rates in response to value, we altered the sign of the effect for each neuron
so that the mean effect for all neurons increased for increasing contralateral value. To facilitate
comparisons with hypothetical responses (Figure 2B), we computed separate averages
according to the chosen action as well as to whether the contralateral action-value was greater
than the ipsilateral action-value (Figure 4A). Figure 4A also shows the mean effects for non-
value neurons, further separated into choice-only neurons (partial residuals computed for
choice rather than value), and neurons that did not respond differentially to choice (partial
residuals computed for value). The choice-only neurons are a useful reference since some PANs
respond selectively during saccade execution; the quadrant plot in Figure 4A shows a
contralateral bias in these neurons, which has been observed in the caudate (Hikosaka et al.,
1989a), and provides a scale against which the effects of value can be compared. At the
population level, blockwise variations in reward value change firing rates by approximately
the same amount as changes in firing rate due to different saccade directions. These results
indicate that a significant number of PANs were correlated with the reward value associated
with particular actions.

To further explore the differences between action-value and chosen-value neurons we
examined the partial residuals for individual neurons in each category. We computed an index
based on the mean effects used to generate the average quadrant plots in Figure 4A by summing
the absolute values of the row-wise differences of the quadrant plot for each neuron. This is a
simple summary of the column asymmetry of the quadrant plot for each neuron, which reflects
the degree to which a neuron with value sensitivity exhibits a dependence on the chosen action.
Action-value neurons should produce column asymmetry indices close to zero whereas chosen-
value neurons should produce column asymmetry indices greater than zero (Figure 2B). Note,
however, that it is possible for chosen-value neurons to exhibit smaller asymmetry indices for
weaker correlations with chosen-value. Figure 4B displays the asymmetry index for each
neuron separated by value representation. The distributions for action-value neurons and
chosen-value neurons show relatively little overlap, supporting the distinction between these
value representations. Also illustrated in Figure 4B are those chosen-value neurons that had
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significant coefficients for both chosen-values. We found that, unlike neurons in the OFC
(Padoa-Schioppa and Assad, 2006), 58% (15/26) of chosen-value PANs in the caudate were
significantly correlated with the chosen-value of only one action, while the remaining 42%
(11/26) were significantly correlated with the chosen-values of both actions (p<0.05, t-test for
both chosen-values). Thus, chosen-value PANs in the caudate are not homogenous, although
both of these types of chosen-value neuron are distinct from action-value neurons.

Relating caudate activity to trial-by-trial estimates of value
In the analysis above we used the blockwise reward magnitudes to approximate the monkeys’
internal value estimates. While simple, this approach has two limitations: 1) it ignores the
behavioral dynamics that occur within a block and 2) while it allows us to identify action-value
neurons, we cannot distinguish positive covariation with the contralateral action-value from
negative covariation with the ipsilateral action-value. This ambiguity arises because the two
reward magnitudes available to the monkeys in each block summed to a constant value by
design in our experiment (see Experimental Procedures). We addressed both of these
limitations by developing trial-by-trial estimates of the subjects’ internal valuations for each
action from the monkeys’ choice behavior. To accomplish this we fit a reinforcement learning
model to choice behavior to generate dynamic value estimates for each action (cf. Barraclough
et al., 2004; Dorris and Glimcher, 2004; Sugrue et al., 2004; Samejima et al., 2005). We used
these estimates to further explore the categorization we arrived at using the blockwise value
estimates described above, and to extend our observations by examining whether action-value
and chosen-value neurons covary with value estimates on a trial-by-trial basis.

Our behavioral model had three terms (Lau and Glimcher, 2005): 1) a linearly weighted sum
of past rewards 2) the magnitude of each of the currently available rewards and 3) a linearly
weighted sum of past choices. We have shown that this model accurately captures fluctuations
in behavior driven by stochastic reward delivery in our matching task (Lau and Glimcher,
2005). The function of the first term is to identify the weight a subject places on each previous
reward as a function of how long ago that reward was received. In practice, we have found that
this linear weighting function on rewards takes an exponentially decaying form with recent
rewards most strongly influencing current value estimates. This is what would be expected if
the monkeys used a simple prediction-error learning rule to estimate the value of each
alternative (e.g., Bayer and Glimcher, 2005). The second term simply encodes the magnitude
of the rewards available in each block of trials, and allows the model to predict a simple bias
(across the block) for the action associated with a larger reward. The third term captures the
influence of previous choices on a current choice. In practice, this linear weighting on past
choices captures features like the strong tendency of monkeys to alternate actions independent
of rewards. Importantly, incorporating past choices into our behavioral model allowed us to
accurately estimate the behavioral influence of past rewards and currently available rewards.
Furthermore, we are able to separate the behavioral effects of reward value (first two model
terms) from those of past choices (third term), which allowed us to test the hypothesis that
PANs encode the dynamic action-values and chosen-values associated with the available
choice alternatives.

We used the coefficients from this behavioral model related to reward value (the first two terms
described in the preceding paragraph)—fit separately to the choice data pooled across sessions
for each monkey—to generate dynamic reward-value estimates associated with each
alternative (Figure 5A). These estimates represent the fluctuating subjective preferences of the
monkeys due to stochastic rewards and are directly related to the probability that the subject
will make a particular choice on each trial. In a manner similar to the blockwise value estimate
analysis described above, we constructed dynamic action-values and dynamic chosen-values
for each alternative. We then performed a second regression for each neuron of the type
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described in the previous section, where we used the trial-by-trial estimates of action-value
and chosen-value instead of the blockwise estimates (see Experimental Procedures). We used
the neuronal categorizations from the blockwise analysis above to determine whether to
correlate the activity of a particular neuron with dynamic estimates of action-value or chosen-
value. Because we did not intentionally decouple blockwise values from dynamic values, these
value estimates were strongly correlated, which means we are unable to determine whether
dynamic values can produce fundamentally different categorizations of striatal neurons.
Therefore, the following analysis is conditional on our categorization using blockwise values,
which do not depend on a behavioral model.

Two example neurons, one action-value and one chosen-value, are shown in Figure 5B–C. For
each neuron the partial residuals for value are plotted against the dynamic value estimates for
each action, separated by chosen action. The distinction between action-value and chosen-
value made previously applies here; action-value neurons reflect the value of a particular action
irrespective of the chosen action, whereas chosen-value neurons exhibit value sensitivity that
depends on the action selected. The action-value neuron in Figure 5B is significantly correlated
with the contralateral action-value (left panel), but not the ipsilateral action-value (right panel).
Importantly, a correlation with contralateral action-value exists for both ipsilateral and
contralateral choices. The activity of the chosen-value neuron in Figure 5C is plotted as a
function of action-values rather than chosen-values to better illustrate the difference between
these value representations. Since chosen-values are equal to action-values when a particular
action is chosen (and zero otherwise), chosen-value neurons will only exhibit sensitivity for
the action-value associated with the action chosen. Thus, in Figure 5C, activity positively
covaries with contralateral value when it is chosen (red points in the left panel), but is not
sensitive to contralateral action-value when the ipsilateral target is chosen (green Xs in the left
panel). Instead, activity when the ipsilateral target is chosen positively covaries with ipsilateral
value (green Xs in the right panel), and not with action-value when the contralateral target is
chosen (red points in the right panel).

Across PANs, the results using dynamic value estimates are consistent with the categorization
obtained using blockwise value estimates. The great majority of action-value neurons identified
by our blockwise analysis (86%, 31/36) significantly covaried with dynamic action-values
(p<0.05, t-test). Importantly, since the dynamic action-values do not sum to a constant due to
stochastic variations in reward delivery (Figure 5A), we were able to identify whether
individual neurons responded to the value associated with a particular action. We found that
81% (25/31) of these action-value neurons selectively represented the value associated with
only one action (p<0.05 for only one action-value, t-test), similar to the example in Figure 5B.
For these neurons we defined the preferred action-value as whichever was significant. The
remaining six action-value neurons had significant coefficients for both action-values (for four
neurons one coefficient was roughly twice as large as the other but of the same sign, two neurons
had coefficients of opposing sign); for these neurons we defined the preferred action-value as
whichever had the larger absolute coefficient. We found that 61% (19/31) of action-value
neurons preferred contralateral action-values while the remainder preferred ipsilateral action-
values (not different from 50%, p>0.10, binomial test). Individual neurons either increased or
decreased their responses according to action-value, and we observed that 65% of action-value
neurons increased firing rate for the preferred action-value, while the remainder decreased
firing rate (not different from 50%, p>0.10, binomial test).

We found that 85% (22/26) of chosen-value neurons significantly covaried with dynamic
chosen-values (p<0.05, t-test). More of these neurons (77%, 17/22) significantly covaried with
the value associated with only one particular action (p<0.05 for either chosen-value, t-test), for
example, the chosen-value neurons in Figure 3. The remaining five neurons significantly
covaried with both chosen-values (p<0.05 for both chosen-values, t-test), for example, the
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chosen-value neuron in Figure 5C. The majority (77%, 17/22) of chosen-value neurons
preferred contralateral chosen-values while the remainder preferred ipsilateral chosen-values
(significantly different from 50%, p<0.05, binomial test). We observed that 55% of chosen-
value neurons increased firing rate for the preferred chosen-value, while the remainder
decreased firing rate (not different from 50%, p>0.10, binomial test).

A population summary is plotted in Figure 6, where each row represents the mean effect of
dynamic value on firing rate, averaged over neurons within a category. Before averaging, the
effect for those neurons with negative value coefficients was sign-reversed so that all the data
are presented as positive increases in firing rate with increasing preferred value. Figure 6 shows
that there is a robust encoding of dynamic value across our population of PANs for firing rate
changes associated with the preferred dynamic value for both action-value and chosen-value
neurons, and the data agree with the slope predicted by the regression coefficients for the
preferred value (black line = median coefficient from the dynamic value regression). The
relationship appears less clear for chosen-value neurons as a function of the non-preferred value
(right panel, middle row), a feature that arises in the plot from the fact that there is more than
one type of chosen-value neuron. The left panel of Figure 6B displays the mean effect as a
function of the preferred action-value. Since most of the chosen-value neurons reflect the
dynamic value for only one choice, and we aligned the data to the preferred action-value in the
left panel, this is reflected in a clearer mean effect across the population as a function of the
preferred action-value. The right panel of Figure 6B displays the mean effect as a function of
the non-preferred action-value. Again, since the bulk of caudate chosen-value neurons reflect
the value for only one choice, this is reflected in a smaller mean effect across the population
in the right panel.

The results presented so far are consistent with the idea that PAN activity tracks value
fluctuations due to stochastic reward delivery. However, since the dynamic value estimates are
linearly weighted versions of past and currently available rewards, they are inherently
correlated with the blockwise value estimates. Thus, demonstrating trial-by-trial covariation
requires further showing that PAN responses are not fully explained by the blockwise values.
We tested this by asking whether the covariation illustrated in Figure 6 was explained entirely
by blockwise value. For individual neurons, we fit the partial residuals for the value covariates
with a linear model including blockwise values and dynamic values as covariates. If the
blockwise values fully accounted for the covariation between PAN responses and value, then
only the coefficient for blockwise values would be significant, there would be no additional
explanatory power offered by the dynamic values. On the other hand, a significant coefficient
for dynamic value would indicate that PAN responses covaried on a trial-by-trial basis with
the dynamic value estimates. For the action-value and chosen-value neurons that were
significantly correlated with dynamic action-values and chosen-values, respectively, we found
that 58% (18/31) action-value neurons and 36% (8/22) chosen-value neurons were significantly
correlated with dynamic value (p<0.05, F-test). Thus, some value-sensitive PANs were
correlated with the trial-by-trial value estimates generated by our behavioral model.

Taken together, these results provide further evidence that a significant number of PANs
encode the reward values of actions. By using a behavioral model to generate dynamic value
estimates, we also found correlations that suggest that, at the population level, striatal PANs
respond in a monotonic fashion to trial-by-trial variations in the reward value associated with
specific actions.

Temporal evolution of value representations
We also examined the response profiles of action-value and chosen-value neurons to determine
whether response time further differentiated action-value and chosen-value activity in the
caudate nucleus. The average population responses are plotted in Figure 7A. Action-value
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neurons were more active than chosen-value neurons prior to target acquisition, and this
relationship reverses during reward delivery. At the individual neuron level (Figure 7B), a
difference between action-value and chosen-value neurons is supported by the fact that the
median peak response time was significantly earlier for action-value neurons (−58 ms vs. +393
ms relative to target acquisition; p<0.05, Mann-Whitney U-test).

We further examined neural responses across the population using smaller temporal windows.
For each neuron, we fit the firing rate in 250 ms non-overlapping windows with the same model
used above to categorize the neurons. Activity was categorized as action-value, chosen-value
or non-value, and the results were tallied across the population (Figure 8). Action-values were
represented primarily before a choice was made, peaking before saccade execution. Chosen-
value activity peaks following saccade execution, with significantly more chosen-value activity
than action-value activity late in the trial (p<0.05, z-test for differences in proportions from
the same sample; Wild and Seber, 2000).

These data indicate that action-value and chosen-value representations in the caudate nucleus
have different temporal profiles. The predominantly presaccadic representation of action-
values is consistent with this activity biasing action selection, whereas the predominantly
postsaccadic representation of chosen-values is consistent with this activity being related to
evaluating the outcomes of particular actions.

Discussion
We found that roughly 60% of striatal PANs were modulated by the reward values associated
with two different actions in a choice task based on Herrnstein’s matching law (Herrnstein,
1961). The responses of individual PANs covaried with two distinct types of value: action-
value (Samejima et al., 2005) and chosen-value (Padoa-Schioppa and Assad, 2006). Action-
values represent the desirabilities of actions, and can be used to make choices (Luce, 1959;
Sutton and Barto, 1998). Chosen-values depend on the action selected, and may be useful for
both for executing actions and evaluating the consequences of those actions. PAN activity
correlated with each of these value types emerged at different times within a trial. Action-
values were more frequently correlated with PAN activity early in trials, before our subjects
revealed their choices. In contrast, correlations with chosen-values tended to occur following
saccade execution. These results suggest that the striatum participates in two different aspects
of reinforcement learning; in promoting the selection of particular actions as well as in
evaluating the outcomes associated with the chosen action.

Action-values
Our results compliment and extend existing studies of the caudate that have used forced-choice
tasks. Hikosaka and colleagues manipulated which instructed saccade would be rewarded and
found that some caudate PANs signal whether or not a reward can be expected for executing
particular eye movements (Kawagoe et al., 1998). Further, they found that a subset of these
PANs respond more when a reward is predicted for a particular saccade regardless of which
movement is instructed (Lauwereyns et al., 2002a,b). Hikosaka and colleagues propose that
these PANs signal the motivational context of the instructed movement, and that these neurons
could bias the speed and latency of eye movements by disinhibiting the superior colliculus via
the substantia nigra pars reticulata (Hikosaka et al., 2006). We found that action-value neurons
encode the value of available movements in a choice context, suggesting that these neurons
parametrically represent the value of all potential saccades. PANs may play a role in action
selection as well, with projections to the thalamus and midbrain biasing choices in addition to
modulating movement metrics.
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Samejima et al. (2005) used a hand-movement choice task to show that PANs in the putamen,
as well as in a portion of the caudate nucleus, are correlated with action-values. Our results
suggest a similar representation: 1) the majority of oculomotor PANs that were significantly
modulated by action-value were correlated with the action-value associated with only one of
the two available movements, 2) contralateral action-value PANs as well as ipsilateral action-
value PANs were found in the same hemisphere and 3) few PANs were correlated with the
difference between the action-values associated with the two movements. One difference
between these two sets of findings is that we found that the majority of action-value neurons
(86%) also exhibited some degree of direction selectivity; neurons frequently combined action-
value information with movement selectivity. In contrast, Samejima et al. (2005) found that
only 22% of action-value neurons exhibit movement selectivity.

There are a number of possible explanations for this difference. First, Samejima et al. recorded
in both the putamen and caudate nucleus while monkeys indicated their choices with hand
movements. The caudate nucleus contains oculomotor neurons (Hikosaka et al., 1989a) but
few neurons associated with skeletomotor movements. Perhaps they did not observe movement
selectivity in the caudate because their monkeys did not indicate choice using eye movements.
Second, we searched for neurons using an instructed saccade task. It is possible that we recorded
from fewer action-value neurons without movement selectivity because those neurons may
have been silent during the instructed saccade task. Despite this difference, both sets of results
suggest that some striatal PANs encode action-values.

In many choice situations outcomes are linked to specific stimuli rather than actions. The
reward values associated with specific stimuli have been referred to as offer-values (Padoa-
Schioppa and Assad, 2006). Offer-values differ from action-values in that the former reflect
the reward value of an alternative independent of action. Neurons encoding offer-value have
been identified in the OFC (Padoa-Schioppa and Assad, 2006), and our data do not exclude
the possibility that striatal PANs may encode offer-values when stimulus value and action are
dissociated. Indeed, evidence suggests that some PANs are modulated by stimulus color when
color rather than movement direction predicts reward (Lauwereyns et al., 2002a).

Chosen-values
We also found that roughly 25% of PANs convey information about chosen-values, a type of
encoding not previously identified in the basal ganglia. This class of signal may be important
for learning from the consequences of actions; Morris et al. (2006) showed that dopamine
neurons in the primate midbrain encode a specific prediction error, the difference between
obtained reward and chosen-value. Their data support reinforcement learning models that use
the difference between obtained reward and chosen-value as a teaching signal (Niv et al.,
2006; see also Roesch et al., 2007). Our observation that some PANs encode chosen-value
suggests that these neurons may convey chosen-value information to dopamine neurons via
projections to the midbrain. The striatum is chemically divided into regions known as
striosomes surrounded by a more diffuse matrix (Graybiel and Penney, 1999); both contain
PANs, but striosomal PANs project to the substantia nigra pars compacta (Gerfen et al.,
1987; Joel and Weiner, 2000). This pathway may be specialized for computing prediction errors
that promote learning about rewarded actions (Doya, 2000; Houk et al., 1995). We do not know
whether our chosen-value PANs reside in the striosomes, but these signals are necessary for
computing the prediction error that has been observed in primate dopamine neurons (Morris
et al., 2006).

The chosen-value activity we observed might be inherited from the frontal cortex, although
there are some differences between these two areas. Neurons in the OFC, which projects to the
striatum (Selemon and Goldman-Rakic, 1985), encode chosen-value signals when monkeys
are choosing between juice rewards (Padoa-Schioppa and Assad, 2006). The chosen-value
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PANs we observed may reflect information passing from the OFC through one of the parallel
basal ganglia pathways (Alexander et al., 1986). However, the OFC neurons represent chosen-
value irrespective of the saccade direction used to indicate choice. We found that some caudate
PANs reflected the chosen-value for only one saccade direction. This difference may reflect
our task; the alternatives were associated with particular saccades. However, it may also reflect
a feature of the chosen-value representation in the basal ganglia. It is possible that the basal
ganglia is primarily involved in decisions between actions rather than between more abstract
options, and future work dissociating action and outcomes will help to clarify this issue.

Finally, our findings of chosen-value signals in the caudate may also extend our understanding
of activity observed in forced-choice tasks. Ding and Hikosaka (2006; see also Kobayashi et
al., 2007) showed that some PANs exhibit response-dependent reward activity in an instructed
saccade task. They found that some PANs respond for any movement that yielded a reward,
while other PANs respond for movements in only one of the directions that yielded reward. It
is possible that our chosen-value PANs are members of the same population, and that some of
the neurons Hikosaka and colleagues recorded from may encode chosen-value in a continuous
fashion.

Reinforcement learning
When rewards associated with stimuli or actions change, value estimates can be updated
through experience. A number of theories describe how the values of actions may be learned,
and decision-making models incorporating these algorithms are efficient in a variety of
contexts (e.g., Sugrue et al., 2004). Circuits within the basal ganglia may instantiate
components of these learning models (Daw and Doya, 2006; Houk et al, 1995). Midbrain
dopamine neurons, for example, appear to encode a reward prediction error (RPE), a critical
component of reinforcement learning models (Schultz et al., 1997). Functional magnetic
resonance imaging (fMRI) studies show that blood oxygenation level dependent (BOLD)
changes in the striatum are correlated with RPEs predicted by reinforcement learning models
(McClure et al., 2003; O’Doherty et al., 2003). Interestingly, the site of BOLD changes depends
on whether rewards are contingent on actions; correlations are observed in the ventral striatum
during passive learning (McClure et al., 2003; O’Doherty et al., 2003), whereas correlations
are observed in the dorsal striatum when rewards are contingent on actions (O’Doherty et al.,
2004; Haruno and Kawato, 2006). This is consistent with the observation that the caudate
nucleus is active only when there is a perceived contingency between actions and outcomes
(Tricomi et al., 2004). Correlations with RPEs are thought to reflect inputs from dopamine
neurons, consistent with the hypothesis that corticostriatal plasticity promotes the selection of
rewarded actions (Houk et al., 1995; Reynolds et al., 2001). Our electrophysiological
observations are consistent with this mechanism, but also point to the existence of a temporally
distinct signal that reflects the value of the chosen action.

Conclusions
Our data support the hypothesis that striatal PANs encode the values of potential actions,
reflecting what subjects learn from the outcomes of past actions. These neurons could promote
the selection of rewarded actions through the outflow of the basal ganglia to the thalamus and
midbrain. We also observed a novel type of striatal value representation; some PANs encode
the reward values associated with the chosen action. This chosen-value activity occurred later
in the trial, peaking after movement execution, which suggests that some striatal PANs may
play an evaluative role in learning itself.
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Experimental Procedures
Subjects & surgery

Two rhesus monkeys (Macaca mulatta) were used as subjects (Monkey B and Monkey H, 10.5
kg and 11.5 kg). All experimental procedures were approved by the New York University
Institutional Animal Care and Use Committee and performed in compliance with the Public
Health Service’s Guide for the Care and Use of Animals.

Prior to training, each animal was implanted with a head-restraint prosthesis and a scleral eye
coil. A second surgical procedure was performed to implant a recording chamber (2 cm
diameter; Crist Instruments) centered over the body of the caudate nucleus (−3 mm behind the
anterior commisure), 5 mm lateral to the midline, and oriented perpendicular to the stereotaxic
horizontal plane. Surgical procedures were performed using aseptic techniques under general
anaesthesia (Platt and Glimcher, 1997).

Experiments were conducted in a dimly lit sound-attenuated room. Eye movements were
measured using a scleral coil (Fuchs and Robinson, 1966) and sampled at 500 Hz. Visual stimuli
were generated using light-emitting diodes (LEDs) 145 cm from the monkeys’ eyes.

Behavioral task
The monkeys performed a choice task while we varied the rewards associated with two
alternatives (Lau and Glimcher, 2005). Each trial started with a 500 ms 500 Hz tone, after
which the monkey was given 700 ms to align its gaze within 3° of a yellow LED in the center
of the visual field. After maintaining fixation for 400 ms, two peripheral LEDs (one red and
one green) were illuminated on either side of the centrally located fixation point. One second
later, the central fixation point disappeared, cueing the monkey to choose one of the peripheral
LEDs by shifting gaze to within 4° of its location. If a reward had been scheduled for the chosen
target, it was delivered 300 ms after the eye movement was completed (defined as when the
eye entered the eccentric target window). The timing and appearance of each trial was identical
to the monkey whether or not reward was delivered, and the monkey was required to maintain
fixation for the duration of the reward epoch (an additional 100–300 ms depending on the
reward magnitude) in order for the trial to be considered correctly completed.

Rewards were scheduled using independent and equal arming probabilities for each alternative
(p=0.15), meaning that an alternative that is not armed on the current trial has a probability of
0.15 of being armed on the next trial. On any trial both alternatives, neither alternative, or only
one alternative might be armed to deliver a reward. Importantly, if a reward was scheduled for
the alternative the monkey did not choose, it remained available until that alternative was next
chosen (no information regarding scheduled rewards was given to the monkeys). This produces
contingencies similar to those faced by animals performing under concurrent variable-interval
schedules (Nevin, 1969). We did not impose a changeover delay or any other type of penalty
for switching between the choice alternatives.

Water delivery was controlled by varying the amount of time a solenoid inline with the water
spout was held open. Over the range of magnitudes used, solenoid time was linearly related to
the volume of water dispensed, and found to be stable across sessions. In each session, the
monkeys performed a series of trials under 4 different conditions in which the ratio of reward
magnitudes took one of four values (3:1, 3:2, 2:3, 1:3). The reward magnitudes were
constrained to sum to a constant that was the same (0.8 ml) for each ratio in order to minimize
fluctuations in motivation from block to block. The monkeys performed blocks of trials at the
different relative reward magnitudes. The number of trials in a block was 100 trials plus a
random number of trials drawn from a geometric distribution with a mean of 30 trials.
Transitions between blocks of trials with different reward ratios were unsignalled. When blocks
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were switched, the larger reward always changed spatial location, but its magnitude was
variable; the two possible ratios to switch to were chosen with equal probability.

We recorded a trial as aborted if the monkey failed to align its gaze within the required distance
of the fixation or cue LEDs, if an eye movement was made prematurely, or if fixation at the
peripheral LED was broken prematurely. When an abort was detected, any illuminated LEDs
were extinguished immediately, and the next trial began after a 3000–6000 ms time-out.

Electrophysiological recording
For recording, an X-Y positioner (Crist Instruments) and a microdrive (Kopf Instruments) were
mounted to the recording chamber. A 23-gauge sharpened guide tube housing a tungsten steel
electrode (2–4 MΩ, FHC) was used to pierce the dura. The guide tube was lowered until its
tip was above or just lateral to the cingulate sulcus as predetermined using MRI (3T; Siemens)
in Monkey B and B-mode ultrasound imaging (General Electronics; Glimcher et al., 2001) in
Monkey H. In the caudate, we distinguished PANs from tonically active neurons based on
differences in spontaneous activity, spike waveform, and response to reward (Kimura et al.,
1984; Hikosaka et al., 1989a; Aosaki et al., 1994). If we judged a PAN to be responsive in a
delayed saccade task—by observing a phasic response during a trial—we collected data during
the matching task. If the neuron was tuned to the location of targets placed in the visual field
or saccadic eye movements, we placed one of the target LEDs at the approximate location that
elicited the largest response and the other in the opposite hemifield, otherwise the target LEDs
were positioned to the left and right of the fixation point at a eccentricity of 12–16°.
Approximately 25% of PANs we encountered were not responsive during the delayed saccade
task. This underestimates the number of non-responsive neurons since PANs have low baseline
firing rates (0–3 spks/s; eg., Hikosaka et al., 1989a), and we likely overlooked many non-
responsive PANs.

Recording sites were verified histologically in one monkey. Some of the neurons included in
this report were also recorded during an instructed saccade task, and structural MRI and camera
lucida drawings can be found in a paper focusing on that task (Lau and Glimcher, 2007).

Data analysis
The goal of our analysis was to determine whether the activity of individual PANs covaried
with changes in action-value or chosen-value. These value representations are related, and we
used multiple linear regression to differentiate between them. We used the programmed reward
magnitudes to estimate the values the monkeys’ associated with each action in our blockwise
analysis. Value covariates for the regression were constructed in the following manner. The
action-values of the contralateral ( AVC ) and ipsilateral ( AVI ) alternatives were defined as
the programmed reward magnitudes associated with each of the alternatives. The only
difference between the programmed reward magnitudes and these blockwise action-values was
that at block transitions, the action-values changed only after the monkey had received the first
reward at the new programmed reward magnitudes. This is to account for the fact that the
monkey could not have known the reward magnitudes were changed until actually receiving
a reward. The chosen-values of the contralateral ( CVC ) and ipsilateral ( CVI ) alternatives
were defined as equal to AVC and AVI when the monkey chose the associated action, and zero
otherwise (Figure 2A). That is, CVC = AVC × AC and CVI = AVI × A I where AC and A I are
binary variables indicating contralateral and ipsilateral choices respectively. The responses of
individual neurons were fit using the following multiple linear regression,

(1)
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where y is the firing rate. Bold-faced variables represent vectors where each element is the
corresponding variable on a particular trial; for example, y = [y1, y2…yN ] where N is the
number of trials. The constant term is implicit since the contralateral and ipsilateral choices
sum to unity. Neurons were categorized as follows: 1) non-value if both α3 and α4 were not
significant, 2) action-value if α3 was significant but α4 was not significant and 3) chosen-
value if α4 was significant. Statistical significance for this categorization was determined using
incremental F-statistic with an alpha level of 0.05. Movement selectivity was assessed by
testing whether α1 and α2 were equal (F-test).

To see how Equation 1 distinguishes between action-value and chosen value neurons, note that
CVC and CVI do not overlap; one is positive whenever the other is zero and vice versa (Figure
2A). By design, the magnitudes of the rewards available from the two alternatives sum to a
constant (AVC + AVI = 0.8 ml) within and across blocks, which means that AVC = CVC + 0.8
× A I − CVI and AVI = CVI + 0.8 × AC − CVC. Thus, an action-value neuron (α3 ≠ 0 and α4
= 0 in Equation 1) can be rewritten using substitution as

where , and a chosen-value neuron (α4 ≠ 0 in Equation 1) can be rewritten
as

where  and . Note that while Equation 1 can determine whether a
neuron significantly covaries with action-value, it cannot distinguish covariation of firing rate
with AVC from covariation of firing rate with AVI. Since AVC and AVI sum to a constant, a
model with α3 for AVC is equivalent to a model with −α3 for AVI. In order to determine which
of the alternatives an action-value neuron encodes, we used a reinforcement learning model
(see below) to generate behavioral value estimates that discriminated between contralateral
and ipsilateral action-values.

We further assessed the value representations in single neurons using a second regression that
incorporated dynamic value estimates derived from a model of choice behavior. Our behavioral
model predicted trial-by-trial choices based on linear weightings of past rewards, currently
available rewards, and past choices (Lau and Glimcher, 2005). We used the coefficients of this
behavioral model—fit separately to the choice data pooled across behavioral sessions for each
monkey—to estimate the expected value (to the monkey) of each alternative on trial-by-trial
basis. From these trial-by-trial value estimates, we constructed another set of regression
covariates. Just as for the regressions above, we have action-values (  and ) and chosen-
values (  and ) for each alternative, although in this case, these values represent
dynamic estimates of these properties. For chosen-value neurons, we fit the following model:

(2)

For action-value neurons, we fit the data using trial-by-trial estimates of action-value as
covariates:

(3)

Since the trial-by-trial action-value estimates vary according to the stochastic delivery of
rewards to each alternative,  and  are linearly independent and do not sum to a constant,
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which allows us to determine whether individual neurons encode the action-value of the
contralateral or ipsilateral alternative, or some mixture of both.

We included additional covariates to Equations 1–3 to protect against potential confounds due
to variables correlated with value. To control for correlations with movement metrics, we
included the reaction time (RT) and peak velocity (VEL) of the eye movement measured on
each trial. We also included a covariate for the magnitude of the reward obtained (R) on each
trial. This ensured that neurons that simply responded to obtained reward were not erroneously
deemed value neurons. For the regression analyses using a tailored temporal window for each
neuron we included R if the peak response of a neuron followed saccade completion. For the
regression analyses using smaller fixed windows throughout the trial, we included R in all
windows following the target acquisition. Coefficients for these additional variables were fit
simultaneously with the other covariates to ensure that the occasional correlations between
covariates were accounted for.

In order to examine in detail the effect of specific variables on firing rate, we used partial
residuals, which are model residuals that are not adjusted for the effect of the particular
covariate of interest (Larsen and McCleary, 1972). For example, partial residuals for
contralateral action-value  were be computed as follows

(4)

Where α̂1–7 are the coefficients estimated from fitting Equation 3 with the movement metrics
and obtained reward. Plotting ε3 against  is known as a partial residual plot, and the
coefficient for action value (α̂3), is equal to the slope of the best-fit line through the residuals
in this plot. Partial residual plots directly reveal the relationship between the variable of interest
and firing rate, after controlling for the influence of all other variables in the regression. We
term these partial residuals the effect of a particular variable on firing rate, since they indicate
the change in firing rate (in the same units of spks/s as the original response) due to that variable.

In the first portion of this report, we analyzed the value representations of individual neurons.
To do this, we estimated statistics using a single temporal window tailored for each neuron
(Lau and Glimcher, 2007). First, we estimated spike density functions for each movement
direction using a Gaussian smoothing window. The degree of smoothing was chosen to
maximize the information gain per spike (Paulin and Hoffman, 2001; see Supplementary
materials) for each neuron. Next, the peak response for each neuron was estimated as the
maximum of whichever spike density function (corresponding to contralateral or ipsilateral
choices) had the largest response. Finally, we defined an analysis window using the first times
to half-maximum preceding and following the peak response.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Matching task and behavior. A) On each trial monkeys chose between two alternatives by
shifting gaze to one of two peripheral targets. Rewards were delivered probabilistically, with
one alternative yielding a larger reward than the other in each block. Reward contingencies
were constant over blocks of trials and switched unpredictably. B) Monkeys allocate choices
according to the relative magnitude of the available alternatives (mean ± 1 SD). The data points
represent an average across sessions and monkeys. The four data points correspond to the 4
reward ratios used. C) Stable choice behavior emerges quickly following transitions to different
ratios. Choice behavior from both monkeys aligned on the trial that the first reward after a
block transition was obtained (smoothed with a 5-point moving average). The data were
compiled across sessions with respect to the alternative associated with the larger reward
following the transition, and averaged separately for the different post-transition ratios (3:1 is
averaged together with 1:3 and 3:2 is averaged together with 2:3). The horizontal lines illustrate
strict matching behavior (Herrnstein, 1961).
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Figure 2.
Value representations and neuronal categories. A) The top panel shows a segment of actual
behavior, including a block transition. The red and green points indicate individual choices to
the contralateral and ipsilateral alternatives respectively. The value of each point on the ordinate
indicates the magnitude of the obtained rewards. Since rewards were delivered
probabilistically, there are frequently trials that are not rewarded. The middle panel illustrates
value representations inferred from average behavior. Plotted are blockwise estimates of
action-values and chosen-values corresponding to the choice behavior shown in the top panel.
B) Exemplars of hypothesized neuron types. Note that the figure illustrates only one type of
chosen-value neuron (see text for details).
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Figure 3.
Example neurons from the categories illustrated in Figure 2. A–B) Action-value neurons
(Gaussian smoothing σ =62ms and 23 ms). C–D) Two types of chosen-value neuron, one that
is sensitive to the reward associated with both actions, and the other sensitive to the reward
associated with only one action when it is chosen (σ =42ms and 63 ms). E–F) Choice-only
neurons (σ =47ms and 48 ms). The plots are spike density functions (mean ± 1 SEM) sorted
according to two factors, choice (movement direction) and relative action-value. Reward onset
is denoted by r and was a fixed time relative to saccade completion. Cue onset is denoted by
c is the average cue onset time relative to saccade completion.
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Figure 4.
Population summary of value sensitivity. A) Mean effect averaged for different neuronal
categories. The radius of each symbol is proportional to the mean effect listed in the corner of
each quadrant in each plot (in units of spks/s). B) Asymmetry index for individual action-value
and chosen value neurons. This index is calculated by summing the absolute values of the row-
wise differences of the quadrant plot for each neuron. Each tick represents one neuron (jittered
vertically for visibility), and the triangles indicate the median for each distribution. The dashed
ticks indicate those chosen-value neurons that reflected the chosen-values of both actions.
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Figure 5.
Caudate neurons are correlated with dynamically estimated values. A) Trial-by-trial action-
value estimates corresponding to the example behavior illustrated in Figure 2A. These
estimates are plotted in units of log-odds (left axis), which is logarithm of the ratio formed by
probability of choosing one action divided by the probability of choosing the alternative action.
The programmed reward magnitudes are plotted as lighter lines (right axis). B) Example action-
value neuron. The left and right panels plot the effect of changes in contralateral and ipsilateral
action-values on firing rate respectively, after subtracting the effects due other regression
variables (see Experimental Procedures). The symbols distinguish choices to each alternative;
on the left, the red points extend further along the abscissa since the monkey more oftepn chose
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the contalateral alternative when its value was high (vice versa for the green points on the right
panel). The black lines illustrate the slope predicted from the regression analysis using dynamic
values generated by a behavioral model. Slopes for the separate choices are 1.71 (contra) and
1.85 (ipsi) for the left panel and −0.14 (contra) and −0.05 (ipsi) for the right panel. C) Example
chosen-value neuron, conventions as in C). Slopes for the separate choices are 10.3 (contra)
and 0.79 (ipsi) for the left panel and 0.69 (contra) and 6.62 (ipsi) for the right panel.
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Figure 6.
Population summary of value encoding. A) Action-value. B) Chosen-value. C) Non-value.
Each row represents the mean effects of changes in action-value on firing rates, binned and
averaged over all trials and all neurons for each category. The averages were constructed with
respect to the preferred action-value, which was defined as the alternative for which the
absolute value coefficient was largest. The black line in each panel is the median value
coefficient for the corresponding panel.
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Figure 7.
The temporal profiles of action-value and chosen-value neurons are different. A) The average
population response for action-value and chosen-value PANs (thick line = mean, thin lines =
±1 SEM). For each neuron, spike density functions were estimated from the trials in which
saccades were made in the direction that elicited the largest response (averaged over blocks).
The individual spike density functions were peak-normalized (divided by maximum activity)
and then averaged to produce the population response. B) Individual spike density functions
(peak-normalized) for action-value and chosen-value neurons, sorted by peak response time.

Lau and Glimcher Page 25

Neuron. Author manuscript; available in PMC 2009 May 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Sliding-window regression summary. The percentage of significant neurons is aligned to cue
onset and reward onset in the left and right panels, respectively. The non-overlapping 250 ms
bins where the proportion of significant neurons differs for the two curves are indicated with
an asterix (one asterix indicates p<0.05 and two indicates p<0.01, z-test).
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