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Robust Score Statistics for QTL Linkage Analysis

Samsiddhi Bhattacharjee,1 Chia-Ling Kuo,2 Nandita Mukhopadhyay,1 Guy N. Brock,3

Daniel E. Weeks,1,2 and Eleanor Feingold1,2,*

The traditional variance components approach for quantitative trait locus (QTL) linkage analysis is sensitive to violations of normality

and fails for selected sampling schemes. Recently, a number of new methods have been developed for QTL mapping in humans. Most of

the new methods are based on score statistics or regression-based statistics and are expected to be relatively robust to non-normality of

the trait distribution and also to selected sampling, at least in terms of type I error. Whereas the theoretical development of these sta-

tistics is more or less complete, some practical issues concerning their implementation still need to be addressed. Here we study some

of these issues such as the choice of denominator variance estimates, weighting of pedigrees, effect of parameter misspecification, effect

of non-normality of the trait distribution, and effect of incorporating dominance. We present a comprehensive discussion of the theo-

retical properties of various denominator variance estimates and of the weighting issue and then perform simulation studies for nuclear

families to compare the methods in terms of power and robustness. Based on our analytical and simulation results, we provide general

guidelines regarding the choice of appropriate QTL mapping statistics in practical situations.
Introduction

Recently, a number of new methods have been developed

for quantitative trait locus (QTL) mapping in humans by

means of general pedigrees. Most of these are based on

score statistics or regression-based statistics and attempt

to achieve the power of the variance component likeli-

hood-based methods1,2 while retaining the robustness

and computational simplicity of the original Haseman El-

ston regression.3 In principle, these methods should be

preferred over the traditional variance components (VC)

approach, which is extremely sensitive to the normality as-

sumption (e.g., see Allison et al.4). These new methods are

theoretically expected to be relatively robust to non-nor-

mality of the trait distribution and also to selected sam-

pling. QTL mapping in humans is typically employed for

studying disease-related traits and hence selected sampling

schemes are common, making score statistics the obvious

choice. However, the literature on these statistics has

mostly focused on theoretical development with less atten-

tion given to practical issues and implementation. In this

paper we address several of the most important practical

issues in the computation and use of these statistics.

The score test is a computationally faster, locally most

powerful, and robust alternative to the likelihood ratio

test. In the context of QTL mapping, this test was proposed

by a number of authors (e.g., see5–9). The score test statistic

is simply the partial derivative of the VC likelihood with re-

spect to the ‘‘linkage parameter’’ evaluated under the null

hypothesis (no linkage) and standardized by its null stan-

dard deviation or an estimate thereof. In this article, we re-

fer to the unstandardized score as the ‘‘score function’’ or

the ‘‘numerator’’ and to the standardizing factor as the ‘‘de-

nominator.’’ The aforementioned authors used slightly dif-

ferent parameterizations of the VC likelihood to arrive at
the same general formula of the score function for an arbi-

trary pedigree. The score function remains the same under

a broad class of ascertainment schemes (namely ascertain-

ment through phenotype only).9,10 For sibling pairs, the

score function reduces to other statistics like the statistic

of Sham and Purcell,11 which were derived independently

as direct ways to improve the power of the Haseman-Elston

method by incorporating trait squared sums. Similarly, for

general pedigrees, an apparently novel statistic12 was de-

rived by a reverse regression approach (regression of IBD

on trait information). A number of the statistics, including

the VC method, score statistics, and the reverse regression

method,12 were unified into a common GEE-based frame-

work.13,14 In particular, their calculations14 imply the ex-

act equivalence of the numerators of the reverse regression

statistic12 and the score statistic. They also considered the

issue of non-Gaussian traits and proposed a numerator

incorporating higher moments, which was shown to be

robust to non-normality. They considered some higher-

moment-based statistics in their simulation study, among

a number of other statistics including the VC, score statis-

tics, and the reverse regression statistic.12 Although their

simulations indicate the superiority of higher-moment-

based methods for population samples (of Gaussian and

non-Gaussian traits), it is not clear whether the higher-

moment versions should be preferred over the usual score

statistic numerator for selected samples, where accurate

trait parameter estimates may not be available.

For the score test to be robust to distributional assump-

tions, an empirical variance estimate should be used in

the denominator to standardize it. This is because the use

of empirical variances ensures that the statistic follows an

asymptotically normal distribution (by the central limit

theorem) and hence preserves correct type I error even if

the assumed model is wrong. A number of different
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denominator variants have been proposed (e.g., see9,12),

ranging from partly to fully empirical variance estimates.

Some of these are consistent estimators for the null vari-

ance of the score statistic, whereas others are consistent

for the true variance. Some condition on the trait values

whereas others condition on the identity by descent

(IBD) information. The choice of an appropriate denomi-

nator is an extremely important issue because it directly af-

fects the power of the linkage statistics. There have been

some simulation studies (for selected sibling pairs)15,16 to

investigate denominator variants. For population samples

of sibships, some simulations have been conducted,14 in

which a few denominator variants were considered, among

other issues. Here again, a comprehensive evaluation of

the denominators is required—particularly for selected

samples—to identify the best combinations of numerator

and denominator in terms of power and robustness.

Traditionally, most QTL-mapping methods neglect the

effect of dominance. This is partly because of the computa-

tional simplicity under an additive assumption and also

because including dominance leads to a loss of power un-

less the dominance effect is large enough. Two-degree-of-

freedom (2 d.f.) score statistics to incorporate dominance

have been suggested by a number of authors (e.g.,

see17,18). The recent simulation study14 included a 2 d.f.

variance component statistic but not the score statistic.

The results of that study indicated that the gain in power

of the 2 d.f. VC statistic for a model exhibiting strong dom-

inance may be more than the loss of power when the

model is additive. Similar results were reported for a 2 d.f.

score statistic in a previous study.18 Appropriately con-

structed 2 d.f. score statistics would allow for dominance

and will retain other attractive properties such as robust-

ness to selected sampling and non-normality. Here we

study the performance of 2 d.f. score statistics vis a vis their

1 d.f. counterparts by using simulation across a variety of

models.

Like most linkage mapping statistics, score statistics re-

quire some nuisance parameters, namely the population

trait mean, variance, and correlation between relative

pairs. The higher-moment score statistics require two ex-

tra nuisance parameters, the skewness and kurtosis of

the trait distribution. These parameters, often called the

‘‘segregation parameters,’’ are independent of the ‘‘linkage

parameters,’’ but specifying incorrect values for these pa-

rameters may affect the power of the linkage statistic ad-

versely. In a selected sampling situation, or when the sam-

ple sizes are small, it is difficult to obtain reliable estimates

of these parameters. There have been a few studies (e.g.,

see10,15,16) on the effect of misspecification of these pa-

rameters on the performance of the score statistics. These

studies have generally concluded that some statistics are

more sensitive than others to parameter misspecification.

They also noted that misspecification of parameters (partic-

ularly the trait mean) can have a significant effect on the

power of the score statistics. Here we conduct simulations

to identify statistics robust to parameter misspecification.
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An important issue that has not been dealt with in the

literature at all is how to combine pedigrees of different

types in an overall score statistic for a data set. Pedigrees

of different sizes and structures have different powers to

detect linkage, and thus it is natural to think about giving

different weights to different pedigrees in an overall statis-

tic. Theoretically, score statistics for individual pedigrees

should simply be added (not weighted) to get a score statis-

tic for the entire data set. This is because the nonstandar-

dized scores are on the same linear scale in terms of local

power. However, in reality, when conducting a genome

scan for a QTL, it would be best to get as much power as

possible even for nonlocal alternatives (which the likeli-

hood ratio variance component test achieves at the cost

of computational complexity and robustness). A weighted

linear combination of pedigree scores may achieve im-

provement in power, for nonlocal alternatives, while pre-

serving close to optimal power for local alternatives. We

address this issue with some analytical calculations as

well as limited number of simulations.

All of the simulations in this paper focus on nuclear fam-

ilies, but most of the conclusions generalize to extended

pedigrees as well (see Discussion).

Material and Methods

Theory
Notation

Let us consider a data set consisting of K types of pedigrees with nk

pedigrees of type k for k ¼ 1, ., K, each having sk pedigree mem-

bers. Let yki, Mki, and Pki denote, respectively, the vector of pheno-

types, the marker data, and the matrix of estimated pairwise IBD

sharing proportions, for the ith family of type k. Let mk, s2
k , and

Sk0 denote the population mean vector, variance vector, and dis-

persion matrix of the phenotype for the pedigrees of type k. Let

Fk denote the matrix of kinship coefficients for a family of type

k. We also assume that each pedigree of type k is selected accord-

ing to selection criterion Gk defined purely through its phenotypic

data.9 Throughout this section, we have omitted the subscript i

from expressions such as Var(vec(Pki)), which do not depend on

i, but only on the structure of the pedigree.

Numerators

A number of authors (e.g., see9) have shown that the score statistic

for the null hypothesis of ‘‘no additive effect of the QTL’’ under the

standard variance components model (for selected and unselected

samples) is

Ski ¼ v0kivecðPki � 2FkiÞ, (1)

where

vki ¼ vec
�
S�1

k0

�
yki � mk

��
yki � mk

�0
S�1

k0 � S�1
k0

�
and vec is an operator that vectorizes the super-diagonal elements

of a square matrix in a row-wise order. Under the null hypothesis

of no additive variance, the scores Ski have mean zero and variance

E½v0kVarðvecðPkÞÞvkjyk ˛ Gk :� This variance can be estimated with

the ‘‘conditional on trait value’’ approach8 by v0kiVarðvecðPkÞÞvki.

Thus the score test for no additive variance is a one-sided test based

on the standardized statistic:
2008



T ¼
PK

k¼1

Pnk

i¼1 v0kivecðPki � 2FkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

Pnk

i¼1 v0kiVarðvecðPkÞÞvki

q , (2)

which has a standard normal distribution under the null. The

Var(vec(Pk)) in the denominator can be estimated either empirically

or by simulation, or by using partially empirical methods such as

the ‘‘imputation’’ method.12

This test statistic can also be expressed as a GEE-based score

test.14 As in Equation (7) of Chen et al.,14

T ¼
PK

k¼1

Pnk

i¼1 Da0
kiG

�1
k0 U0

kiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

Pnk

i¼1 U00
ki G

�1
k0

�
0 0
0 VarðVecðPkÞÞ

�
G�1

k0 U0
ki

s , (3)

where

U0
ki ¼

h	
yki � mk


0n�
yki � mk

�2�s2
k

o0
vec
n
ðyki � mkÞðyki � mkÞ0�

X
k0

�0i
,

Da
ki ¼

�
00 00 vec

�
Pki � 2F

�0 �0
,

and Gk0 is the null Gaussian working covariance matrix of U0
ki.

By comparing equations (2) and (3), we note that vki consists

of the last
	

sk

2



elements of G�1

k0 U0
ki. Thus, vki is a transformed

version of the original phenotype vector, by the Gaussian working

covariance matrix.

The GEE formulation was used to construct a new GEE-based ro-

bust alternative to the score test,14 which uses a covariance matrix

involving higher moments (skewness and kurtosis) of the pheno-

type. In analogy with vki, we define hki as the last
	 sk

2



elements of

M�1
k0 U0

ki, where Mk0 is the higher-moment working covariance ma-

trix.14 Then, a higher-moment score test statistic, as in Equation

(11) of Chen et al.,14 may be simply written as

TðHMÞ ¼
PK

k¼1

Pnk

i¼1 h0kivecðPki � 2FkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

Pnk

i¼1 h0kiVarðvecðPkÞ
�
hki

q : (4)

We call hki the higher-moment transformed phenotype.

Denominators

For both the Gaussian-transformed phenotype vki and the higher-

moment transformed phenotype hki, we can conceive of different

test statistic denominators, depending on how the null variance of

thenumerator isestimated.The score functionfor theunconditional

likelihood of the data is the same as that based on the likelihood con-

ditioned on trait value or that conditioned on the IBD information.8

This means that the statistic remains a valid score statistic (for the ap-

propriate likelihood) irrespective of whether a conditional or uncon-

ditional variance estimator is used. The unconditional variance of

the score function can be decomposed in two ways as shown below.

(Note that we have dropped all the family subscripts in the expres-

sions below for clarity.) Conditioning on trait values we get

Var½v0vecðP� 2FÞ j y ˛G� ¼ Vary½Efv0vecðP� 2FÞ j v, y ˛Gg�
þEy½Varfv0vecðP� 2FÞ j v, y ˛Gg�

¼ Vary½v0EfvecðP� 2FÞ j v, y ˛Gg j y ˛G�
þEy½v0VarfvecðP� 2FÞ j v, y ˛Ggv j y ˛G�

Under the null, this reduces to

¼ 0þ Ey ½v0VarPfvecðPÞgv j y ˛G�
ðVariance Conditional on TraitÞ

ð5Þ

On the other hand, conditioning on the IBD vector gives

Var½v0vecðP� 2FÞ j y ˛G� ¼ VarP½Efv0vecðP� 2FÞ jP, y ˛Gg�
þEP½Varfv0vecðP� 2FÞ jP, y ˛Gg�

¼ VarP

�
vecðP� 2FÞ0Efv jP, y ˛Gg j y ˛G

�
þEP

�
vecðP� 2FÞ0Varfv jP, y ˛GgvecðP� 2FÞ0 j y ˛G

�
and under the null, this reduces to:

¼VarP

�
vecðP�2FÞ0Efvjy ˛Ggjy ˛G

�
þEP

�
vecðP�2FÞ0Varfv j y ˛Gg vecðP� 2FÞ j y ˛G

�
Further, under no selection this reduces to:

¼ 0þ EP

�
vecðP� 2FÞ0VarfvgvecðP� 2FÞ

�
ðVariance Conditional on IBDÞ:

ð6Þ

Note that Equation (5) always gives the correct null variance

whereas Equation (6) gives an underestimate of the null variance

(and hence inflated type I error) under selected sampling. Depend-

ing on which variable is conditioned upon, there can be a number

of approaches for constructing the denominator. Also in each case,

the means and variances appearing in Equations (5) and (6) can be

estimated in different ways, leading to different denominator var-

iants as summarized below.

Approach 1: Conditioning on Trait Value. In this approach, the var-

iance of the score function is computed conditional on the trait

values as in Equation (5). This makes the statistic robust to selected

sampling. The variance of vec(Pki) in the denominator can be esti-

mated in a number of different ways, as follows.

Empirical Variance:

1) SCORE.NULL.CT (variance conditional on trait under null).

This statistic uses a conditional on the trait approach with an em-

pirical variance of vec(Pki) centered at its null expectation:

ŝ2
NULL:CT ¼

XK

k¼1

Xnk

i¼1

v0kiŜ
NULL:CT
k vki,

where

ŜNULL:CT
k ¼ 1

nk

Xnk

i¼1

vecðPki � 2FkÞvec
�
Pki � 2Fk

�0
:

2) SCORE.CT (variance conditional on trait). This statistic also uses

a conditional on the trait approach with empirical variance of

vec(Pki) centered at its sample mean. By its construction,

SCORE.CT is expected to have higher power than SCORE.

NULL.CT, for samples ascertained with multiple probands, i.e.,

whenever EðPkjGkÞs2Fk under the alternative:

ŝ2
CT ¼

XK

k¼1

Xnk

i¼1

v0kiŜ
CT
k vki, (7)

where

ŜCT
k ¼

1

nk � 1

Xnk

i¼1

vecðPki �PkÞvec
�
Pki �Pk

�0
:

We also considered a higher-moment version, HM.CT, of this

statistic. This statistic uses the higher-moment numerator as in

Equation (4) and the following denominator:

ŝ2
HM:CT ¼

XK

k¼1

Xnk

i¼1

h0kiŜ
CT
k hki:
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Note that the above definitions of SCORE.CT and HM.CT do not

work when there is only one pedigree of a particular type in a data

set. In that case, the sample variance of vec(Pki) around its sample

mean is zero for that pedigree type. To overcome this problem, an

empirical variance around the null expectation, i.e., ŜNULL:CT
k , is

used for such pedigree types. Thus SCORE.CT reduces to SCORE.

NULL.CT when there is one pedigree of each type in the data set.

Imputed Variance:

3) SCORE.MERLIN (MERLIN-REGRESS type denominator). This

statistic uses the imputed variance estimate of the IBD12 as imple-

mented in MERLIN-REGRESS (i.e., difference of the prior and

posterior variances):

ŝ2
MERLIN ¼

XK

k¼1

Xnk

i¼1

v0kiŜ
MERLIN
ki vki,

where

ŜMERLIN
ki ¼ Var

�
vec
�

~Pk

��
� Var

�
vec
�

~Pki

�
jMki

�
,

where ~Pki denotes the (unobserved) true IBD matrix.

We also included the higher-moment version HM.MERLIN of

this statistic discussed as HM-R in Chen et al.14 This statistic uses

the higher moment numerator as in Equation (4) and the follow-

ing denominator:

ŝ2
HM:MERLIN ¼

XK

k¼1

Xnk

i¼1

h0kiŜ
MERLIN
ki hki:

4) SCORE.MERLIN.AV (MERLIN-REGRESS type denominator

with an averaged variance). We considered a modified version of

the SCORE.MERLIN estimator:

ŝ2
MERLIN:AV ¼

XK

k¼1

Xnk

i¼1

v0kiŜ
MERLIN:AV
k vki,

where

ŜMERLIN:AV
k ¼ Var

�
vec
�

~Pk

��
� 1

nk

Xnk

i¼1

Var
�
vec
�

~Pki

�
jMki

�
¼ 1

nk

Xnk

i¼1

ŜMERLIN
ki :

Both SCORE.MERLIN and SCORE.MERLIN.AV are motivated by

the decomposition:

Var
�
vec
�

~Pk

��
¼ Var

�
E
�
vec
�

~Pki

�
jMki

��
þ E

�
Var

�
vec
�

~Pki

�
jMki

��
¼ Var½vecðPkÞ� þ E

�
Var

�
vec
�

~Pki

�
jMki

��
:

Hence, note that the averaged-variance estimate is expected to

give a more accurate estimate of Var(vec(Pk)) in general, but re-

duces to the usual estimate when there is exactly one pedigree of

each type in the sample (i.e., nk ¼ 1,ck ¼ 1,.,K). Also, note that

the denominator variance estimates of vec(Pki) for both SCORE.

MERLIN and SCORE.MERLIN.AV can theoretically turn out to be

negative for the individual pedigree types, particularly when there

are few pedigrees of that type in the sample. However, except in

the case of extremely small sample size, the overall denominator

would turn out to be positive.

Approach 2: Unconditional Variance Approach. In this approach,

the variance of the score function is computed unconditionally,

i.e., without conditioning on trait or IBD information.

1) SCORE.NULL.EV (fully empirical variance of the score func-

tion around its null mean [i.e., 0]). It was discussed as ‘‘score-R’’

in Chen et al.:14

ŝ2
EV :NULL ¼

XK

k¼1

Xnk

i¼1

S2
ki:

2) SCORE.EV (fully empirical variance of the score function

around its sample mean). This is expected to have slightly higher

power than SCORE.NULL.EV:

ŝ2
EV ¼

XK

k¼1

�
nk

nk � 1

�Xnk

i¼1

ðSki � SkÞ2:

When there is only one pedigree of a particular type, the empir-

ical variance for that pedigree type is computed around the null

mean (0) of the score (i.e., S2
ki). Thus, SCORE.EV reduces to

SCORE.NULL.EV when there is exactly one pedigree of each type.

Approach 3: Variance Conditional on IBD.

1) SCORE.NAIVE (naive estimator of variance). This statistic

uses a naive estimator of variance for the GEE-based score test. It

was discussed as ‘‘score’’ in Chen et al.14 This statistic uses condi-

tioning on IBD as in Equation (6) with theoretical variance of vk.

It is expected to have incorrect type I error for selected samples

and also for non-Gaussian traits:

ŝ2
NAIVE ¼

XK

k¼1

Xnk

i¼1

Da
ki

0
G�1

k0 Da
ki:

We also considered the higher-moment version HM.NAÏVE of

this statistic discussed as ‘‘HM’’ in Chen et al.14 It is expected to

be slightly more robust in terms of both type I error and power

for non-normal traits but would still have incorrect type I error

for selected samples. This statistic uses a higher-moment numera-

tor as in Equation (4) and the following denominator:

ŝ2
HM:NAIVE ¼

XK

k¼1

Xnk

i¼1

Da
ki

0
M�1

k0 Da
ki:

2) SCORE.CIBD (variance conditional on IBD). This statistic uses

the conditional on IBD approach, with variance of the trans-

formed trait Var(vi) estimated empirically centered at the sample

mean. This variance is expected to be robust to distributional as-

sumptions (more specifically to misspecification of the working

covariance matrix for GEE). However, it can still have incorrect

type I error for selected samples:

ŝ2
CIBD ¼

XK

k¼1

Xnk

i¼1

ðPki � 2FkÞ0ŜCIBD
k ðPki � 2FkÞ,

where

ŜCIBD
k ¼ 1

nk � 1

Xnk

i¼1

ðvki � vkÞ
�
vki � vk

�0
:

Note that as for SCORE.CT, the denominator empirical estimate

of Var(vki) for a particular pedigree type becomes zero when there is

one pedigree of that type. In such cases, the null expectation of vki

(i.e., 0) is used to center the empirical variance for that pedigree

type.

Approach 4: Minimum Variance Estimator

SCORE.MAX (maximum of SCORE.CT and SCORE.EV). We note

that all the denominators considered above (except ŝ2
EV ) are con-

sistent estimators of the null variance of the numerator (provided

each nk tends to infinity). ŝ2
EV being fully empirical, it estimates the

true variance of the numerator. In general, the smaller the denom-

inator of the test statistic (under the alternative), the higher is the

power of the statistic. It is difficult to decide a priori whether the
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null or alternative variance is smaller, because this depends on the

genetic model. We propose the statistic SCORE.MAX with a

standard numerator as in Equation (3) and the following denom-

inator:

ŝ2
MAX ¼min

	
ŝ2

CT ,ŝ2
EV



:

This statistic is effectively a simple maximum of SCORE.CT and

SCORE.EV whenever the numerator score is positive. In particular,

it is equivalent to the simple maximum in terms of both type I

error and power.

Note that this statistic is expected to have correct type I error as-

ymptotically, because the null and true variances are equal under

the null. At the same time, it should maintain optimal power

under all genetic models. However, for small sample sizes, it is

expected to have slightly elevated type I error.

Dominance

For sibship data, because of the orthogonality of p (true IBD be-

tween a pair of sibs) and 1p ¼ 0.5 (indicator that the pair shares

one allele IBD), two orthogonal scores may be obtained and com-

bined easily to form a 2 d.f. statistic.5,17 Following Tang,17 we de-

fine a 2 d.f. score statistic for sibships as follows. Let Z1 and Z2 be

the Z-scores corresponding to the scores for the additive variance

(a) and dominance variance (d), respectively. Thus,

Z1 ¼
PK

k¼1

Pnk

i¼1
v0

ki
vecðPki�2FkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1

Pnk

i¼1
v0

ki
ŜCT

k
vki

q and Z2 ¼
PK

k¼1

Pnk

i¼1
v0

ki
vecðDk�P

ð1Þ
ki ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1

Pnk

i¼1
v0

ki
Ŝ

CTð1Þ
k

vki

q ,

where P
ð1Þ
ki and Dk are the estimated and expected matrix of pair-

wise probabilities of sharing 1 allele IBD, for the ith pedigree of

type k.

ŜCT
k is given by Equation (7) as before and Ŝ

CTð1Þ
k is given by:

Ŝ
CTð1Þ
k ¼ 1

nk � 1

Xnk

i¼1

vec
	

P
ð1Þ
ki �P

ð1Þ
k



vec
	

P
ð1Þ
ki �P

ð1Þ
k


0
:

Combining these two Z-scores, subject to the constraint 0 % d % a,

gives the 2 d.f. statistic SCORE.2DF.CT, defined as

SCORE:2DF:CT ¼

Z2
1 þ Z2

2 if 0%Z2%
	

1=
ffiffiffi
2
p 


Z1

Z2
1 if Z2%0%Z1	 ffiffiffiffiffiffiffiffi

2=3
p

Z1 þ
ffiffiffiffiffiffiffiffi
1=3

p
Z2


2

if �
	

1=
ffiffiffi
2
p 


Z2%Z1

%
ffiffiffi
2
p

Z2

0 otherwise

:

8>>>>>>><
>>>>>>>:

The higher-moment version, HM.2DF.CT, of this statistic can be

analogously defined with the higher-moment transformed pheno-

type hki in the numerator instead of vki. For extended pedigrees,

the orthogonal decomposition does not hold, so a two-parameter

score statistic would be needed. The information matrix would

involve CovðPk,P
ð1Þ
k Þ, which can be estimated empirically.

Note that SCORE.2DF.CT and HM.2DF.CT can run into similar

problems as SCORE.CT and HM.CT when the sample consists of

only one pedigree of a type, in which case they are modified

similarly.

Weighting of Pedigrees

Real data often include pedigrees of different sizes and structures.

In such cases, it may be desirable to give appropriate weights to

each pedigree type so as to obtain maximum power. The advan-

tage of the likelihood ratio test statistic (variance components) is

that the weighting is automatic, because the likelihood ratio is

evaluated at the maximum likelihood alternative. The score statis-

tic, by contrast, is designed to be locally optimal near the null

hypothesis, and under the null hypothesis all pedigrees are

weighted equally (or equivalently; standardized scores are weighted

in proportion to their null standard deviations). Hence, in most of

the score statistic literature, equal weighting of pedigree-wise score

statistics has been suggested. However, under alternatives away

from the null, it is quite possible that more power can be obtained

by using a score statistic with unequal weighting of different pedi-

grees. For purists who might object that a weighted score statistic is

no longer a score statistic, we point out that the object we call the

‘‘score statistic’’ is only approximately the true score anyway.

Strictly speaking, the score function (1) is derived under a normal

model (conditional on IBD). This is not a very realistic model

(because the trait should have a mixture distribution when condi-

tioned on IBD), but it is used as a convenient approximation. The

same score function can be shown to have some optimality proper-

ties under a mixture-normal model5,17 and is hence generally

accepted. Still, however, in most circumstances the assumption

of ‘‘normal’’ or ‘‘mixture normal’’ would fail, and therefore the

statistic (1) is no longer technically the score function. Similarly,

the higher-moment score function is based on a GEE with an arbi-

trarily chosen working covariance matrix. When the data violate

the higher-moment working covariance structure, this statistic is

no longer a ‘‘GEE-based score statistic.’’ Lastly, when population

trait parameters are misspecified (e.g., for an ascertained sample),

the above statistics are no longer score statistics and may no longer

be additive.

Weighting of score statistics may be useful even when the distri-

butional assumption holds. Local optimality ensures that the

statistic has optimal power to detect weak effects. The variance

component (VC) test is optimal for all alternatives (when the as-

sumed model holds). However, it has the disadvantage of being

computationally complex and nonrobust. By weighting pedigrees,

it may be possible to increase the nonlocal power of the score

statistic while retaining most of the local power and robustness

properties.

Let s2
a denote the additive variance and let a ¼ s2

a=2. Let us con-

sider n1 pedigrees of type 1 and n2 pedigrees of type 2. Let m0i, mai,

s2
0i, and s2

ai be the null (H0 : s2
a ¼ 0) and alternative

(H1 : s2
a ¼ 2a > 0) means and variances of the score function,

respectively, for pedigrees of type i ¼ 1,2. Similarly, we define

mai, v2
ai to be the means and variances of the standardized score sta-

tistic (i.e., centered and scaled to have mean 0 and variance 1).

Then, provided n1 and n2 are large, the asymptotic optimal weight

for linearly combining the standardized Z-scores from the two

types of pedigrees is given by the following expression:19

w ¼
ma,2=v

2
a,2

ma,1=v2
a,1

¼
�
ma,2 � m0,2

�
s0,2s2

a,1�
ma,1 � m0,1

�
s0,1s2

a,2

:

(8)

Therefore, the optimal weight for the nonstandardized score

functions is given by:

w
0 ¼

�
ma,2 � m0,2

�
s2

a,1�
ma,1 � m0,1

�
s2

a,2

¼
ma,2s2

a,1

ma,1s2
a,2

¼ m2
2 þ 2a m3

2 þ a2m4
2 þ ða2=2Þs2

2

m2
2

� m2
1

m2
1 þ 2a m3

1 þ a2m4
1 þ ða2=2Þs2

1

(9)
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where mj ¼ E trace½ðS�1ApÞj�
on

and sj ¼ Var trace½ðS�1ApÞj
oin

and

subscripts 1 and 2 denote pedigrees of type 1 and 2, respectively.

The matrices S and Ap have been defined in Appendix A. The

above expressions for moments of the score function under popu-

lation sampling have been derived in Appendix A. Note that the

above formula converges to w0 ¼ 1 for local alternatives (a close

to 0) but not in general.

The two weights w and w0 defined above are termed as the ‘‘stan-

dardized optimal weight’’ and the ‘‘nonstandardized optimal

weight,’’ respectively, in the rest of this article.

Simulation
We conducted a simulation study to compare the performance of

score statistic variants for nuclear sibships. Our simulation scheme

is similar to that described in T. Cuenco et al.15 A single biallelic

quantitative trait and a single marker with 8 equifrequent alleles

were simulated. The recombination distance between the two

loci was taken as q ¼ 0.5 and q ¼ 0 for simulations under the

null and alternative hypothesis, respectively.

Genetic Models

The genetic models used are similar to those in T. Cuenco et al.15

with a decreased locus-specific heritability of 0.15. The details of

the models are summarized in Tables 1 and 2. For the first five

models (1–5), the trait has a mean depending on genotype plus

a normally distributed environmental component. The models

10–50 and 10 0–50 0 are non-Gaussian models simulated by subjecting

the traits simulated under models 1–5 to the transformations xjxj
and x3, respectively. Both these sets of models as well as model 3

(rare recessive trait) are expected to depart substantially from the

normality assumption.

Note that our genetic models do not incorporate polygenic ef-

fects explicitly. For our purposes, polygenes can be considered to

be a part of the shared environment within the family and hence

their effect is modeled by considering environmental correlation

between relatives.

Selection Schemes

We simulated samples under the following ascertainment

schemes: POP (population sampling), SINGLE (single proband

sampling with one sib in the top 10% of the trait distribution),

ED (extreme discordant sampling with one sib in the top 10%

and one in the bottom 10%), EC (extreme concordant sampling

with two sibs in the top 10%), EDAC3 (3-corner extreme discor-

dant and concordant sampling with every sibship having a discor-

dant pair at a 12% threshold or a ‘‘high concordant’’ pair at a 4%

threshold), and MDAC3 (same as EDAC3 with thresholds of 24%

and 8% for discordant and concordant pairs, respectively). Thus,

we defined a ‘‘discordant’’ (or ‘‘concordant’’) sibship as one having

at least one discordant (or concordant) sib pair. These ascertain-

ment schemes have been discussed before in the context of sib-

pairs.15,16 It is possible to define other notions of concordant

and discordant sibships, such as by standard deviation of the sib-

ship trait values,17 but we consider the above definitions to be

more realistic, because sibships are often ascertained through an

affected sib or an affected sibpair.

Family Sizes

Most of our simulations were done with sibships of size 4 without

parental phenotype information. Parental genotype information

was used to estimate IBD sharing between siblings. We did limited

simulations with sibships of size 2 and 6, but there were no qual-

itative differences in the results, except for the expected effects of

the increased and decreased sample size, respectively. Hence we re-

port only results for sibships of size 4.

Sample Sizes

The objective of our simulation experiments was to compare the

statistics to each other, so the absolute value of power was not con-

sidered to be relevant. We chose the sample sizes arbitrarily to keep

the power within a reasonable range (i.e., not too high or low) to

facilitate comparison across statistics. The sample sizes for the nor-

mally distributed data were 450 families for POP samples, 100 for

SINGLE, 150 for MDAC3, and 50 each for ED, EC, and EDAC3. The

corresponding sample sizes for data transformed with xjxj were

750 (POP), 200 (SINGLE), 300 (MDAC3), and 100 (ED, EC, and

EDAC3) and those for data transformed with x3 were 1000

(POP), 300 (SINGLE), 500 (MDAC3), and 200 (ED, EC, and

EDAC3).

We used 1,000 and 10,000 replicates to estimate the power and

type I error, respectively, at a significance level of 0.01. For com-

puting the analytical thresholds, the asymptotic null distributions

of the statistics were used. The null distribution of the 1 d.f. statis-

tics is asymptotically N(0,1), which was used to obtain two-sided p

values. The null distribution of the 2 d.f. statistics is asymptotically

a mixture of c2
2, c2

1, and 0 in the ratio j0/2p : 1/2 : (j � j0)/2p,

Table 1. Genetic Models: Defining Parameters

Value for Model

Model Parameters 1 2 3 4 5

Type of

inheritance Add Dom Rec Add Dom

Locus heritability 0.15 0.15 0.15 0.15 0.15

Allele frequency 0.1 0.1 0.1 0.5 0.5

Trait means �1,0,1 0,1,1 0,0,1 �1,0,1 0,1,1

Environmental SD 1.010 0.934 0.237 1.683 1.031

Environmental

correlation

0.25 0.25 0.25 0.25 0.25

Table 2. Genetic Models: Population Trait Parameters

Parameters

Models Mean SD Correlation Skewness Kurtosis

Normal Models

1 �0.80 1.095 0.288 0.110 0.058

2 0.19 1.013 0.286 0.092 0.011

3 0.01 0.257 0.257 0.572 2.138

4 0.00 1.826 0.288 0.000 �0.023

5 0.75 1.118 0.275 �0.067 �0.015

Non-normal: xjxj

10 �1.49 6.758 0.244 �1.660 6.419

20 0.33 3.379 0.247 1.151 9.094

30 0.01 0.023 0.241 5.821 65.848

40 0.00 32.531 0.250 �0.069 8.001

50 1.41 6.894 0.234 1.726 6.257

Non-normal: x3

100 �3.22 55.940 0.182 �3.783 26.989

200 0.69 18.719 0.191 3.649 48.395

300 0.01 0.022 0.222 12.387 207.990

400 0.06 524.930 0.180 0.051 36.345

500 3.11 58.087 0.180 3.759 28.926
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where j0 ¼ tan�1ð1=
ffiffiffi
2
p
Þ (see17), which was used to obtain one-

sided p values. For all the type I error and power simulations,

the trait parameters were set at their known true values (as given

in Table 2). The estimated type I errors for the schemes POP and

ED have been summarized in Tables 3A and 3B. The type I errors

for the other sampling schemes have been summarized in Table

S1A (Type I Errors) available online. The estimated powers of some

of the above statistics have been summarized in Tables 4A–4F. The

powers of all the statistics have been summarized in Table S1B.

Sensitivity Analysis

To evaluate the robustness of the statistics to misspecification of

population trait parameters, we carried out sensitivity analysis

by simulation. For these simulations, we chose four selection

schemes (POP, ED, EC, and EDAC) and six models (2, 20, 20 0 and

4, 40, 40 0). The five trait parameters (namely mean, variance, corre-

lation, skewness, and kurtosis) were in turn set at two arbitrary

wrong guesses on either side of the true value, while holding the

other four parameters fixed at their true values. The misspecified

parameter values have been listed in Table 5. Power was then esti-

mated based on the same 1000 replicates of data, for each combi-

nation of parameter values. This process was repeated for all the

combinations of models and selection schemes. SCORE.NAÏVE

and HM.NAÏVE have theoretically incorrect type I error when pa-

rameters are incorrect. SCORE.CIBD has theoretically incorrect

type I error for selected samples. So, these three statistics were

dropped from this analysis. The results of the sensitivity analysis

have been summarized in Figures 1 and 2.

Weighting
As described in the previous section, Equation (9) can be used to

derive optimal weights for sibships of various sizes for different al-

ternative values of the parameter (under population sampling.)

We plotted the optimal weights, as a function of heritability (h2)

for sibships of sizes 3, 4, 5, and 6 with respect to sibpairs (Figure 3).

For sibships of size 3 versus sibpairs, we also plotted the behavior

of the analytical power curve19 of SCORE.NAÏVE for different

values of h2 (Figure 4).

When we have an ascertained sample (for example, an EDAC

sample), Equation (9) no longer holds. But Equation (8) can be

used to derive the optimal weight for discordant pairs with respect

to concordant pairs, where the means and variances are condi-

tional on the ascertainment scheme and can be obtained by nu-

merical integration. Alternatively, power can also be estimated

by using simulation over a grid of different weights. Figure 5 shows

the simulation-based power of SCORE.CT for a mixed sample of 20

extreme discordant pairs (one sib in each of higher and lower 10%

tails) and 30 extreme concordant pairs (both sibs in the top 10%

tail), as a function of the nonstandardized weight of a discordant

pair with respect to a concordant pair.

Table 3. Type I Errors

(A)

POPULATIONa
Model

1

Model

10
Model

100
Model

2

Model

20
Model

200
Model

3

Model

30
Model

300
Model

4

Model

40
Model

400
Model

5

Model

50
Model

500

SCORE.NAÏVE 0.011 0.026 0.063 0.010 0.029 0.087 0.033 0.209 0.295 0.011 0.024 0.065 0.012 0.026 0.072
SCORE.CIBD 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.015 0.015 0.011 0.011 0.012 0.012 0.013 0.012

SCORE.NULL.CT 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.015 0.015 0.011 0.011 0.012 0.012 0.013 0.012

SCORE.CT 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.015 0.015 0.011 0.011 0.012 0.012 0.013 0.012

SCORE.NULL.EV 0.007 0.007 0.005 0.005 0.005 0.004 0.006 0.002 0.001 0.006 0.006 0.005 0.008 0.007 0.006

SCORE.EV 0.007 0.007 0.005 0.006 0.005 0.005 0.006 0.002 0.001 0.007 0.007 0.005 0.008 0.008 0.006

SCORE.MERLIN 0.011 0.011 0.011 0.009 0.012 0.012 0.013 0.016 0.013 0.011 0.011 0.011 0.012 0.013 0.012

SCORE.MERLIN.AV 0.011 0.011 0.011 0.009 0.012 0.013 0.014 0.016 0.015 0.011 0.012 0.012 0.012 0.012 0.012

HM.NAÏVE 0.011 0.025 0.061 0.010 0.031 0.073 0.033 0.220 0.299 0.011 0.021 0.055 0.012 0.024 0.066
HM.MERLIN 0.011 0.011 0.010 0.009 0.011 0.010 0.013 0.012 0.013 0.011 0.011 0.011 0.012 0.013 0.012

HM.CT 0.011 0.012 0.010 0.009 0.011 0.010 0.013 0.012 0.014 0.011 0.011 0.011 0.012 0.013 0.011

SCORE.MAX 0.011 0.011 0.012 0.009 0.013 0.015 0.015 0.016 0.015 0.011 0.013 0.014 0.012 0.014 0.014

SCORE.2DF.CT 0.011 0.011 0.011 0.010 0.012 0.012 0.013 0.018 0.015 0.010 0.012 0.011 0.011 0.012 0.012

HM.2DF.CT 0.011 0.012 0.011 0.010 0.011 0.014 0.014 0.017 0.019 0.010 0.012 0.012 0.011 0.012 0.013

(B) EDb

SCORE.NAÏVE 0.178 0.148 0.133 0.174 0.179 0.155 0.225 0.314 0.341 0.168 0.191 0.155 0.164 0.145 0.125
SCORE.CIBD 0.015 0.015 0.015 0.016 0.015 0.012 0.016 0.017 0.015 0.015 0.015 0.013 0.013 0.014 0.013

SCORE.NULL.CT 0.011 0.011 0.011 0.012 0.012 0.011 0.013 0.016 0.014 0.011 0.012 0.011 0.010 0.010 0.010

SCORE.CT 0.012 0.012 0.012 0.013 0.013 0.011 0.014 0.016 0.014 0.012 0.012 0.012 0.011 0.010 0.011

SCORE.NULL.EV 0.005 0.006 0.005 0.005 0.007 0.005 0.002 0.002 0.001 0.005 0.006 0.005 0.004 0.005 0.005
SCORE.EV 0.007 0.007 0.006 0.008 0.009 0.005 0.005 0.002 0.002 0.008 0.008 0.006 0.007 0.007 0.005
SCORE.MERLIN 0.012 0.012 0.012 0.013 0.013 0.010 0.015 0.016 0.016 0.013 0.011 0.012 0.011 0.010 0.010

SCORE.MERLIN.AV 0.012 0.012 0.011 0.012 0.012 0.011 0.014 0.016 0.015 0.013 0.012 0.012 0.011 0.010 0.011

HM.NAÏVE 0.178 0.109 0.065 0.174 0.139 0.085 0.212 0.295 0.312 0.169 0.144 0.092 0.164 0.114 0.060
HM.MERLIN 0.012 0.010 0.011 0.013 0.012 0.011 0.014 0.016 0.012 0.013 0.012 0.010 0.011 0.011 0.011

HM.CT 0.012 0.011 0.012 0.013 0.013 0.011 0.014 0.015 0.012 0.013 0.012 0.010 0.011 0.011 0.011

SCORE.MAX 0.012 0.013 0.014 0.014 0.015 0.013 0.015 0.017 0.016 0.013 0.014 0.014 0.012 0.012 0.012

SCORE.2DF.CT 0.010 0.011 0.011 0.013 0.012 0.010 0.014 0.016 0.015 0.012 0.011 0.009 0.010 0.011 0.011

HM.2DF.CT 0.010 0.011 0.011 0.013 0.013 0.011 0.015 0.018 0.016 0.012 0.012 0.009 0.010 0.011 0.012

Type I error values departing by 0.005 or more, from the nominal value 0.01, are highlighted in bold.
a Type I errors under population sampling.
b Type 1 errors under extreme discordant sampling.
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Table 4. Power Comparisons

(A)

POPULATIONa
Model

1

Model

10
Model

10 0
Model

2

Model

20
Model

20 0
Model

3

Model

30
Model

30 0
Model

4

Model

40
Model

40 0
Model

5

Model

50
Model

50 0

SCORE.NAÏVEb 0.74 0.73 0.65 0.75 0.74
SCORE.CIBD 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15
SCORE.CT 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.96 0.94 0.76 0.69 0.31 0.74 0.44 0.15
SCORE.EV 0.67 0.35 0.11 0.68 0.73 0.40 0.24 0.75 0.73 0.70 0.65 0.32 0.70 0.41 0.11

SCORE.MERLIN 0.74 0.39 0.14 0.73 0.78 0.45 0.53 0.97 0.95 0.75 0.68 0.31 0.74 0.44 0.16
HM.NAÏVEb 0.74 0.73 0.62 0.75 0.74
HM.MERLIN 0.74 0.37 0.14 0.73 0.74 0.48 0.51 0.92 0.91 0.75 0.67 0.34 0.75 0.42 0.16
HM.CT 0.74 0.36 0.14 0.73 0.74 0.49 0.51 0.90 0.91 0.76 0.67 0.33 0.74 0.42 0.16
SCORE.MAX 0.74 0.41 0.16 0.74 0.81 0.50 0.53 0.98 0.96 0.76 0.71 0.37 0.75 0.46 0.18
SCORE.2DF.CT 0.71 0.37 0.14 0.72 0.75 0.43 0.62 0.98 0.97 0.72 0.66 0.29 0.76 0.45 0.15

HM.2DF.CT 0.71 0.34 0.12 0.72 0.70 0.45 0.58 0.93 0.91 0.72 0.62 0.32 0.76 0.42 0.16

(B) SINGLEc

SCORE.CT 0.69 0.78 0.54 0.70 0.78 0.53 0.79 0.99 0.99 0.38 0.43 0.24 0.20 0.19 0.12
SCORE.EV 0.59 0.71 0.49 0.59 0.74 0.52 0.40 0.93 0.92 0.29 0.37 0.18 0.13 0.16 0.09

SCORE.MERLIN 0.69 0.78 0.53 0.69 0.78 0.55 0.80 1.00 0.99 0.38 0.43 0.23 0.20 0.19 0.12
HM.MERLIN 0.69 0.81 0.66 0.69 0.73 0.58 0.78 0.99 0.99 0.38 0.38 0.22 0.20 0.17 0.11
HM.CT 0.69 0.80 0.65 0.69 0.73 0.57 0.76 0.98 0.98 0.38 0.37 0.22 0.20 0.17 0.11
SCORE.MAX 0.70 0.81 0.61 0.70 0.80 0.61 0.79 1.00 0.99 0.39 0.45 0.28 0.21 0.20 0.13
SCORE.2DF.CT 0.66 0.76 0.52 0.65 0.75 0.51 0.85 1.00 0.99 0.36 0.40 0.21 0.21 0.20 0.11
HM.2DF.CT 0.66 0.78 0.63 0.65 0.70 0.53 0.83 0.99 0.99 0.36 0.35 0.21 0.22 0.18 0.11

(C) EDd

SCORE.CT 0.59 0.78 0.74 0.59 0.81 0.85 0.15 0.77 0.92 0.25 0.77 0.87 0.53 0.68 0.70

SCORE.EV 0.48 0.70 0.72 0.52 0.78 0.85 0.04 0.43 0.75 0.18 0.73 0.85 0.46 0.64 0.70

SCORE.MERLIN 0.60 0.79 0.74 0.59 0.81 0.85 0.15 0.78 0.93 0.23 0.77 0.87 0.52 0.67 0.69

HM.MERLIN 0.59 0.82 0.84 0.59 0.81 0.90 0.14 0.70 0.89 0.15 0.77 0.91 0.52 0.69 0.77
HM.CT 0.59 0.81 0.85 0.59 0.80 0.90 0.15 0.68 0.87 0.14 0.77 0.91 0.52 0.70 0.76
SCORE.MAX 0.60 0.79 0.79 0.60 0.83 0.89 0.15 0.82 0.95 0.25 0.79 0.89 0.55 0.71 0.76
SCORE.2DF.CT 0.55 0.75 0.71 0.56 0.79 0.85 0.18 0.88 0.97 0.22 0.74 0.84 0.54 0.69 0.71

HM.2DF.CT 0.55 0.79 0.81 0.56 0.77 0.88 0.17 0.77 0.91 0.15 0.73 0.89 0.54 0.70 0.77

(D) ECe

SCORE.CT 0.61 0.75 0.69 0.55 0.68 0.57 0.81 0.99 1.00 0.23 0.26 0.22 0.12 0.10 0.09

SCORE.EV 0.48 0.63 0.61 0.40 0.62 0.55 0.46 0.88 0.98 0.13 0.18 0.18 0.07 0.07 0.07

SCORE.MERLIN 0.60 0.74 0.69 0.53 0.68 0.58 0.81 0.99 1.00 0.22 0.26 0.23 0.11 0.10 0.09

HM.MERLIN 0.60 0.76 0.74 0.53 0.63 0.65 0.81 0.99 1.00 0.22 0.25 0.25 0.12 0.10 0.11
HM.CT 0.60 0.75 0.73 0.53 0.63 0.65 0.79 0.98 1.00 0.22 0.25 0.24 0.11 0.10 0.11
SCORE.MAX 0.62 0.77 0.75 0.55 0.70 0.64 0.81 0.99 1.00 0.23 0.28 0.27 0.13 0.11 0.10
SCORE.2DF.CT 0.57 0.71 0.65 0.51 0.65 0.54 0.86 1.00 1.00 0.19 0.25 0.21 0.12 0.11 0.09
HM.2DF.CT 0.57 0.72 0.69 0.51 0.61 0.61 0.85 0.99 1.00 0.19 0.23 0.23 0.12 0.11 0.12

(E) EDAC3f

SCORE.CT 0.60 0.73 0.66 0.55 0.71 0.64 0.78 0.99 1.00 0.44 0.57 0.45 0.38 0.29 0.18
SCORE.EV 0.49 0.66 0.62 0.46 0.65 0.61 0.48 0.92 0.98 0.35 0.51 0.42 0.30 0.24 0.14

SCORE.MERLIN 0.60 0.73 0.66 0.55 0.71 0.63 0.78 1.00 1.00 0.44 0.56 0.46 0.37 0.29 0.18
HM.MERLIN 0.61 0.77 0.80 0.54 0.66 0.62 0.79 0.99 1.00 0.44 0.50 0.40 0.37 0.22 0.13

HM.CT 0.61 0.76 0.80 0.55 0.66 0.61 0.79 0.99 1.00 0.45 0.50 0.40 0.38 0.22 0.13

SCORE.MAX 0.61 0.74 0.71 0.56 0.74 0.71 0.78 1.00 1.00 0.46 0.59 0.51 0.39 0.32 0.20
SCORE.2DF.CT 0.56 0.70 0.61 0.52 0.68 0.59 0.85 1.00 1.00 0.42 0.51 0.41 0.40 0.29 0.17

HM.2DF.CT 0.56 0.74 0.77 0.52 0.63 0.56 0.84 0.99 1.00 0.42 0.45 0.37 0.40 0.22 0.13

(F) MDAC3g

SCORE.CT 0.74 0.73 0.50 0.69 0.85 0.64 0.59 0.98 0.98 0.63 0.68 0.44 0.56 0.42 0.20
SCORE.EV 0.66 0.69 0.48 0.62 0.81 0.62 0.25 0.86 0.92 0.56 0.64 0.41 0.50 0.38 0.17

SCORE.MERLIN 0.74 0.73 0.50 0.68 0.85 0.65 0.58 0.98 0.99 0.63 0.68 0.44 0.57 0.42 0.19
HM.MERLIN 0.73 0.80 0.67 0.68 0.79 0.64 0.59 0.98 0.98 0.63 0.64 0.44 0.57 0.38 0.17

HM.CT 0.73 0.79 0.65 0.69 0.80 0.63 0.59 0.97 0.97 0.63 0.65 0.44 0.57 0.38 0.17

SCORE.MAX 0.74 0.75 0.56 0.70 0.86 0.72 0.59 0.98 0.99 0.63 0.70 0.50 0.57 0.44 0.22
SCORE.2DF.CT 0.71 0.69 0.48 0.67 0.83 0.61 0.66 0.99 0.99 0.60 0.65 0.41 0.58 0.43 0.19
HM.2DF.CT 0.71 0.75 0.62 0.67 0.76 0.60 0.66 0.97 0.97 0.60 0.60 0.40 0.58 0.38 0.17

See legend next page.
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Table 5. Sensitivity Analysis: Misspecified Parameters

Model 2 20 200 4 40 400

Parameter True Lower Upper True Lower Upper True Lower Upper True Lower Upper True Lower Upper True Lower Upper

Mean 0.19 �0.80 1.20 0.33 �2.70 3.30 0.69 �3.30 4.70 0.00 �2.00 2.00 0.00 �10.00 10.00 0.06 �40.00 40.00

Variance 1.03 0.03 2.03 3.38 0.40 6.40 18.72 3.70 33.70 3.33 0.33 6.33 32.53 12.53 52.53 524.93 324.93 724.93

Correlation 0.29 0.10 0.50 0.25 0.10 0.40 0.19 0.05 0.35 0.29 0.10 0.50 0.25 0.10 0.40 0.18 0.05 0.35

Skewness 0.09 �0.90 1.10 1.15 �2.80 3.20 3.65 �16.40 23.60 0.00 �1.00 1.00 �0.07 �5.00 5.00 0.05 �25.00 25.00

Kurtosis 0.01 �2.00 2.00 9.09 3.10 15.10 48.40 �11.60 108.40 �0.02 �2.00 2.00 8.00 �2.00 18.00 36.35 �13.70 86.30
Results

Simulation Results

The type I errors for the population and extreme discor-

dant sampling schemes have been tabulated in Tables 3A

and 3B and for other sampling schemes in Table S1A

(Type I Errors). Most of the statistics have close to correct

type I error even for the smallish sample sizes that we

used. The type I errors for SCORE.NAIVE and HM.NAÏVE

are highly inflated for non-normal as well as selected sam-

ples. Similarly, in some cases, the type I error of SCORE.

CIBD are inflated for selected samples. Theoretically, all

three of these statistics have inflated type I error for se-

lected samples. On the other hand, SCORE.NULL.EV and

SCORE.EV have highly conservative type I error. The

SCORE.MAX statistic has negligibly inflated type I errors,

compared to SCORE.CT. All the statistics except HM.CT

and HM.MERLIN have slightly incorrect type I error, in

most cases, for the highly skewed models 30 and 30 0. The

higher-moment statistics in general give better type I errors

than their lower-moment counterparts, particularly for the

non-normal models. In most cases, however, the difference

is marginal.

The estimated power for all the models and sampling

schemes is summarized in Tables 4A–4F. SCORE.NAÏVE,

HM.NAÏVE, and SCORE.CIBD have been dropped from Ta-

bles 4A–4F, because they have theoretically incorrect type I

error for selected samples. To facilitate comparison, we

have also dropped SCORE.NULL.CT, SCORE.NULL.EV,

and SCORE.MERLIN.AV from the power tables (Tables

4A–4F). SCORE.CT and SCORE.EV are consistently (and

sometimes significantly) more powerful than SCORE.

NULL.CT and SCORE.NULL.EV, respectively, while the

type I errors are negligibly higher. SCORE.MERLIN.AV

has also been dropped, because it fails to provide signifi-

cant improvement of power over SCORE.MERLIN under

most genetic models and selection schemes. In fact, it

has slightly reduced power in many cases. The detailed
results with all the statistics are given in Table S1B (Power

Results).

For all the models and schemes, the unconditional em-

pirical variance denominator SCORE.EV performs poorly.

It has low power and a conservative type I error, which

can be attributed to the smallish sample sizes. In their

simulations, Chen et al.14 observed similar behavior for

SCORE.NULL.EV (denoted as score-R in their paper).

For population samples, under normal models (1, 2, 4,

and 5), all the statistics perform essentially identically.

SCORE.NAÏVE, HM.NAÏVE, and SCORE.CIBD have similar

power to the other statistics. As noted previously,14 the

higher-moment (HM) statistics perform at par with the

lower-moment (LM) statistics in this case.

For population samples under non-normal models,

SCORE.NAÏVE and HM.NAIVE have inflated type I error.

The HM statistics show improvement in power for only

some cases, which disagrees with the previous conclu-

sion14 that HM statistics are always better for non-normal

models. Generally, for the xjxj models, which can be

thought of as being ‘‘relatively less non-normal,’’ the

higher-moments statistics are worse than their lower-mo-

ment counterparts. For the ‘‘relatively more non-normal’’

x3 models, there is a marked improvement in the perfor-

mance of the HM statistics in all the cases.

The relative performance of the statistics follows a similar

general pattern for population and selected sampling. The

conditional on trait variance SCORE.CT performs as well as

SCORE.MERLIN, neither of them being consistently better

than the other. The two-degree-of-freedom statistics show

some improvement for the dominant model 5 and the re-

cessive model 3 and the transformed versions of these

models, but are worse for all the other models. The higher-

moment extensions of SCORE.CT, SCORE.MERLIN, and

SCORE.2DF.CT usually perform worse for xjxj models

(except 10) and better for the x3 models (except 30). This

is true for all the sampling schemes except EDAC3 and

MDAC3, in which the HM statistics are worse for both
For each model, power values within 3% of the maximum are highlighted in bold.
a Power comparison for population sampling.
b We have dropped power values for SCORE.NAIVE and HM.NAIVE in the case of non-normal models, for which they have theoretically incorrect type I error.
c Power comparison for single proband ascertainment.
d Power comparison for extreme discordant sampling.
e Power comparison for extreme concordant sampling.
f Power comparison for EDAC-3 corner sampling.
g Power comparison for MDAC-3 corner sampling.
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xjxj and x3 models. The SCORE.MAX statistic is close to op-

timal in most cases, except for a few cases when the higher-

moment statistics or the two-degree-of-freedom statistics

have higher power.

Sensitivity Analysis Results

In Figures 1 and 2, we have plotted the sensitivity analysis re-

sults for models 2, 20, and 200 and for all four selection

schemes, POP, ED, EC, and EDAC. The results for models 4,

Figure 1. Sensitivity Analysis Results for Mean, Variance, and Correlation
Black line gives power for true parameter values. Solid and dashed lines are for over- and underspecification of parameters, respectively.
Line colors red, yellow, and blue stand for misspecified mean, variance, and correlation, respectively. Note that the black line roughly
coincides with yellow line in almost all cases.
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40, and40 0were similar. As seen inFigure 1, misspecification of

the variance does not affect the power significantly. How-

ever, misspecification of the mean or the correlation seems

to affect the power of all the statistics considerably. Also as

seen in Figure 2, misspecification of the skewness and the

kurtosis can reduce the power of the higher-moment

Figure 2. Sensitivity Analysis Results for Skewness and Kurtosis
Black line gives power for true parameter values. Solid and dashed lines are for over- and underspecification of parameters, respectively.
Line colors cyan and magenta stand for misspecified skewness and kurtosis, respectively. Note that the black line coincides with the cyan
and magenta lines for lower-moment statistics.
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statistics drastically in some cases. There was no perceiv-

able difference in sensitivity among the different lower-

moment (LM) statistics (or among the HM statistics).

For normal models, power always decreases when pa-

rameters are misspecified, because the true parameter

values give the optimally powered score statistics. But for

non-normal models, in some cases (e.g., underspecifica-

tion of correlation in model 20 0 for population sampling),

power may increase by using wrong parameter values, as

the true scores are not necessarily optimal under these

models.

For normal models (e.g., model 2), under population

sampling, the effects of mean and correlation are symmet-

ric. In other words, overspecification and underspecifica-

tion have roughly equal effect. However, for non-normal

models (e.g., 20 and 20 0) or under selected sampling, the ef-

fects can be asymmetric. The direction of asymmetry can

also change across selection schemes. Also, underspecifica-

tion of mean and correlation seems to be better than over-

specification for LM statistics whereas the order reverses for

HM statistics.

For normal models (e.g., model 2), the LM and HM sta-

tistics are equally sensitive to mean and correlation. How-

ever, the HM statistics have the additional dependence on

the skewness and kurtosis parameters, to which they are

highly sensitive for these models. For slightly non-normal

models (e.g., 20), both the LM and HM statistic are highly

sensitive to the mean. The HM (respectively LM) statistics

are more sensitive to the mean for the ED (respectively EC)

scheme. The HM statistics are highly sensitive to skewness

and kurtosis, especially to underspecification of these

parameters.

For highly non-normal data (e.g., 20 0), the LM statistics

are highly sensitive to mean and correlation, especially

to overspecification of these parameters. Underspecifica-

tion can sometimes provide increase in power. In some

cases (e.g., EC and EDAC3), the HM statistics are relatively

less affected by mean and correlation. For the ED scheme,

the HM statistics are strongly affected by misspecification

of mean. However, they are quite stable with respect to

skewness and kurtosis for all sampling schemes, under

these models.

In summary, misspecification of mean or correlation

can have significant effect on the power of both LM and

HM statistics. Effects can be asymmetric for skewed models

or under selected sampling, and the direction of asymme-

try is generally different for LM and HM statistics. Misspe-

cification of skewness and kurtosis can have drastic effect

on the power of HM statistics, particularly for normal and

slightly non-normal models. However, for highly non-nor-

mal models, the HM statistics are stable with respect to

skewness and kurtosis and also, in some cases, less sensitive

than LM statistics to specification of mean and correlation.

Weighting Results

The results of the weighting experiments are summarized

in Figures 3–5. As shown in Figure 3, for population sam-

ples, the optimal weights for the larger sibships (with re-

spect to sibpairs) decrease with increase of heritability.

The nonstandardized optimal weight also decreases with

Figure 3. Analytical Optimal Weights for Sibships
Plot of asymptotic optimal weights (analytical) for sibships of sizes
3, 4, 5, and 6 (with respect to a sibship of size 2) as a function of
heritability. The lower cluster of plots shows the optimal weights
for nonstandardized scores and the upper shows those for stan-
dardized scores.

Figure 4. Analytical Power Curves of SCORE.NAÏVE for 3 Sibs
Approximate analytical power curves for a population sample with
100 sibships of size 3 and 100 sibpairs. Power is plotted as a
function of nonstandardized weight of 3 sibs with respect to 2
sibs. Curves are shown for five different values of heritability
(h2). The vertical lines show asymptotic optimal weights for each
value of h2.
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increasing sibship size. However, as expected, the stan-

dardized optimal weights are all greater than 1 and increase

with sibship size (larger sibships are more informative and

hence the corresponding standardized Z-scores receive

higher weight).

Figure 4 shows that the power curves are usually flat to

the right of the optimal weight. Because 1 lies on the flatter

side of the peak, a nonstandardized weight of 1 does not

lead to much loss of power even for large effect sizes.

The power curve in Figure 5 is similar to those of Figure 4,

but the peaks cluster closer to 1. Hence even for EDAC sam-

ples there is no obvious gain by using unequal weights on

the nonstandardized scores for discordant and concordant

pairs. Our experiments with mixtures of random pairs and

concordant/discordant pairs gave similar results (data not

shown).

Discussion

We have conducted a comprehensive simulation study

of some of the existing variants of score statistics as well

as some novel ones. Our study attempted to identify the

most robust score-based statistics under various genetic

models and sampling schemes. The proposed conditional

on trait variance (SCORE.CT) outperformed the empirical

variance denominator (SCORE.EV), which has been sug-

gested by many articles on score statistics. SCORE.EV ap-

pears to have a highly conservative type I error for small

sizes and hence low power. This fact, also observed previ-

ously,14 is probably due to the fact that the scores (being

Figure 5. Empirical Power Curves of SCORE.CT for EDAC Pairs
Plot of simulation-based power for a combined sample of 20 discor-
dant pairs and 30 concordant pairs. Power is plotted as a function
of nonstandardized weight of discordant with respect to concor-
dant pairs. Curves are shown for five different values of heritability
(h2). The vertical lines show the actual optimal weights based on
simulation, for each value of h2.
The
a quadratic function of the trait values) are considerably

skewed and hence it requires large sample sizes for the cen-

tral limit theorem to apply. Whereas when we condition

on the trait, the IBD vector has a symmetric distribution

around its expectation (under the null) and hence the cen-

tral limit theorem is applicable for smaller sample sizes.

SCORE.CT also matches the power of SCORE.MERLIN in

most cases and sometimes exceeds it. These two statistics

differ only in the computation of the variance of the IBD

vector in the denominator. SCORE.MERLIN uses the

method of imputation12 and requires the joint distribution

of pairwise IBDs for its computation. Limited experiments

suggested that computation of SCORE.MERLIN can be

slow for large pedigrees with uninformative markers or

many ungenotyped individuals (data not shown). On the

other hand, SCORE.CT is easier and much faster to com-

pute because it involves a simple empirical variance.

The conditional on IBD statistics, SCORE.NAÏVE and

HM.NAÏVE, were shown to have incorrect type I error un-

der most circumstances. In the cases when they have cor-

rect type I error (normal traits and population samples),

they do not provide any perceivable improvement in

power over the conditional on trait statistics. Conditioning

on IBD may be used only for population samples, and in

that case, SCORE.CIBD should be preferred over these

two statistics because it maintains correct type I error for

non-normal samples and close to optimal power. We do

not in general recommend the use of any of these statistics.

Although the SCORE.EV statistic has suboptimal power,

it can be used to construct the SCORE.MAX statistic, which

is the best overall statistic in our simulations. It gives sig-

nificant improvement in power over SCORE.CT in many

cases, with negligible inflation in type I error. We did lim-

ited simulations with empirical cutoffs (data not shown) to

confirm that the power increase is sustained even after cor-

recting for the slightly inflated type I error rate. It was out-

performed only in some cases by the 2 d.f. statistics and the

higher-moment statistics. It would be easy to construct

higher-moment and 2 d.f. versions of the SCORE.MAX

statistic and use them when appropriate.

Chen et al.14 proposed the higher-moment numerator

for score statistics and performed a similar simulation

study for population samples. In this study, we were able

to validate some of their results for population samples

and test them for selected samples as well as a number of

different non-normal models. They concluded that

higher-moment (HM) statistics were always as good as

the lower-moment (LM) ones and significantly better for

all non-normal samples. Our results contradicted this con-

clusion. For the models we considered, the HM statistics

were better than the LM versions only in some cases for

the highly non-normal models. Also, their performance

is quite unstable because of their dependence on two addi-

tional parameters (skewness and kurtosis). In practical sit-

uations, the HM statistics should be used only when the

data are highly non-Gaussian and reasonably good esti-

mates of skewness and kurtosis parameters are available.
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The dominance-based 2 d.f. statistics usually have lower

power than the 1 d.f. statistics except for completely dom-

inant or recessive models. It has been previously noted that

the increase in power (by incorporating dominance) for

dominant models is more than the decrease in power for

additive models.14,18 There is not enough evidence in our

simulations to support this. It holds for the recessive model

(3) but not for the dominant models (2 and 5). We recom-

mend that these statistics be used in practice only when

there is reason to suspect presence of highly dominant or

recessive genetic variants.

Parameter sensitivity is an extremely important issue for

QTL mapping statistics. Although the trait parameters are

nuisance parameters (with respect to the hypothesis of

linkage), they can have a significant influence on power.

They can be estimated fairly accurately for population sam-

ples, via a maximum likelihood estimation (MLE) ap-

proach. For selected samples, if the selection scheme is sim-

ple and the proband is known, the MLE can still be used.

When the selection scheme is slightly complicated but

the proband or probands are known, the conditional

MLE (CMLE) approach10 can be used. However, in reality

many studies involve complicated ascertainment criteria

with multiple and ill-defined probands. In such cases, we

have no way to obtain parameter estimates and we need

the statistics to be as robust as possible to wrongly specified

parameters.

Our sensitivity analysis results suggest that for normal

traits as well as slightly skewed traits, lower-moment statis-

tics should be preferred over higher-moment ones, because

of the latter’s strong dependence on the two additional pa-

rameters: skewness and kurtosis. On the other hand, for

highly non-Gaussian traits, the HM statistics have higher

power in most cases and are stable with respect to skewness

and kurtosis. Hence, for these models, HM statistics should

be preferred. The asymmetric effects in many cases suggest

the use of overestimates or underestimates of the parame-

ters. However, the direction of asymmetry may vary ac-

cording to sampling scheme and direction of skewness of

the model. Hence, proper formulation of these strategies

would require a more exhaustive study of different non-

Gaussian models and ascertainment schemes.

Note that for our sensitivity analysis, we used extreme

deviations from the true parameter values. This was done

to consider a worst-case practical scenario when there is

no prior information on the trait and the sample consists

only of ascertained pedigrees. However, because of the

wide fluctuations of power range under such extreme

misspecification, we might have missed subtler differences

in sensitivity among the individual LM (and HM) statistics.

The results of our weighting experiments show that for

population samples, equal weighting of sibships of differ-

ent sizes gives close to optimal power irrespective of the ef-

fect sizes. Similarly, for EDAC samples, equal weighting of

nonstandardized scores for discordant and concordant

pairs is adequate. The results may not be completely gener-

alizable to bigger and more complex pedigrees or to other
580 The American Journal of Human Genetics 82, 567–582, March
sampling schemes and non-normal traits. However, the

methods outlined here are quite general and can be used

to study the effects of weighting more exhaustively. For ex-

ample, this method can be used to study the possibility of

weighting for non-normal samples or misspecified param-

eters. In fact, the formula (8) for optimal weight always

holds for any statistic. The alternative means and variances

of the statistic can be derived with the GEE form (as in the

numerator of Equation [3]) for a general misspecified work-

ing covariance matrix.

The optimal weights as obtained above would be a func-

tion of the true size of the genetic effect, which is com-

pletely unknown. Hence, the best one can do is to select

a weight that seems to work well for all or most alterna-

tives. Also, this approach has the disadvantage of depend-

ing on the model (or working covariance matrix) assumed

for calculating the moments. Another option, when sam-

ple size for each kind of pedigree is reasonably large, is to

use a part of the data (for each pedigree type) to estimate

the alternative means and variances of the score function

(using empirical estimates at each marker). This gives an

optimally weighted statistic at each marker, which has in-

creased power for detecting linkage. Similar empirical ap-

proaches could also be used to obtain parameter values

that maximize power of the statistics. These approaches

would work even in complicated ascertainment scenarios

or when normality or higher-moment assumption is

deemed inaccurate. However, there would be simultaneous

reduction in sample size, which would tend to reduce

power. Which of these effects would dominate would

depend, among other factors, on the sample size.

There are of course some limitations in this study. Our

simulation study considered only nuclear families without

parental phenotype information. Although we expect the

broad conclusions for the different groups of statistics

(conditional on trait or IBD or unconditional) to hold for

extended pedigrees as well, the specific details may vary.

For example, in the case of data sets with larger pedigrees,

SCORE.CT may reduce to SCORE.NULL.CT, because each

pedigree type may be represented by a single pedigree.

Also, the parameter dependence of all the statistics would

increase for larger pedigrees, with pairwise correlations be-

tween relatives being required. The relative performance of

higher-moment statistics with respect to lower-moment

ones may change in that scenario. Also, most of our results

were based on simulations with moderately informative

markers (8 equifrequent alleles). However, we did limited

experiments (data not shown) for markers with very high

and low informativity (20 and 2 equifrequent alleles, re-

spectively) and observed similar results.

Some score-based statistics in the literature have been

omitted from our study. For example, we did not consider

the sibship score variance,6 discussed in Chen et al.14 as

‘‘score-S.’’ This variance assumes the independence of sib-

pair IBDs, which holds only for perfectly informative

markers. Because of computational limitations we were

not able to consider some variance component (VC)-based
2008



statistics such as conditional VC statistic20 and the semi-

parametric VC approach.21 Note, however, that the former

is not applicable for non-normal models and the latter

would fail for selected samples.

The non-normal models we used were based on the hy-

pothesis that the original trait has a mixed normal distribu-

tion and we observe the trait on a different scale. Hence,

the final trait value was transformed. We considered this

model to be realistic although some authors prefer to use

models with non-normal errors. For example, in Chen

et al.,14 only the unshared environmental component

was squared. We conducted limited simulations with chi-

square residual models (data not shown) and got similar re-

sults to those of Chen et al. Also, one approach to dealing

with non-normal traits is to apply a normalizing transfor-

mation (e.g., see6) to the traits and then apply variance

components or standard score-based approaches. We

have not included this approach in our comparison be-

cause it does not fit into the score statistic framework.

However, as indicated by the results of Chen et al.,14 this

is a promising approach and deserves further investigation.

Currently there is a dearth of publicly available software

implementing the score-based statistics, which, because of

their inherent robustness, should be the method of choice

for linkage mapping of quantitative traits. We have imple-

mented most of the statistics discussed here and also other

sibpair-specific statistics (some of which are discussed in

T.Cuenco et al.15) in the user-friendly software QTL-ALL

(QTL Analysis and Linkage Library). QTL-ALL is available

freely from our website.

Appendix A: Moments of the Score Statistic

Here we derive the null and alternative means and vari-

ances of the score statistic for an extended pedigree. It pro-

vides an alternative to the more complicated derivation

outlined previously.17

Let Y be the phenotype vector for a pedigree with mean

0 (for simplicity) and variance covariance matrix S. Let Ap

be the matrix given by:

ðApÞij¼ 2
�
Pij � 2Fij

�
,

where Pij and Fij are the estimated IBD and kinship coeffi-

cient between the ith and jth individuals of the pedigree.

The assumed model is Y ~ N(0,Sp), where Sp ¼ S þ aAp,

a ¼ s2
a=2, and dominance is assumed to be zero.

The score statistic can be written as5

S ¼ �1

2

�
trace

�
S�1Ap

�
� trace

�
S�1ApS�1YY 0

��
:

It is easy to see that null and alternative means are given

by m0 ¼ 0 and

ma ¼ E½EðS jpÞ� ¼ ða=2ÞE
n

trace
h�

S�1Ap

�2
io
:

The variance can be computed as follows:

VaraðS jpÞ ¼ð1=4ÞVar
�
trace

�
S�1ApS�1YY 0

��
¼ ð1=4ÞVar

�
Y 0S�1ApS�1Y

�
½trace is commutative�
¼ ð1=4ÞVarðY 0CC0ApCC0YÞ�

S is positive definite, S ¼ B0B and

S�1 ¼ CC0, where C ¼ B�1
�

¼ ð1=4ÞVarðY 0CP0DlPC0YÞ
½C0ApC ¼ P0DlP,

using spectral decomposition of C0ApC�
¼ ð1=4ÞVarðZ0DlZÞ½defining Z ¼ PC0Y�

¼ ð1=4Þ
Xs

i¼1

VarðliZ
2
i

�
½Z � Nð0,Iþ aDlÞ, i:e Zi’s

are independent normal with mean 0

and variance 1þ ali�

¼ ð1=4Þ
Xs

i¼1

l2
i 2ð1þ aliÞ2

¼ ð1=4Þ
Xs

i¼1

2
�
l2

i þ 2al3
i þ a2l4

i

�
¼ ð1=2Þ

n
trace

h�
S�1Ap

�2
i
þ 2a trace

h�
S�1Ap

�3
i

þa2 trace
h�

S�1Ap

�4
io

Therefore,

s2
a ¼ VarðSÞ ¼ Var½EðS jpÞ� þ E½VarðS jpÞ�

¼
�
a2=4

�
Var trace

h�
S�1Ap

�2
in o

þð1=2ÞE
n

trace
h�

S�1Ap

�2
i
þ 2 a trace

h�
S�1Ap

�3
i

þa2 trace
h�

S�1Ap)
4
io

Putting a ¼ 0, gives

s2
0 ¼ ð1=2ÞE trace

h�
S�1Ap

�2
in o

For sibships, S has a simple form (all diagonal elements

equal and all off-diagonal elements equal). Thus, a simple

expression for S�1 and hence the moments of the score

statistic can be obtained (e.g., see17).

Supplemental Data

Two supplemental tables can be found with this article online at

http://www.ajhg.org/.
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