
LETTERS TO THE EDITOR

Comment on a Simple
and Improved Correction
for Population Stratification

To the Editor: In the May 2007 issue of the American Journal

of Human Genetics, Epstein, Allen, and Satten1 (hereafter

referred to as EAS) introduced a new method for controll-

ing population stratification in case-control association

studies. The method computes a stratification score by

performing partial least-squares regression (PLS) of phe-

notypes (case-control status) on a matrix of genotypes at

markers used to correct for ancestry. The quantitative strat-

ification score is then used to divide subjects into a number

of strata, so that a stratified test of case-control association

may be performed at any test locus not in linkage disequi-

librium with the ancestry-informative markers. The strati-

fication and testing procedure are implemented in the pro-

gram StratScore, available as SAS code from the authors.

EAS described a retrospective case-control model involv-

ing the latent true stratification variable and provided prac-

tical recommendations for dividing the estimated stratifi-

cation score into a number of strata. The PLS procedure,

however, was presented in less detail, although it is key

to the performance of the overall approach. A primary mo-

tivation was the claim that stratified analysis based on

principal components2 or genomic control3 cannot fully

control for population ancestry. The authors cited an ex-

ample and provided simulations in which stratification re-

sulted in inflated type I errors when using these methods

for 100 ancestry-informative markers. An immediate con-

cern is whether these results reflect current practice—in

a modern whole-genome scan, hundreds of thousands of

markers are available for ancestry control. The results of

Price et al.2 suggest that, with the availability of thousands

of markers, principal components do provide effective an-

cestry control, and indeed a large number of markers may

be necessary for correcting stratification within continen-

tal-level populations.5 Moreover, the use of principal com-

ponents does not require predefined ancestry-informative

markers and thus may potentially control for unantici-

pated strata, including technical phenomena unrelated

to ancestry.2 In terms of statistical power, the principal-

components-based approach appeared to fare quite well

in EAS.1

To better understand the issues and how the EAS ap-

proach might be best applied, we examined the PLS proce-

dure more closely. Here, PLS finds linear combinations T of

the matrix of ancestry-informative markers X such that the

covariance between phenotypes Y and T is maximized (see
4 for details on partial least-squares regression). Predictions

of case status from a logistic-regression model (Y on T) are

then used as the stratification score. A risk of PLS is the
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potential for finding spurious relationships, although EAS

employed a variable selection technique to control the

number of T variables used. If spurious apparent stratifica-

tion arises from PLS, it has the potential to greatly reduce

statistical power because the stratification variable could

account for phenotype variation caused by a true disease

gene. Moreover, although the inclusion of a large number

of ancestry-informative markers should be desirable for an-

cestry prediction, the resulting increased flexibility in the

PLS factors might produce even stronger spurious stratifi-

cation, thereby resulting in decreased power as the number

of such markers increases.

To further investigate the utility of StratScore and to test

our predictions about the method, we performed simula-

tions under no stratification, for random unlinked markers

with minor allele frequencies (MAF) ranging uniformly

from 0.1 to 0.5. Table 1 shows the results from representa-

tive simulations analyzed by StratScore, with m¼ 100, 200,

500, and 800 markers used to infer ancestry. Note that the

stratification score has a very high correlation with case-

control status, although no true correlation exists between

the markers and phenotype because no stratification ex-

ists. As the number of markers increases, the spurious cor-

relation increases, and the case-control numbers for many

of the strata become highly imbalanced. Such strata can-

not meaningfully contribute to detection of case-control

association.

We further performed simulations of case-control associ-

ation data, by following the conditions and terminology

described in EAS. For each setup, 5000 simulations were

Table 1. Illustrative Simulations of Case-Control Status
versus StratScore Inferred Strata

Number of

Markers and

Case Status

Stratum

1

Stratum

2

Stratum

3

Stratum

4

Stratum

5 Total

m ¼ 100

Case 65 80 110 106 139 500

Control 135 120 90 94 61 500

Total 200 200 200 200 200 1000

m ¼ 200

Case 46 70 105 124 155 500

Control 154 130 95 76 45 500

Total 200 200 200 200 200 1000

m ¼ 500

Case 5 41 103 157 194 500

Control 195 159 97 43 6 500

Total 200 200 200 200 200 1000

m ¼ 800

Case 0 1 100 199 200 500

Control 200 199 100 1 0 500

Total 200 200 200 200 200 1000

This table shows case-control status versus Stratscore inferred strata, based

on 500 cases and 500 controls. m is the number of markers used for compu-

tation of stratification score.
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Table 2. Type I Error under Substantial and Moderate Stratification

Marker Type and

Test Locus MAF No Adjustment Known Strata

StratScore with

100 SNPs

StratScore with

200 SNPs

StratScore with

500 SNPs

StratScore with

800 SNPs

Highly Ancestry Informative

0.1 0.155 (0.079) 0.051 (0.047) 0.049 (0.046) 0.049 (0.047) 0.042 (0.046) 0.057 (0.058)

0.25 0.220 (0.097) 0.051 (0.047) 0.051 (0.041) 0.048 (0.039) 0.046 (0.041) 0.056 (0.057)

0.4 0.178 (0.090) 0.053 (0.053) 0.046 (0.049) 0.049 (0.048) 0.048 (0.045) 0.054 (0.057)

Random

0.1 0.160 (0.085) 0.049 (0.055) 0.050 (0.057) 0.048 (0.055) 0.041 (0.046) 0.054 (0.052)

0.25 0.223 (0.097) 0.047 (0.045) 0.059 (0.048) 0.049 (0.043) 0.049 (0.040) 0.059 (0.049)

0.4 0.166 (0.089) 0.054 (0.047) 0.059 (0.053) 0.047 (0.045) 0.044 (0.044) 0.047 (0.049)

Type I error results at nominal a ¼ 0.05 for 500 cases and 500 controls, when a test locus with Fst ¼ 0.03 is used. Each entry shows the type I error under

substantial stratification, followed by the type I error under moderate stratification in parentheses. Simulation conditions are described in the text.
performed for 500 cases and 500 controls, with three un-

derlying populations of equal size. We simulated substan-

tial stratification by sampling cases in the proportions

0.45, 0.33, and 0.22 from subpopulations 1, 2, and 3. Mod-

erate stratification was achieved by sampling in the pro-

portions 0.40, 0.33, and 0.27. The alternative hypothesis

was simulated with odds of disease increasing by a factor

1.4 for each copy of the risk allele for the test locus, which

had Fst values of 0.03 and 0.15 in various simulation

setups. EAS simulated ancestry markers on the basis of

Fst selection criteria applied to SNPs from a real data set.

To reproduce their results and to better control the simula-

tion conditions, we simulated marker SNPs following the

method in Price et al.1 For each of MAF values 0.1, 0.25,

and 0.4, sets of random marker SNPs were simulated with

Fst ¼ 0.03, and highly ancestry-informative markers with

Fst values were drawn uniformly from 0.5 to 0.8. Although

EAS reported results for sets of m ¼ 100 ancestry markers,1

we also performed simulations for sets of m ¼ 200, 500,

and 800 markers.

With a significance threshold of a¼ 0.05 and a test locus

with Fst ¼ 0.03, we found approximately correct type I

error control by using the StratScore approach for all

choices of m markers (Table 2, effectively an expanded ver-

sion of Tables 2 and 3 in EAS). However, when the test lo-

cus had Fst¼ 0.15, we found type I errors ranging from 0.02

to 0.098 (Table 3), depending on the ancestry marker setup

and degree of stratification. EAS had reported correct Strat-

Score error control for some of these same setups (see Table

4 in EAS). We are unsure of the reason for the discrepancy,

although minor variation in generalized PLS1 versus the

standard PLS implemented in StratScore is a possibility.

To investigate whether the results might be specific to

our use of the simulation approach of Price et al.1 (beta

sampling of minor allele frequencies, followed by rejection

sampling of Fst values), we also employed a deterministic

approach. We set allele frequencies for the three popula-

tions (order determined randomly) as p/a, p, and pa, where

a and p were determined to achieve specified Fst and

MAF values. Our conclusions under this scheme were

unchanged. Although our main focus is on the power of
The Am
StratScore, these results suggest a lack of robustness that

may be problematic in StratScore error control and de-

serves further inquiry.

We next investigated power for StratScore as the number

of markers increases. Table 4 presents the power under

the alternative hypothesis for Cochran Mantel Haenszel

(CMH) tests under moderate and substantial true stratifica-

tion. Here, the best-case scenario of known strata is com-

pared to the StratScore approach for various numbers of an-

cestry markers. As predicted, the power drops dramatically

as the number of ancestry markers increases, thereby

restricting the number of markers that can be used. Note

that this restriction depends in an essential way on

the case-control sample size. Studies in which the true strat-

ification is subtle may require a larger number of markers

for ancestry control and therefore limit the utility of Strat-

Score.

Another aspect of EAS that was unclear was the degree

of correspondence between the stratification score and

the true subpopulations. For the alternative-hypothesis

simulation setups, we computed average ANOVA R2 values

for the stratification score versus the three true

Table 3. Type I Error, Test Locus Fst ¼ 0.15

Marker Type and

Test Locus MAF No Adjustment Known Strata

StratScore with

100 SNPs

Highly Ancestry Informative

0.1 0.433 (0.150) 0.051 (0.053) 0.040 (0.028)

0.25 0.751 (0.264) 0.046 (0.050) 0.020 (0.020)

0.4 0.757 (0.270) 0.051 (0.049) 0.028 (0.024)

Random

0.1 0.446 (0.155) 0.050 (0.048) 0.078 (0.049)

0.25 0.759 (0.271) 0.053 (0.049) 0.096 (0.054)

0.4 0.757 (0.267) 0.048 (0.050) 0.098 (0.051)

Type I error results at nominal a ¼ 0.05 for 500 cases and 500 controls,

when a test locus with Fst ¼ 0.15 is used. Each entry shows the type I error

under substantial stratification, followed by the type I error under moderate

stratification in parentheses.
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Table 4. Power under Substantial and Moderate Stratification

Marker Type and Test Locus MAF Known Strata

StratScore with

100 SNPs

StratScore with

200 SNPs

StratScore with

500 SNPs

StratScore with

800 SNPs

Highly Ancestry Informative

0.1 0.691 (0.670) 0.67 (0.643) 0.619 (0.580) 0.403 (0.382) 0.243 (0.226)

0.25 0.914 (0.914) 0.902 (0.888) 0.871 (0.848) 0.648 (0.609) 0.412 (0.360)

0.4 0.953 (0.958) 0.940 (0.941) 0.911 (0.915) 0.702 (0.708) 0.437 (0.430)

Random

0.1 0.678 (0.688) 0.739 (0.700) 0.650 (0.617) 0.404 (0.383) 0.230 (0.200)

0.25 0.914 (0.910) 0.932 (0.914) 0.883 (0.863) 0.634 (0.620) 0.376 (0.345)

0.4 0.959 (0.952) 0.967 (0.949) 0.937 (0.915) 0.719 (0.709) 0.430 (0.395)

Power results at nominal a ¼ 0.05 for 500 cases and 500 controls. The test locus has Fst ¼ 0.03 and confers an odds ratio of 1.4 for each risk allele. Each

entry shows the power under substantial stratification, followed by the power under moderate stratification in parentheses.
subpopulations. For m¼ 100 markers and substantial strat-

ification, R2 was ~0.19 when highly ancestry-informative

markers were used, regardless of MAF, and 0.12 for random

markers with Fst ¼ 0.03. Under moderate stratification, the

R2 values were 0.07 for highly ancestry-informative

markers, and 0.04 for random markers. As m increased,

the R2 values dropped even further. These relatively low

values were apparently enough to provide error-control

correction for the simulations reported in EAS, and other

measures of correspondence than R2 might be preferred.

Nonetheless, these results further call into question the ro-

bustness of the PLS procedure, in which the stratification

score does not strongly reflect the true stratification.

In summary, we conclude that aspects of the EAS

method may be worthy of further exploration and devel-

opment. However, in its present form, we have concerns

about the routine use of StratScore, especially in the con-

text of genome-wide scans. At the very least, the genomics

community should be aware of the potential for power loss

and sensitivity to the number of ancestry-informative

markers employed. Additional, larger simulations in the

context of whole-genome scans are necessary to provide

convincing comparisons of the major approaches for con-

trolling spurious association in case-control association

studies.
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Although LSZW raise important points, we wish to start

by objecting to their characterization of the stratification

score as the output of partial least-squares regression

(PLS). The stratification score defined by Epstein et al.1

(EAS) is simply a model for P[DjZ] where Z are markers

(or potentially other covariates) used to control for con-

founding by population stratification and D is an indicator

of disease status. We used a particular PLS-based procedure
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