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Atrophin family proteins, including the vertebrate arginine–
glutamic acid dipeptide repeats protein (RERE) and Drosophila
Atrophin (Atro), constitute a new class of nuclear receptor
corepressors. Both RERE and Atro share the ELM2 (EGL-27 and
MTA1 homology 2) and SANT (SWI3/ADA2/N-CoR/TFIII-B)
domains, which are also present in other important transcriptional
cofactors. Here, we report that the SANT domain in RERE binds to
the histone methyltransferase G9a, and that both the ELM2 and
SANT domains orchestrate molecular events that lead to a stable
methylation of histone H3-lysine 9. We establish the physiological
relevance of these interactions among Atrophin, G9a, and histone
deacetylases 1 and 2 in Drosophila by showing that these proteins
localize to overlapping chromosomal loci, and act together to
suppress wing vein and melanotic-mass formation. This study not
only shows a new function of the SANT domain and establishes its
connection with the ELM2 domain, but also implies that a similar
strategy is used by other ELM2–SANT proteins to repress gene
transcription and to exert biological effects.
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INTRODUCTION
Atrophin proteins are conserved nuclear receptor corepressors
(Wang et al, 2006; Zhang et al, 2006) and include vertebrate
atrophin 1 (ATN1; Koide et al, 1994; Nagafuchi et al, 1994),
vertebrate arginine–glutamic acid dipeptide repeats protein (RERE,
also known as atrophin 2; Yanagisawa et al, 2000) and Drosophila
Atrophin (Atro, also known as Grunge; Erkner et al, 2002; Zhang
et al, 2002). Human ATN1 is known to cause neurodegenerative
dentatorubral–pallidoluysian atrophy when its glutamine-repeat
tract is expanded (Koide et al, 1994; Nagafuchi et al, 1994). The

neurotoxicity caused by glutamine-repeat-expanded ATN1 is not
due to the loss of ATN1 functions, as Atn1-knockout mice show
no detectable phenotype (Shen et al, 2007). By contrast, mutations
of murine Rere cause embryonic lethality and severe develop-
mental defects (Zoltewicz et al, 2004). The apparently divergent
effects of RERE and ATN1 on animal development suggest that
their functions are not equivalent.

The functional differences between RERE and ATN1 can be
attributed to structural divergence between these two proteins.
Notably, ATN1, which resembles a truncated version of RERE, lacks
several conserved domains, including the BAH (bromo-adjacent
homology), ELM2 (EGL-27 and MTA1 homology 2) and SANT
(SWI3/ADA2/N-CoR/TFIII-B) domains, which are all located at the
amino terminus of RERE. The ELM2 and SANT domains are also
present in Atro and several other important transcriptional
repressors such as MTA (metastasis-associated family) proteins,
CoREST (REST corepressor) and MIER1 (mesoderm induction early
response 1; Ding et al, 2003). The conjoined conservation of these
two domains in various transcriptional repressors suggests that they
have important functions.

Ours and earlier studies on the ELM2 domain have shown its
direct involvement in binding to histone deacetylases 1 and 2
(HDAC1/2; Ding et al, 2003; Wang et al, 2006). In comparison,
less is known about the exact function of the SANT domain of
RERE/Atro, although previous studies have implicated the SANT
domain in binding to histone tails (Boyer et al, 2002; Yu et al,
2003), activating the enzymatic activity of HDAC3 (Guenther
et al, 2001) and stimulating the histone demethylation activity of
lysine-specific histone demethylase 1 (LSD1; Shi et al, 2005).
SANT is evidently a versatile domain and its properties depend not
only on its coding sequences, but also on other regions of the
proteins within which it resides.

Here, we expand our knowledge about the SANT domain by
reporting that the SANT domain of RERE/Atro recruits the histone
methyltransferase (HMTase) G9a and that it enables RERE to stably
methylate lysine 9 of histone H3 (H3K9) through cross-talk with
the ELM2 domain. We find a parallel relationship among Atro,
dG9a and Rpd3 (the fly homologue of HDAC1/2) in Drosophila.
By using the fly system, we show that Atro, dG9a and Rpd3 bind
to overlapping chromosomal regions, and act together to suppress
wing vein and melanotic-mass formation in adult flies. Our results
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indicate that recruiting HDAC1/2 and G9a is an important
mechanism used by ELM2–SANT domain proteins to modify histone
tails, regulate gene transcription and control animal development.

RESULTS AND DISCUSSION
RERE and Atro, but not ATN1, recruit G9a in human cells
There is increasing evidence to indicate that, in addition to histone
deacetylation, histone lysine methylation (HMT) is another
mechanism used by transcriptional regulators to repress gene
transcription (Sims et al, 2003). For example, methylation on K9
and K27 of histone H3, and K20 of histone H4 has been shown to
contribute to large-scale chromosomal repression (Lachner et al,
2003). As both the ELM2 and SANT domains are found in several
transcriptional regulators known to have potent repressive
activities (Ding et al, 2003), we suggested that, in addition to
their known associations with HDAC1/2 (Wang et al, 2006), these
two conserved domains are also connected with HMT activity.

To test whether ELM2/SANT-mediated transcriptional
repression involves HMT, we expressed Flag-tagged ELM2 and
SANT domains of RERE (hereafter called REREELSA; Fig 1A) in
human embryonic kidney cells (HEK293) and performed in vitro
HMT assays on the immunoprecipitated REREELSA complex. The
REREELSA complex exerts HMT activity (Fig 1B), although weaker
than that of the control G9a. This result was expected because
RERE is not by itself an HMTase. Therefore, we speculated that
REREELSA acquires its HMT activity by associating with HMTases.

Our HMT assays also showed that the REREELSA complex
preferentially methylates histone H3. We came to this conclusion
on the basis of the following evidence: (i) the size of the
methylated histone matches that of histone H3 (Fig 1B); (ii) the
methylated histone migrates with G9a-methylated histone H3
(Fig 1B); and (iii) the REREELSA complex also methylates a synthetic
peptide that encompasses only the first 21 amino acids of histone
H3, H3(1–21) (Fig 1C). By contrast, the REREELSA immunopreci-
pitation complex fails to methylate H3(21–44), suggesting that
the two lysine residues (K4 and K9) located within H3(1–21)
are potential targets for REREELSA. Therefore, we tested an H3
(1–21)K9met2 peptide in further HMT assays. If H3K9 is a target of
the REREELSA complex, prior methylation should prevent it from
being methylated by the REREELSA complex. As we predicted,
H3(1–21)K9met2 cannot be methylated by the REREELSA complex.
In comparison, robust methylation was achieved by the control
SET9, which is an H3K4 HMTase (Fig 1D). Thus our data indicate
that the REREELSA complex primarily targets H3K9, but not H3K4,
for methylation.

Subsequently, we investigated which HMTase lends Atrophin
proteins (and REREELSA) the ability to methylate H3K9. We focused
on G9a because G9a is an important HMTase known to catalyse
mono- and dimethylation of H3K9 in euchromatin (Rice et al,
2003). Furthermore, both HDAC1, which binds to RERE strongly
(Wang et al, 2006), and G9a have been found in the same protein
complexes (Shi et al, 2003; Duan et al, 2005). A combination of
co-immunoprecipitation and western blot analysis was performed
on extracts derived from cells expressing Flag-tagged ATN1, RERE
and Atro (Fig 1A,E). The assays confirmed that G9a is present in
the immunoprecipitation complexes associated with RERE
and Atro, but not with ATN1. The interaction between G9a and
RERE or Atro is specific, as SET9 was not found in any of the
immunoprecipitation complexes.

The physical association between RERE/Atro and G9a was
further validated in HEK293 cells by using a cell biology
approach. We performed co-immunostaining experiments on
cells expressing green fluorescent protein (GFP)-tagged RERE or
cyan fluorescent protein (CFP)-tagged Atro. These assays showed
that endogenous G9a, which is known to form nuclear speckles, is
recruited to the RERE/Atro-mediated nuclear foci (Fig 1F). These
results provide further support to our conclusion that G9a is an
associating factor of RERE and Atro. A similar interaction might
occur between Atro and dG9a, the Drosophila homologue of G9a
(Mis et al, 2006; Stabell et al, 2006).

The SANT domain of RERE binds to G9a directly
Both RERE and Atro have ELM2 and SANT domains, which are
absent in ATN1. As ATN1 fails to bind to G9a (Fig 1E), we
predicted that either or both of the ELM2 and SANT domains are
involved in G9a association. A series of constructs expressing
Flag-RERE variants with or without the ELM2 and SANT domains
(Fig 1A) were generated and used for co-immunoprecipitation and
western blot experiments. As shown in Fig 2A, G9a associates
only with those RERE variants that contain the SANT domain
(compare lanes 2–4,6,8 with lanes 5,7). The SANT domain of
RERE is therefore involved in recruiting G9a.

Glutathione-S-transferase (GST) pull-down assays were then
performed to investigate whether the observed interaction
between the SANT domain of RERE (RERESANT) and G9a is direct
or indirect. In our assays, GST-RERE (361–480) and GST-RERE
(281–480), both of which contain the SANT domain, pulled down
G9a (Fig 2B). By contrast, GST-RERE (281–360), which lacks the
SANT domain, failed to do so. The direct interaction observed
between SANT domain and G9a is specific because none of the
GST-RERE variants tested pulled down the control SET9.

A SANT domain similar to that of RERE/Atro has been found in
several other transcriptional regulators, many of which also
contain the ELM2 domain. For example, MTA proteins, which
are intrinsic components of the nucleosome remodelling and
histone deacetylase (NuRD/Mi-2) complex (Tong et al, 1998; Xue
et al, 1998; Zhang et al, 1998), and MIER1, which is encoded by a
fibroblast growth factor-responsive gene (Paterno et al, 1997),
contain both ELM2 and SANT domains (Ding et al, 2003). Our
findings led us to investigate whether these other ELM2–SANT
domain proteins also show an affinity towards G9a. By using both
immunoprecipitation and western blot experiments, we first
confirmed the known associations between MTAs or MIER1
and HDAC1/2, and subsequently showed that the four tested
ELM2–SANT domain proteins also recruit G9a (Fig 2C).
Association with both HDAC1/2 and G9a is therefore a shared
property of several ELM2–SANT domain proteins.

The ELM2 and SANT domains modify histone H3K9
Acetylation and methylation on H3K9 are known to be mutually
exclusive. In order for H3K9 to be methylated, the prior removal
of the acetyl groups by HDACs is essential. Having linked the
functions of the ELM2 and SANT domains to both HDAC1/2 and
G9a, we hypothesized that coordinated actions by these two
domains might be responsible for stable methylation of H3K9.
To test this hypothesis, we treated the REREELSA complex with
trichostatin A (TSA), a potent HDAC inhibitor. We reasoned
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that if deacetylation of histone H3K9 is a prerequisite for its
methylation, then blocking the HDAC activity of the REREELSA

complex would inevitably affect its ability to methylate an
acetylated form of H3K9. As shown in Fig 2D, treating the
REREELSA complex with TSA, but not the control DMSO, impaired
its ability to methylate H3(1–21)K9Ac. Integrating both HDAC
and HMT activities therefore seems to be a strategy used by
RERE, and perhaps by other ELM2–SANT domain proteins, to
methylate H3K9.

Atro–dG9a–Rpd3 binds overlapping chromosomal regions
Building on the physical connections that we established among
RERE, HDAC1/2 and G9a in human cells, we investigated next the
biological relevance of their interactions. We focused on the fly
system, because Atrophin, HDAC1/2 and G9a are all conserved in
Drosophila. Furthermore, by using immunoprecipitation experi-
ments, we also succeeded in showing parallel interactions
between Atro and Rpd3 (the fly homologue of HDAC1/2), and
between Atro and dG9a (supplementary Fig 1 online).
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As Atro, dG9a and Rpd3 are all expressed in the nucleus of
salivary gland cells, we used these cells to investigate, by means of
their mutual interactions, whether these three proteins localize to
overlapping chromosomal regions. Immunostaining experiments
were performed on squashed polytene chromosomes derived from
wild-type and Hsp70HAtro (Hsp for Heat-shock protein) third
instar larvae (Hsp70-Gal4 is a salivary gland-specific driver
(Tsai et al, 2004; Mizutani et al, 2005), which allows us to induce
Atro expression in salivary gland cells). In keeping with its role as

a chromatin-binding factor, both endogenous and overexpressed
Atro bind to distinct chromosomal loci that are primarily within
the inter-band regions (supplementary Fig 2 online). As Hsp70H
Atro larvae gave a stronger staining pattern, these larvae were used
for further analysis.

We performed co-immunostaining experiments on the poly-
tene chromosomes from the salivary gland cells of Hsp70HAtro
larvae by using antibodies directed against Atro and against dG9a,
Rpd3 or RNA polymerase II-phosphorylated-Ser5, which is a
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marker for transcriptional initiation. As expected, many—although
not all—chromosomal regions that are enriched in Atro are also
positive for dG9a or Rpd3 (Fig 3A,B). By contrast, the regions
bound by Atro show little gene transcriptional initiation activity
(Fig 3C). On the basis of these results, we propose that Atro,
dG9a and Rpd3, by means of their mutual interactions, bind to
specific chromosomal loci, where they act together to repress
gene transcription.

Atro–dG9a–Rpd3 represses melanotic-mass formation
Next, we investigated, through genetic interactions, whether Atro,
dG9a and Rpd3 participate in overlapping pathways to control
Drosophila development. For this purpose, we generated two fly
lines expressing Atro double-stranded (ds) RNA, Atro.IR1 and
Atro.IR2, which allowed us to use the Gal4-UAS system to knock
down Atro expression in a tissue-specific manner (supplementary
Fig 3A,B online). Directed expression of either form of Atro dsRNA
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gland-specific Gal4 driver without heat-shock treatment. The enlarged images shown in the right panels of (A) correspond to the boxed area in the

lower panel. Atro, Drosophila Atrophin; dG9a, the Drosophila homologue of G9a; Hsp70, Heat-shock protein 70; Rpd3, the fly homologue of histone

deacetylases 1 and 2.
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in the L3 and L4 inter-vein region, by using a dpp-Gal4 driver,
causes ectopic wing vein formation (supplementary Fig 4A
online). This result is consistent with the report that Atro, by
antagonizing the activity of epidermal growth factor receptor
(Egfr), can suppress wing vein formation (Charroux et al,
2006). The observed Atro dsRNA-mediated phenotype is specific
because it can be fully rescued when both Atro dsRNA and Atro
protein are simultaneously expressed in the wing (supplementary
Fig 4A online).

Subsequently, we generated a recombined dppHAtro.IR1 line and
tested it against a series of mutations, including those of Rpd3 and
dG9a. Specifically, we wished to discover whether any Atro dsRNA-
mediated phenotype can be modulated by the further mutation of
Rpd3 or dG9a. The wing vein phenotype is enhanced when Rpd3 or
dG9a is mutated, although, in comparison, Rpd3 seems to have a
more prominent role than dG9a in assisting Atro to suppress wing
vein formation (detailed information about these genetic experiments
and results is provided in the supplementary information online).
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We discovered a more pronounced genetic interaction
between Atro and dG9a in the adult head, where dpp-Gal4 is
also active (Fig 4A). Melanotic masses, a possible consequence of
aggregated haemocytes, were found in the heads of approximately
37.5% of adult dG9aRG5/Y; dppHAtro.IR1/þ flies and in
approximately 30.7% of adult dG9aDel34/Y; dppHAtro.IR1/þ flies
(Fig 4B,C; dG9a is an X-chromosome-linked gene, dG9aRG5 is a
null allele and dG9aDel34 is a loss-of-function allele (Seum et al,
2007)). By contrast, only approximately 6.1% of dppHAtro.IR1/
Rpd304556 (loss-of-function allele) adult flies were afflicted with
melanotic masses, and none of the other fly lines tested produced
melanotic lesions (Fig 4C). These genetic data for Atro, dG9a and
Rpd3 observed in the Drosophila head differ from those found in
the Drosophila wing (supplementary Fig 4C online), suggesting
that various tissues show different sensitivity to loss of Atro, dG9a
and Rpd3 in Drosophila. As no melanotic masses were detected in
the heads of dG9a mutant or dppHAtro.IR1/Atro35 flies, we
conclude that the formation of melanotic masses is due to the
combined loss of Atro and dG9a or Rpd3 in the adult head.

Prospects and implications
The results of this study suggest that RERE and Atro use their ELM2
and SANT domains to recruit HDAC1/2 and G9a, respectively.
The recruited HDAC1/2 and G9a, in turn, orchestrate sequential
molecular events that lead first to the deacetylation and then to the
methylation of H3K9 at the chromosomal loci where RERE or Atro
resides (see a model in supplementary Fig 5 online). A similar
mode of action might apply to other ELM2–SANT domain
proteins, such as MTA1–3 and MIER1, as these factors also show
affinity towards both HDAC1/2 and G9a (Fig 2C). Although not
tested in this study, another ELM2 and SANT domain protein,
CoREST, has been identified in a large carboxy-terminal binding
protein complex (with approximately 20 associated polypeptides),
which also contains G9a and HDAC1/2 (Shi et al, 2003). Our
results led us to propose that a stable CoREST–HDAC1/2–G9a
protein complex forms as a result of the binding of both HDAC1/2
and G9a to the ELM2–SANT domains of CoREST.

MTA proteins and CoREST have been shown to be components
of large protein complexes that show properties ranging from
chromatin remodelling and histone deacetylation to transcrip-
tional repression (Shi et al, 2003; Bowen et al, 2004). As the
ELM2 and SANT domains of RERE/Atro resemble those of
MTA and CoREST, we predict that RERE or Atro might also be
subunits of large protein complexes. In support of this prediction,
silver staining of the REREELSA immunoprecipitation complex
showed that REREELSA is associated with multiple proteins
(supplementary Fig 6 online). It is therefore conceivable that the
ELM2–SANT domains, by acting as binding scaffolds for various
transcriptional cofactors, allow proteins such as RERE, Atro, MTAs
or CoREST to modify chromatin structures and to silence gene
transcription efficiently.

Atrophin proteins have already been shown to interact with
various transcriptional regulators, including homeobox protein
(Zhang et al, 2002), nuclear receptors (Wang et al, 2006; Zhang
et al, 2006) and ETO/MTG8 (which causes acute myeloid
leukaemia 1; Wood et al, 2000). MTA proteins are implicated in
various cancers and CoREST is involved in regulating neuronal
cell fate. Our findings about the properties of the ELM2 and
SANT domains suggest that the recruitment of HDAC1/2 and G9a

is an important strategy used by these various transcriptional
regulators to repress gene transcription; perturbation of this
process might cause diseases and defects such as melanotic
masses. As specific inhibitors of G9a have recently been identified
(Kubicek et al, 2007), our results raise the possibility that G9a
inhibitors might be useful, either alone or together with HDAC
inhibitors, as therapeutic agents for treating diseases such as
neurological disorders or cancers that involve Atrophin, CoREST
or MTA proteins.

METHODS
Drosophila stocks and experiments. Stable Atro.IR1 and Atro.IR2
fly lines were generated by injecting constructs into w1118

embryos (Duke University Non-Mammalian Model Systems Fly-
shop). The lines w1118, dpp-Gal4, Hsp70-Gal4, ey-Gal4, UAS-
GFP, UAS-RedStinger, Rpd304556, Egfrt1 and EgfrE1 were obtained
from the Bloomington Stock Center. Rpd3313 was obtained from
T. Grigliatti (University of British Columbia; Mottus et al, 2000);
dG9aBG5 and dG9aDel34 were gifts from Dr P. Spierer (University
of Geneva; Seum et al, 2007). UAS-Atro and Atro35 lines were
described previously (Erkner et al, 2002; Charroux et al, 2006);
dppHAtro.IR1 was generated by chromosomal recombination.
Genetic experiments were carried out at 24.5 1C.
Antibody generation. Polyclonal Atro antibodies were developed
both in guinea-pigs and rabbits by using KLH-conjugated synthetic
polypeptide ADTPALRQLSEYARPHVA. The polyclonal dG9a
antibody was developed in guinea-pigs by using KLH-conjugated
combined synthetic polypeptides AMEADRRTDDSYYFDLDN and
GEEICFDYGEKFWRVEHR.

Additional materials and methods are described in the
supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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