Abstract
The comparative metabolism and toxicity of organophosphorus and carbamate insecticides are reviewed with the purpose of assessing our present ability to design new toxicants with improved selectivity. The occurrence of quantitative and qualitative differences in metabolism in vertebrates and insects is considered and an assessment is made of the role of metabolic activation and degradation in the complex interactions governing toxicity.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDRIDGE W. N. Serum esterases. II. An enzyme hydrolysing diethyl p-nitrophenyl phosphate (E600) and its identity with the A-esterase of mammalian sera. Biochem J. 1953 Jan;53(1):117–124. doi: 10.1042/bj0530117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ackermann E. Die Demethylierung von Aminophenazon und Codein in der Leber des Menschen. Eine Untersuchung über den mikrosomalen Elektronentransport. Biochem Pharmacol. 1970 Jun;19(6):1955–1973. doi: 10.1016/0006-2952(70)90292-3. [DOI] [PubMed] [Google Scholar]
- Adamson R. H. Drug metabolism in marine vertebrates. Fed Proc. 1967 Jul-Aug;26(4):1047–1055. [PubMed] [Google Scholar]
- Alary J. G., Brodeur J. Studies on the mechanism of phenobarbital-induced protection against parathion in adult female rats. J Pharmacol Exp Ther. 1969 Oct;169(2):159–167. [PubMed] [Google Scholar]
- Alvares A. P., Schilling G., Levin W., Kuntzman R., Brand L., Mark L. C. Cytochromes P-450 and b5 in human liver microsomes. Clin Pharmacol Ther. 1969 Sep-Oct;10(5):655–659. doi: 10.1002/cpt1969105655. [DOI] [PubMed] [Google Scholar]
- Boyland E., Chasseaud L. F. The role of glutathione and glutathione S-transferases in mercapturic acid biosynthesis. Adv Enzymol Relat Areas Mol Biol. 1969;32:173–219. doi: 10.1002/9780470122778.ch5. [DOI] [PubMed] [Google Scholar]
- Brattsten L. B., Metcalf R. L. The synergistic ratio of carbaryl with piperonyl butoxide as an indicator of the distribution of multifunction oxidases in the insecta. J Econ Entomol. 1970 Feb;63(1):101–104. doi: 10.1093/jee/63.1.101. [DOI] [PubMed] [Google Scholar]
- Brodie B. B., Reid W. D. Some pharmacological consequences of species variation in rates of metabolism. Fed Proc. 1967 Jul-Aug;26(4):1062–1070. [PubMed] [Google Scholar]
- Brooks G. T., Harrison A. The oxidative metabolism of aldrin and dihydroaldrin by houseflies, housefly microsomes and pig liver microsomes and the effect of inhibitors. Biochem Pharmacol. 1969 Mar;18(3):557–568. doi: 10.1016/0006-2952(69)90080-x. [DOI] [PubMed] [Google Scholar]
- Buhler D. R., Rasmusson M. E. The oxidation of drugs by fishes. Comp Biochem Physiol. 1968 Apr;25(1):223–239. doi: 10.1016/0010-406x(68)90931-6. [DOI] [PubMed] [Google Scholar]
- CRAM R. L., JUCHAU M. R., FOUTS J. R. DIFFERENCES IN HEPATIC DRUG METABOLISM IN VARIOUS RABBIT STRAINS BEFORE AND AFTER PRETREATMENT WITH PHENOBARBITAL. Proc Soc Exp Biol Med. 1965 Apr;118:872–875. doi: 10.3181/00379727-118-29994. [DOI] [PubMed] [Google Scholar]
- Casida J. E. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J Agric Food Chem. 1970 Sep-Oct;18(5):753–772. doi: 10.1021/jf60171a013. [DOI] [PubMed] [Google Scholar]
- Chakroborty J., Smith J. N. Enzymic oxidation of some alkylbenzenes in insects and vertebrates. Biochem J. 1967 Feb;102(2):498–503. doi: 10.1042/bj1020498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen S. D., Murphy S. D. Comparative potentiation of malathion by triorthotolyl phosphate in four classes of vertebrates. Toxicol Appl Pharmacol. 1970 May;16(3):701–708. doi: 10.1016/0041-008x(70)90075-x. [DOI] [PubMed] [Google Scholar]
- Dorough H. W. Metabolism of insecticidal methylcarbamates in animals. J Agric Food Chem. 1970 Nov-Dec;18(6):1015–1022. doi: 10.1021/jf60172a041. [DOI] [PubMed] [Google Scholar]
- Fahmy M. A., Fukuto T. R., Myers R. O., March R. B. The selective toxicity of new N-phosphorothioyl-carbamate esters. J Agric Food Chem. 1970 Sep-Oct;18(5):793–796. doi: 10.1021/jf60171a014. [DOI] [PubMed] [Google Scholar]
- Fraser J., Clinch P. G., Reay R. C. N-Acylation of N-methylcarbamate insecticides and its effect on biological activity. J Sci Food Agric. 1965 Oct;16(10):615–618. doi: 10.1002/jsfa.2740161008. [DOI] [PubMed] [Google Scholar]
- Fukunaga K., Fukami J., Shishido T. The in vitro metabolism of organophosphorus insecticides by tissue homoegenates from mammals and insect. Residue Rev. 1969;25:233–249. [PubMed] [Google Scholar]
- Fukuto T. R., Metcalf R. L. Metabolism of insecticides in plants and animals. Ann N Y Acad Sci. 1969;160(1):97–113. doi: 10.1111/j.1749-6632.1969.tb15830.x. [DOI] [PubMed] [Google Scholar]
- Gillette J. R. Comments on comparative patterns of drug metabolism. Fed Proc. 1967 Jul-Aug;26(4):1040–1043. [PubMed] [Google Scholar]
- Hitchcock M., Murphy S. D. Enzymatic reduction of O,O-(4-nitrophenyl) phosphorothioate, O,O-diethyl O-(4-nitrophenyl) phosphate, and O-ethyl O-(4-nitrophenyl) benzene thiophosphonate by tissues from mammals, birds and fishes. Biochem Pharmacol. 1967 Sep 9;16(9):1801–1811. doi: 10.1016/0006-2952(67)90257-2. [DOI] [PubMed] [Google Scholar]
- Hutson D. H., Hathway D. E. Toxic effects of chlorfenvinphos in dogs and rats. Biochem Pharmacol. 1967 Jun;16(6):949–962. doi: 10.1016/0006-2952(67)90267-5. [DOI] [PubMed] [Google Scholar]
- Knaak J. B. Biological and nonbiological modifications of carbamates. Bull World Health Organ. 1971;44(1-3):121–131. [PMC free article] [PubMed] [Google Scholar]
- Krieger R. I., Wilkinson C. F. Microsomal mixed-function oxidases in insects. I. Localization and properties of an enzyme system effecting aldrin epoxidation in larvae of the southern armyworm (Prodenia eridania). Biochem Pharmacol. 1969 Jun;18(6):1403–1415. doi: 10.1016/0006-2952(69)90253-6. [DOI] [PubMed] [Google Scholar]
- Ku T. Y., Bishop J. L. Penetration, excretion, and metabolism of carbaryl in susceptible and resistant German cockroaches. J Econ Entomol. 1967 Oct;60(5):1328–1332. doi: 10.1093/jee/60.5.1328. [DOI] [PubMed] [Google Scholar]
- Lauwerys R. R., Murphy S. D. Comparison of assay methods for studying O,O-diethyl, O-p-nitrophenyl phosphate (paraoxon) detoxication in vitro. Biochem Pharmacol. 1969 Apr;18(4):789–800. doi: 10.1016/0006-2952(69)90049-5. [DOI] [PubMed] [Google Scholar]
- Lauwerys R. R., Murphy S. D. Interaction between paraoxon and tri-o-tolyl phosphate in rats. Toxicol Appl Pharmacol. 1969 Mar;14(2):348–357. doi: 10.1016/0041-008x(69)90116-1. [DOI] [PubMed] [Google Scholar]
- Lewis J. B. Detoxification of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies. Nature. 1969 Nov 29;224(5222):917–918. doi: 10.1038/224917a0. [DOI] [PubMed] [Google Scholar]
- Lykken L., Casida J. E. Metabolism of organic insecticide chemicals. Can Med Assoc J. 1969 Jan 25;100(4):145–154. [PMC free article] [PubMed] [Google Scholar]
- MAIN A. R. The role of A-esterase in the acute toxicity of paraoxon, TEPP, and parathion. Can J Biochem Physiol. 1956 Mar;34(2):197–216. [PubMed] [Google Scholar]
- Matsumura F., Ward C. T. Degradation of insecticides by the human and the rat liver. Arch Environ Health. 1966 Aug;13(2):257–261. doi: 10.1080/00039896.1966.10664544. [DOI] [PubMed] [Google Scholar]
- Menzer R. E. Effect of chlorinated hydrocarbons in the diet on the toxicity of several organophosphorus insecticides. Toxicol Appl Pharmacol. 1970 Mar;16(2):446–452. doi: 10.1016/0041-008x(70)90017-7. [DOI] [PubMed] [Google Scholar]
- Morello A., Spencer E. Y., Vardanis A. Biochemical mechanisms in the toxicity of the geometrical isomers of two vinyl organophosphates. Biochem Pharmacol. 1967 Sep 9;16(9):1703–1710. doi: 10.1016/0006-2952(67)90245-6. [DOI] [PubMed] [Google Scholar]
- Murphy S. D., Lauwerys R. R., Cheever K. L. Comparative anticholinesterase action of organophosphorus insecticides in vertebrates. Toxicol Appl Pharmacol. 1968 Jan;12(1):22–35. doi: 10.1016/0041-008x(68)90172-5. [DOI] [PubMed] [Google Scholar]
- Murphy S. D. Mechanisms of pesticide interactions in vertebrates. Residue Rev. 1969;25:201–221. doi: 10.1007/978-1-4615-8443-8_17. [DOI] [PubMed] [Google Scholar]
- Nakatsugawa T., Ishida M., Dahm P. A. Microsomal epoxidation of cyclodiene insecticides. Biochem Pharmacol. 1965 Dec;14(12):1853–1865. doi: 10.1016/0006-2952(65)90276-5. [DOI] [PubMed] [Google Scholar]
- Nakatsugawa T., Tolman N. M., Dahm P. A. Degradation and activation of parathion analogs by microsomal enzymes. Biochem Pharmacol. 1968 Aug;17(8):1517–1528. [PubMed] [Google Scholar]
- Nakatsugawa T., Tolman N. M., Dahm P. A. Degradation of parathion in the rat. Biochem Pharmacol. 1969 May;18(5):1103–1114. doi: 10.1016/0006-2952(69)90114-2. [DOI] [PubMed] [Google Scholar]
- Nakatsugawa T., Tolman N. M., Dahm P. A. Metabolism of S35-parathion in the house fly. J Econ Entomol. 1969 Apr;62(2):408–411. doi: 10.1093/jee/62.2.408. [DOI] [PubMed] [Google Scholar]
- Neal R. A. Studies on the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro. Biochem J. 1967 Apr;103(1):183–191. doi: 10.1042/bj1030183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oppenoorth F. J. Resistance in insects: the role of metabolism and the possible use of synergists. Bull World Health Organ. 1971;44(1-3):195–202. [PMC free article] [PubMed] [Google Scholar]
- POTTER J. L., O'BRIEN R. D. PARATHION ACTIVATION BY LIVERS OF AQUATIC AND TERRESTRIAL VERTEBRATES. Science. 1964 Apr 3;144(3614):55–57. doi: 10.1126/science.144.3614.55. [DOI] [PubMed] [Google Scholar]
- Paulson G. D., Zaylskie R. G., Zehr M. V., Portnoy C. E., Feil V. J. Metabolites of carbaryl (1-naphthyl methylcarbamate) in chicken urine. J Agric Food Chem. 1970 Jan-Feb;18(1):110–115. doi: 10.1021/jf60167a037. [DOI] [PubMed] [Google Scholar]
- Perry A. S. Studies on microsomal cytochrome P-450 in resistant and susceptible houseflies. Life Sci. 1970 Mar 22;9(6):335–350. doi: 10.1016/0024-3205(70)90178-5. [DOI] [PubMed] [Google Scholar]
- Rao S. L., McKinley W. P. Metabolism of organophosphorus insectides by liver homogenates from different species. Can J Biochem. 1969 Dec;47(12):1155–1159. doi: 10.1139/o69-186. [DOI] [PubMed] [Google Scholar]
- Robinson J. The burden of chlorinated hydrocarbon pesticides in man. Can Med Assoc J. 1969 Jan 25;100(4):180–191. [PMC free article] [PubMed] [Google Scholar]
- Roger J. C., Upshall D. G., Casida J. E. Structure--activity and metabolism studies on organophosphate teratogens and their alleviating agents in developing hen eggs with special emphasis on Bidrin. Biochem Pharmacol. 1969 Feb;18(2):373–392. doi: 10.1016/0006-2952(69)90215-9. [DOI] [PubMed] [Google Scholar]
- SCAIFE J. F., CAMPBELL D. H. The destruction of O, O-diethyl-S-2-diethylaminoethyl phosphorothiolate by liver microsomes. Can J Biochem Physiol. 1959 Feb;37(2):297–305. [PubMed] [Google Scholar]
- Shellenberger T. E., Newell G. W., Okamoto S. S., Sarros A. Response of rabbit whole-blood cholinesterase in vivo after continuous intravenous infusion and percutaneous application of dimethyl organophosphate inhibitors. Biochem Pharmacol. 1965 Jun;14(6):943–952. doi: 10.1016/0006-2952(65)90246-7. [DOI] [PubMed] [Google Scholar]
- Smith J. N. The comparative metabolism of xenobiotics. Adv Comp Physiol Biochem. 1968;3:173–232. doi: 10.1016/b978-0-12-395512-8.50009-9. [DOI] [PubMed] [Google Scholar]
- Stone B. F. Metabolism of fenthion by the southern house mosquito. J Econ Entomol. 1969 Oct;62(5):977–981. doi: 10.1093/jee/62.5.977. [DOI] [PubMed] [Google Scholar]
- Strother A. Comparative metabolism of selected N-methylcarbamates by human and rat liver fractions. Biochem Pharmacol. 1970 Aug;19(8):2525–2529. doi: 10.1016/0006-2952(70)90282-0. [DOI] [PubMed] [Google Scholar]
- Sun Y. P. Dynamics of insect toxicology--a mathematical and graphical evaluation of the relationship between insect toxicity and rates of penetration and detoxication of insecticides. J Econ Entomol. 1968 Aug;61(4):949–955. doi: 10.1093/jee/61.4.949. [DOI] [PubMed] [Google Scholar]
- Triolo A. J., Mata E., Coon J. M. Effects of organochlorine insecticides on the toxicity and in vitro plasma detoxication of paraoxon. Toxicol Appl Pharmacol. 1970 Jul;17(1):174–180. doi: 10.1016/0041-008x(70)90141-9. [DOI] [PubMed] [Google Scholar]
- Uchida T., O'Brien R. D. Dimethoate degradation by human liver and its significance for acute toxicity. Toxicol Appl Pharmacol. 1967 Jan;10(1):89–94. doi: 10.1016/0041-008x(67)90131-7. [DOI] [PubMed] [Google Scholar]
- Wilkinson C. F. Effects of synergists on the metabolism and toxicity of anticholinesterases. Bull World Health Organ. 1971;44(1-3):171–190. [PMC free article] [PubMed] [Google Scholar]
- Williams R. T. Comparative patterns of drug metabolism. Fed Proc. 1967 Jul-Aug;26(4):1029–1039. [PubMed] [Google Scholar]
- Williamson R. L., Schechter M. S. Microsomal epoxidation of aldrin in lepidopterous larvae. Biochem Pharmacol. 1970 May;19(5):1719–1727. doi: 10.1016/0006-2952(70)90163-2. [DOI] [PubMed] [Google Scholar]
- Winteringham F. P. Mechanisms of selective insecticidal action. Annu Rev Entomol. 1969;14:409–442. doi: 10.1146/annurev.en.14.010169.002205. [DOI] [PubMed] [Google Scholar]
- el-Aziz S. A., Metcalf R. L., Fukuto T. R. Physiological factors influencing the toxicity of carbamate insecticides to insects. J Econ Entomol. 1969 Apr;62(2):318–324. doi: 10.1093/jee/62.2.318. [DOI] [PubMed] [Google Scholar]
