Abstract
Oral administration of 1 g of acetazolamide to 8 normal subjects studied at sea level and in normoxia caused an acute increase in cerebral blood flow (CBF). During the subsequent prolonged oral treatment with 1 g of acetazolamide daily, CBF returned to normal within 2 days. The alveolar CO2 tension decreased gradually to 70% of the control value, indicating hyperventilation. At sea level hyperventilation will not increase brain oxygenation significantly in normal man, as the arterial oxygen content only increases minimally, while CBF is unchanged. At high altitude the beneficial effects of acetazolamide on the symptoms of acute mountain sickness may well be due to an improved oxygen supply to the brain, as hyperventilation will, at the low ambient PO2, cause a significant increase of the arterial oxygen content, while CBF presumably is unaffected by the drug. During hypoxia at high altitude the overall effect of prolonged acetazolamide treatment may thus be equivalent to a descent by several hundred metres.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARAK A. J., BEBER M., JACOBI H. P. The effect of acetazoleamide (diamox) and ammonium chloride on acid-base balance in pulmonary emphysema: a comparative study. Am J Med Sci. 1957 Jul;234(1):71–73. doi: 10.1097/00000441-195707000-00009. [DOI] [PubMed] [Google Scholar]
- Cain S. M., Dunn J. E., 2nd Low doses of acetazolamide to aid accommodation of men to altitude. J Appl Physiol. 1966 Jul;21(4):1195–1200. doi: 10.1152/jappl.1966.21.4.1195. [DOI] [PubMed] [Google Scholar]
- Evans W. O., Robinson S. M., Horstman D. H., Jackson R. E., Weiskopf R. B. Amelioration of the symptoms of acute mountain sickness by staging and acetazolamide. Aviat Space Environ Med. 1976 May;47(5):512–516. [PubMed] [Google Scholar]
- Friis M. L., Paulson O. B., Hertz M. M. Carbon dioxide permeability of the blood-brain barrier in man. The effect of acetazolamide. Microvasc Res. 1980 Jul;20(1):71–80. doi: 10.1016/0026-2862(80)90020-5. [DOI] [PubMed] [Google Scholar]
- GALDSTON M., GELLER J. Effects of aminophylline and diamox alone and together on respiration and acid-base balance and on respiratory response to carbon dioxide in pulmonary emphysema. Am J Med. 1957 Aug;23(2):183–196. doi: 10.1016/0002-9343(57)90192-4. [DOI] [PubMed] [Google Scholar]
- GILL M. B., MILLEDGE J. S., PUGH L. G., WEST J. B. Alveolar gas composition at 21,000 to 25,700 ft. (6400-7830 m). J Physiol. 1962 Oct;163:373–377. doi: 10.1113/jphysiol.1962.sp006982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gotoh F., Meyer J. S., Tomita M. Carbonic anhydrase inhibition and cerebral venous blood gases and ions in man. Demonstration of increased oxygen availability to ischemic brain. Arch Intern Med. 1966 Jan;117(1):39–46. [PubMed] [Google Scholar]
- Hackett P. H., Rennie D., Levine H. D. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet. 1976 Nov 27;2(7996):1149–1155. doi: 10.1016/s0140-6736(76)91677-9. [DOI] [PubMed] [Google Scholar]
- Heuser D., Astrup J., Lassen N. A., Betz B. E. Brain carbonic acid acidosis after acetazolamide. Acta Physiol Scand. 1975 Mar;93(3):385–390. doi: 10.1111/j.1748-1716.1975.tb05827.x. [DOI] [PubMed] [Google Scholar]
- Risberg J., Uzzell B. P., Obrist W. D. Spectrum subtraction technique for minimizing extracranial influence on cerebral blood flow measurements by 133xenon inhalation. Stroke. 1977 May-Jun;8(3):380–382. doi: 10.1161/01.str.8.3.380. [DOI] [PubMed] [Google Scholar]
- Vorstrup S., Henriksen L., Paulson O. B. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest. 1984 Nov;74(5):1634–1639. doi: 10.1172/JCI111579. [DOI] [PMC free article] [PubMed] [Google Scholar]