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ABSTRACT

Phenotypic stereotypes are traits, often polygenic, that have been stringently selected to conform to
specific criteria. In dogs, Canis familiaris, stereotypes result from breed standards set for conformation,
performance (behaviors), etc. As a consequence, phenotypic values measured on a few individuals are
representative of the breed stereotype. We used DNA samples isolated from 148 dog breeds to associate
SNP markers with breed stereotypes. Using size as a trait to test the method, we identified six significant
quantitative trait loci (QTL) on five chromosomes that include candidate genes appropriate to regulation
of size (e.g., IGF1, IGF2BP2 SMAD2, etc.). Analysis of other morphological stereotypes, also under extreme
selection, identified many additional significant loci. Less well-documented data for behavioral
stereotypes tentatively identified loci for herding, pointing, boldness, and trainability. Four significant
loci were identified for longevity, a breed characteristic not under direct selection, but inversely correlated
with breed size. The strengths and limitations of the approach are discussed as well as its potential to
identify loci regulating the within-breed incidence of specific polygenic diseases.

THE dog, ‘‘man’s best friend,’’ shares a large number of
the complex phenotypes observed in human pop-

ulations, including variation in morphology and behavior,
aswellasmanytypesofpolygenicdisease.Inthepastdecade,
Canis familiaris has emerged as an excellent system for
genetic analysis of complex phenotypes. Most of the
advantages offered by the canine system over other mam-
malian systems derive from its population structure
(Ostrander and Kruglyak 2000; Sutter et al. 2004;
Parker and Ostrander 2005; Goldstein et al. 2006;
Karlsson et al. 2007; Parker et al. 2007). There are .350
distinct breeds recognized in the world today, many of
which are isolates that have been, for the most part,
selected for morphology and behavior. Over hundreds
of years humans and dogs have formed a multitude
of mutalistic relationships harnessing the phenotypic
flexibility of the dog genome. New dog breeds were often
developed by crossing individuals of unique breeds
bearing desired features, followed by strong selection for
the desired phenotypes (hunting ability, coat color, skull
shape, body size, etc.), thus increasing the frequency of
selected genotypes in the modern-day population. To be
a registered member of a breed, both parents of an
individual must have been registered members of the
same breed. As a result, genetic heterogeneity is reduced
within breeds, but is high across breeds (Parker et al.

2004; Lindblad-Toh et al. 2005). Consequently, many
phenotypes are either fixed or close to fixation in a large
number of populations.

Genetic isolates have provided the key analyses of
complex polygenic disease (Lindblad-Toh et al. 2005;
Goldstein et al. 2006; Karlsson et al. 2007; Parker

et al. 2007) as well other phenotypes. However, the use of
large numbers of such isolates has not, to date, been
applied to allele trait association. The dog presents a
unique opportunity to examine the power of this
approach. Dog breeds, in which regions of the genome
are ‘‘fixed,’’ can be treated in a manner similar to
recombinant inbred populations: ‘‘Fixed’’ portions of a
breed’s genome will remain invariant as long as the
breeding population remains closed. These ‘‘fixed’’
aspects will continue to produce consistent phenotypes,
and therefore the phenotype and genotype need not be
measured on the same animal. Thus, both the allele
frequency of a single nucleotide polymorphism (SNP)
in fixed regions of the genome and the phenotype are
characteristics of a breed. As a result, associating breed-
specific genotypes with ‘‘fixed’’ phenotypes in multiple
breeds (across-breed mapping) presents a powerful tool
for identifying quantitative trait loci (QTL) that may
form the genetic basis for the phenotypic diversity
observed in dog breeds.

Similar approaches have been described using inbred
mouse strains (Grupe et al. 2001; Liao et al. 2004;
Pletcher et al. 2004; Wang et al. 2005), and these have
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been combined with classical QTL analysis (Park et al.
2003; Dipetrillo et al. 2004; Wang et al. 2004; Cervino

et al. 2005). However, the number of inbred mouse lines
available are far fewer than the number of dog breeds,
and the number of phenotypes offered by mice much
fewer than what is offered by the nearly 300 breeds of
domestic dog. Moreover, the genome structure of any
inbred mouse line is far more restrictive than the ge-
nomes that characterize a dog breed. Genomes of dog
breeds have far more heterozygosity and have survived
for centuries in quite variable environments. In short,
the selective environments experienced by any dog
breed have been far less restricted than those used
during the inbreeding procedures that give rise to an
inbred mouse.

Ideally, two types of data are required for across-breed
association analysis: (1) a common set of well-distributed,
highly informative SNPs that characterize the entire ge-
nome for each of many breeds and (2) a careful quan-
titative evaluation of the fixed phenotypes associated
with each breed. The phenotypes most amenable to this
mapping strategy are those that have been under strin-
gent selection, such as morphology and behavior. Here
we analyze the genetic basis for size using across-breed
mapping and then present examples of the technique
applied to other classes of traits: additional morpholog-
ical features, behavior, and the relationship between size
and longevity.

MATERIALS AND METHODS

A total of 148 domestic dog breeds were characterized for a
variety of sex-averaged phenotypes: height, weight, other mor-
phology characters, longevity, and behavior. Phenotypic values
used for the different breeds are summarized in supplemental
Table 1. Height at the withers and weight were obtained from
the published American Kennel Club (AKC) breed standards
(American Kennel Club 1998). The residuals from the
regression of WT0.33 onto height were derived and used as a
measure of shape (e.g., breeds that are heavier or lighter than
other breeds of the same height; see supplemental Figure 1).
‘‘Short coat’’ (Wilcox and Walkowicz 1995) was coded as
a qualitative variable: 1 for all breeds with a very short coat as
the standard and 0 for all others. ‘‘Ear bend’’ (Wilcox and
Walkowicz 1995) was scored as the degree of bend in the
ear on a scale from 1 (hanging low) to 4 (completely erect;
cropped ears were not scored). ‘‘Tail curve’’ (Wilcox and
Walkowicz 1995) was scored as the degree of curve in the
tail on a scale of 1 (straight) to 5 (tightly curled). Additional
phenotypes were measured from breed pictures (Palmer

1994; Wilcox and Walkowicz 1995; http://images.google.
com/) using the metrics described in Figure 1. Because the
pictures utilized were not standardized, only ratios of these
metrics could be used. The following ratios were defined using
the metrics in Figure 1: (1) snout:head ½a/(a 1 b)�; (2) snout
height:head ½c/(a 1 b)�; (3) head:body ½(a 1 b)/e�; (4)
leg:body ½(h 1 i)/e�; (5) tail:body ½ f/e�; (6) neck:body ½ j/e�;
and (7) chest:body (g/e).

Longevity data (supplemental Table 1) were compiled from
a variety of sources (Michell 1999; http://users.pullman.
com/lostriver/longhome.htm; KC/BSAVA 2004; Egenvall

et al. 2005). These represent data primarily from owner surveys.

One of us, Pluis Davern, an experienced dog trainer and judge
(http://www.sundownerskennels.com/training.html; http://www.
infodog.com/judges/17422/juddat.htm; http://www.akc.org/
breeders/resp_breeding/Articles/truetoform.cfm), scored be-
havioral phenotypes as qualitative variables (0, 1, or NA). Four
distinguishing patterns of dog behavior were scored: pointing,
herding, boldness, and trainability. Additional behavioral data
were taken from Hart and Miller (1985). Behavioral scores
for the 148 breeds are in supplemental Table 1.

DNA collection and isolation: DNA samples were collected
from dogs participating in AKC or otherwise sanctioned
events, including dog shows, performance events, and obedi-
ence and behavior trials. Samples were collected as either
whole blood or by cheek swab by registered veterinarians or
licensed veterinary technicians after obtaining the owner’s
written consent. AKC or other registration numbers were
collected on each dog, as was owner contact information,
pedigree data, health history, and when possible, permission
to recontact owners regarding future queries was also ob-
tained. Wherever possible, care was taken to obtain samples
from dogs unrelated at the grandparent level.

Blood samples were collected as whole blood in acid citrate
dextrose or EDTA anticoagulation tubes. Buccal swabs were
collected using standard protocols with Cytosoft cytology
brushes (Medical Packaging, Camarillo, CA). DNA was ex-
tracted from the brushes using a QIAamp blood mini kit
(QIAGEN, Valencia, CA) following the manufacturer’s pro-
tocol. DNA was extracted from the blood samples using a
standard phenol/chloroform extraction method (Maniatis

et al. 1982). Coded samples were aliquoted and stored for
long-term use at�70�. Information was entered into a My SQL
custom database.

All procedures were performed in accordance with appro-
vals from the Animal Care and Use Committees from the
University of Utah, the National Human Genome Research
Institute at the National Institutes of Health, and the Waltham
Centre for Pet Nutrition, Mars.

Figure 1.—Paths used to measure metrics of different breed
characteristics. Shape components of morphology were scored
referencing breed standards and pictures of purebred show
dogs. The metrics shown above were measured using the ‘‘path’’
tool of Adobe Photoshop on side-view pictures: (a) tip of nose
to eye; (b) eye to back of head; (c) top of snout to bottom of snout
(perpendicular tothesnoutat theplanewherethesnoutmeets the
face, adjusted for open mouths or long hair on the snout); (d) an-
gle between the top of the snout and the forehead; (e) from breast
bone to the base of the tail; (f) from the base of the tail to the tip of
the tail, compensating for the tail curve; (g) from back to chest im-
mediately behind the foreleg; (h) forefoot to shoulder socket; (i)
from rear foot to hip joint; and ( j) from eye to shoulder joint.
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Genotypes: Multiple breeds were characterized using a
common set of SNP markers. Variation in the informativeness
of marker alleles is presented in supplemental Figure 2. SNPs
were selected for use that met the following criteria: (i) SNPs
with a q score .45 that have flanking sequence occurring only
once in the genome sequence, (ii) SNPs that passed Illumina
in-house suitability testing, (iii) SNPs where the minor allele
was observed in $2 of 11 breeds tested; (iv) SNPs for which the
minor allele was observed in $1 of 11 breeds as necessary,
included to achieve complete coverage. The 25,073 SNPs
resulting were filtered such that SNPs meeting all four criteria
were added to the final data set sequentially if they were at least
380 Mb from all SNPs already in the data set. SNPs meeting
criteria i, ii, and iv were then added, maintaining the minimal
spacing. The resultant 4608 SNPs were submitted to Illumina
to generate three oligo pools. DNA samples were submitted to
Illumina for fast-track Golden Gate analysis (Fan et al. 2006).

For the experiments described, 2801 dogs representing 147
breeds were used. One hundred twenty-nine of these breeds
were represented by $10 dogs (supplemental Figure 3,
supplemental Table 3). DNA from each dog was genotyped
using 1536 markers, of which 674 were spaced across the 38
canine autosomes. A total of 862 additional markers were con-
centrated in regions of interest that showed maximal variation
in allele frequency between breeds. The focused selections
were chosen to further characterize areas that allowed breeds
to be easily distinguished and may be linked to traits of interest
(e.g., Sutter et al. 2007). As a result, the median distance
between markers was 409 kb although only �26% of the
genome was within 250 kb of a marker (supplemental Table 2).

Details of SNP probe sequences associated with QTL and of
the sequences in which these markers are imbedded are
presented in supplemental Table 4 (see supplemental table
legend). Relevant marker allele frequencies in different
breeds are presented in supplemental Table 5.

SNP association: We tested for correlations between breed
allele frequency (xi) and breed-characterized phenotypes (yi)
using a weighted Pearson product correlation:

rxy ¼
P

wiðxi � xwÞ ðyi � ywÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
wiðxi � xwÞ2

P
wiðyi � ywÞ2

p ;

where yw ¼
P

wiyi=
P

wi ; xw ¼
P

wixi=
P

wi and wi ¼
ffiffiffiffiffi
ni
p

,
where ni is the number of animals for breed i.

Two measures of significance were important: single SNP P-
value and genomewide P-value (e.g., the probability of a
particular rxy value in a single test and the multi-test correction
when testing all SNPs across the genome, respectively).

We used permutation tests to establish the null distribution
of the rxy statistic for each SNP and for each phenotype. A
generalized extreme value distribution was fit to the empirical
‘‘null’’ data using the gevFit function of the fExtremes package
(Wuertz 2006) for R (R Development Team 2006). The
Kolmogorof–Smirnoff test (Conover 1971) of the R package
(ks.test) was used to test the goodness of fit. Distributions with
a ks.test P-value of #0.01 were considered poorly estimated
and dropped from further analysis. The significance of rxy

values were estimated using the cumulative probability func-
tion (pgev) and �log10 transformed for convenience (logP).
For each permutation, the maximum score across all SNPs was
recorded as the single genome-scan maximum. Genome-scan
maximum values from 1000 permutations were used to
estimate the null distribution of a genomewide scan. The 90,
95, and 99% percentiles of this distribution were used as the
thresholds from genomewide significance of 0.1, 0.05, and
0.01, respectively.

Power to detect association: We estimated the power to
detect association with a neighboring marker allele as a
function of the number of breeds available. In Figure 2, it
can be seen that the power to identify an association drops off
rapidly as the number of breeds decreases. This loss of power
becomes particularly relevant when phenotypes have been
evaluated in only a small number of breeds.

Markers were considered informative if they had a wide range
of allele frequencies across breeds. Conversely, a SNP for which
both alleles displayed equal frequency across all breeds was
uninformative. We estimated the power to detect an associa-
tion as a function of allele-frequency variation among breeds.
The significance (logP) of a single-marker test for differently
modeled situations is graphed in Figure 3 (y-axis) as a function
of the distance between the SNP markers (x-axis). Three
patterns of variation in the SNP allele frequency among breeds
were considered (Figure 3, insets): histograms representing
the number of breeds (y-axis) in each allele-frequency bin
(x-axis). The ability to detect QTL increases with increasing
variation of its occurrence in different breeds.

Regression analyses: The ‘‘lm’’ function of R was used to
perform a weighted multiple regression, with the square root

Figure 2.—Probability of detecting allele
associations between two SNPs as a function
of (1) the physical distance between the two
markers (x-axis), (2) the number of breeds
sampled (n ¼ 148, 100, 75, and 50), and (3)
the ratio of genotypic information to total
variation of the allele frequency plus simu-
lated noise (q ¼ 1, 0.5, and 0.25). All SNP
marker pairs within a physical distance of
500 kb of each other were tested using
the weighted correlation described in the
materials and methods. Results were col-
lected in bins of 50 kb. Power was defined as
the fraction of trials within a bin that exceed
a logP-value of 4 (�P # 0.01). Trials with
breed number ,148 were averaged over five
random subsamples of n breeds from the to-
tal. Ratios of q , 1 were generated by adding
the allele frequency for a SNP allele to one
or three permutations of the frequencies for
the same allele.
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of breed count used for weights (Chambers 1992). The ‘‘glm’’
function of R was used with the option family ¼ ‘‘binomial’’ to
carry out a logistic regression (Hastie and Pregibon 1992). The
‘‘regress’’ function was used to carry out a mixed-model analysis
(Clifford and McCullagh 2006) with allele counts as the fixed
effects and the breed similarity matrix as the random effects. The
variance matrix between breeds was calculated as the similarity
between all pairs of breeds using markers separated by at least
500,000 bp. We defined the similarity between two breeds as one
minus the average absolute difference in allele frequency across
all markers (see supplemental Table 6 for all similarity values).
Thus, breeds that are identical had a similarity score of 1 and
breeds that were completely different had similarity scores of 0. A
leave-one-out strategy was used to predict breed phenotypes with
the mixed model. Coefficients estimated from the data with a
breed left out were used to predict the phenotype of that breed
(see supplemental Figure 4).

RESULTS

Morphology: A number of genes regulating size or
shape have been identified in different mammals (hu-
mans, mice, rats, or dogs). Several of these regulate rel-
atively large amounts of phenotypic variation (e.g., IGF-1,
IGF-2). Identifying QTL containing such candidate genes
provided evidence suggesting that the method proposed
was robust.

Selected regions of the genome were examined using
a SNP scan of 148 breeds. Using association analysis,
several QTL were identified for size (WT) and shape
(HT and residuals of WT0.33 regressed on to height).

Table 1 presents the location and characterization of the
loci for which the most evidence was accrued. Loci
regulating both height-at-the-withers and body weight
are located on Canis familiaris autosome (CFA) 7, 10, 15,
and 34, whereas the locus on CFA 9 regulates only body
weight. When Wt0.33 is regressed onto height at the
withers, a variation in shape can be distinguished that
represents differences between breeds that range from
dogs that are thin for their height (pursuit hounds such
as the greyhound, Afghan hound, or whippet, as well as
some smaller dogs such as the fox terrier) to ones that
have a large body mass for their height (see supplemen-
tal Figure 3). The locus on CFA 6, associated with this
phenotype, was not associated with either height or
weight. In the Portuguese water dog (Lark et al. 2006), a
highly significant locus on CFA 12 that regulates an
inverse correlation between limb bone length and width
was identified. This locus was not identified with
genomewide significance in the present across-breeds
WT0.33 residual scan, but it was found in that scan at a
significance that validated the pre-identified locus from
the Portuguese water dog. Such instances of lowered
significance may reflect a low frequency of breeds in
which a locus has been fixed.

As can be seen in Table 1, many of the loci contain
candidate genes that are associated with size, including
SMAD-2 and NPR2 on CFA7; HMGA2 on CFA10; IGF1 on
CFA15, as well as a murine high-growth-regulating re-
gion containing SOCS2; and IGF2BP2 on CFA34. Thus,

Figure 3.—Significance of association
between linked markers as a function of
physical distance and marker in formative-
ness. LOWESS (Cleveland 1981) estima-
tions of average significance are shown
for markers in three groups: high, moder-
ate, and low variance. Histograms represen-
tative of the three marker categories are
shown as insets.
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associating SNPs from multiple breeds with breed-
specific metrics may facilitate association mapping of
complex, polygenic phenotypes (across-breed mapping).

Mapping breed characters: In many breeds, a num-
ber of other desired morphological traits have been
under stringent selection and thus should be fixed.
Descriptions of these phenotypes are presented in the
materials and methods. Their distribution among
breeds is presented in supplemental Table 1. We have
used across-breed association mapping to identify pu-
tative QTL for many of these (Table 2). In all, 10 traits
were associated with 26 loci distributed over 14 chro-
mosomes at a significance better than P , 0.01. As ex-
pected, many of these QTL (10) were identified at high
significance, exceeding a genomewide threshold of P #

0.001. QTL for two aspects of snout size or shape were
associated with the same SNP on CFA 12; both the
length of tail and the degree to which ears are erect were
associated with a locus on CFA 15 that also is associated
with overall size (see Table 1); similarly, size of snout and
erectness of ears were associated with another size locus
on CFA 34; and two closely linked loci on CFA 9 regulate
variation in the size of the neck or head. Again,
suggestive candidate genes were found associated with
some of these QTL: TNFRSF19 and Fgf5 with short coat
and COL6A3 with the degree of tail curvature. As
expected, this mapping technique appears to be very
powerful for phenotypes that are very close to fixation
and also are found in a large number of breeds, the
optimal proportion approaching 50% of the breeds
analyzed.

Additional tests for significance and effects of breed
structure: QTL identified by single-marker tests may
implicate causative regions of the genome, or they may
represent false positives: shadow effects resulting from
autocorrelations in the data. False-positive results may
be caused by unequal sharing of genome regions be-
tween the breeds (breed structure), coselection of
multiple unlinked regions, and/or codependence of
unlinked genome regions (interactions). Multiple-
regression analysis provides an estimate of the indepen-
dence of the loci regulating a trait. QTL that deviate
from the additive-independent model will not remain
significant in a multiple regression and may represent
false positives or more complex effects. QTL may appear
less significant (or not significant) in a multiple re-
gression if they were coselected with other loci, or if they
are involved in interactions with other loci. Table 3
presents the results of multiple-regression analyses of
those traits in Tables 1 and 2 that are associated with
multiple loci. Several loci either were not significant or
demonstrated marginal significance. In all but one
instance, the sum of the significant single regression R2

values greatly exceeded the multiple R2 value, suggesting
that some loci were not causative or that interactions
and/or coselection were occurring. In the case of
weight, there was an apparent interactive effect, P ¼
0.0009, between the major locus on CFA 15 (associated
with SNP BICFPJ263341 at 44 Mbp) and the locus
on CFA 10 (associated with SNP gnl.ti.360206886_2 at
11.5 Mbp). This interaction remains significant in the
multiple-regression (0.026) and in the mixed multiple-

TABLE 1

Details of QTL for size-related traits

Trait Chromosome Position (bp) logP Threshold (P , x) No. of genes Candidate genes

HT CFA 7 46,696,633 6.20 0.001 7
CFA 10 7,033,361 4.94 0.01 1
CFA 10 11,465,975 4.36 0.01 5
CFA 15 44,228,026 6.05 0.001 5
CFA 34 21,414,695 3.66 0.05 9

WT CFA 7 46,696,633 7.20 0.001 7 SMAD2, NPR2
CFA 9 46,401,136 4.99 0.01 19
CFA 10 7,033,361 5.15 0.001 1
CFA 10 11,465,975 3.63 0.05 5 HMGA2
CFA 15 37,006,865 3.86 0.05 2 SOCS2
CFA 15 44,228,026 4.59 0.01 5 IGF1
CFA 34 21,414,695 3.36 0.1 9 IGF2BP2

WT0.33resid CFA 6 22,281,985 4.34 0.01 6

For details of traits, see text and this legend. Chromosomes on which these are located are indicated as well as the position in
base pairs on each chromosome of the SNP at which significance was estimated. The logarithm of the P-value (logP) is given as well
as the genomewide significance threshold that this P-value exceeds and the number of known genes in the LD interval (400 kb).
Genomewide significance thresholds for logP varied between 3.26 and 3.29 for P # 0.1; between 3.45 and 3.50 for P # 0.05; and
between 4.00 and 4.05 for P # 0.01. Extremely significant loci are underlined. For more details, see supplemental Tables 4 and 5.
The number of genes within 200 kb of the SNP that were investigated for candidate genes and the names of the candidate genes
are listed.
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regression model (0.003; see below). Coselection can
mimic a significant interaction effect in this situation
(see discussion). For one trait, the ratio of head to body
metrics (‘‘head ratio’’), the sum of the three significant
individual R2 values was only slightly greater than the
multiple R2 value, suggesting that these loci might be
acting independently.

Considerable population structure exists among dog
breeds (Parker et al. 2004). Using the popgen (Marchini

2004) package of R, we estimated measures of diversity
among these breeds (Nicholson et al. 2002). The mean
‘‘c’’ (analogous to FST) value is 0.25 with individual
breed values ranging from 0.05 to 0.61. In an across-
breed association analysis, noncausative (shadow) loci
may result from effects of population substructure due
to genetic relatedness among breeds. To test for this,
we used a mixed-model analysis (see materials and

methods) to predict trait values of weight as well
as head:body ratio (head ratio). We found that all of

the significant QTL for weight or head ratio (Table 3)
remained significant in a mixed model correcting for
genetic relatedness of breeds, with P-values ranging
from 10�2 to ,10�5 for weight and ,10�3 for the three
significant head/rat loci.

Examples illustrating the future potential of the
mapping technique: Longevity and size: In general, dogs
representing breeds of small size (e.g., Pekingese, toy
poodle, terrier breeds) live appreciably longer than
those from larger-sized breeds (e.g., Great dane, St.
Bernard, Irish wolfhound) (Egenvall et al. 2005). We
have mapped loci for longevity using multiple breeds
spanning a comprehensive range of sizes. An analysis of
breed longevity had been compiled by K. Cassidy (http://
users.pullman.com/lostriver/longhome.htm), but many
of the breeds for which we had genotypes were not
included in that database. We therefore prepared a
similar database for all breeds genotyped in our study
using a variety of website resources (supplemental Table

TABLE 2

QTL associated with breed morphological characteristics

Trait Chromosome Position (bp) logP Threshold (P , x) No. of genes Candidate genes

Short coat CFA 25 17,862,111 3.88 0.01 5 TNFRSF19
CFA 32 7,806,734 5.43 0.001 1 Fgf5

Ear bend CFA 10 11,915,402 4.70 0.01 2
CFA 15 44,137,464 4.10 0.01 5
CFA 32 14,508,914 4.12 0.01 9
CFA 34 21,414,695 6.84 0.001 9

Tail curve CFA 1 81,302,720 4.40 0.01 1
CFA 9 14,626,755 3.92 0.01 13
CFA 25 51,048,799 4.36 0.01 4 COL6A3
CFA 38 6,614,004 3.94 0.01 0

Snout angle CFA 10 61,541,406 3.88 0.01 3
CFA 12 57,797,364 5.22 0.001 4

Snout ratio CFA 1 97,045,173 5.43 0.001 4
CFA 9 50,982,910 3.95 0.01 13
CFA 12 57,797,364 4.07 0.01 4
CFA 21 27,755,937 4.68 001 6
CFA 32 32,959,130 4.76 0.01 10

Head ratio CFA 9 25,422,459 4.01 0.01 16 IGFBP4
CFA 22 10,294,335 4.84 0. 01 2
CFA 34 21,414,695 6.13 0.001 9
CFA 38 24,931,616 4.05 0.01 14

Leg ratio CFA 3 64,678,450 4.27 0.01 8 RNF4, MXD
CFA 6 22,280,330 4.06 0.01 6

Tail ratio CFA 15 44,239,862 4.45 0.01 5

Neck ratio CFA 9 24,032,840 5.00 0.001 17 STAT3

As in Table 1, traits (see materials and methods) are presented together with the chromosome on which they are located, the
position of the SNP with which they are associated, and the significance of the association (logP), number of known genes in the
LD interval (400 kb), and genomewide P-value threshold exceeded. Genomewide significance threshold P-values for traits varied
between 3.8 and 4.1 for P # 0.01 and between 4.34 and 4.7 for P # 0.001 (underlining). For more details, see supplemental Tables
4 and 5. The number of genes within 200 kb of the SNP that were investigated for candidate genes and the names of the candidate
genes are listed.
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1). Figure 4 compares longevity/size data between the
two databases. The negative correlation between age of
death (AOD) and size is obvious. The slope of the
regression of size onto longevity is the same in both data
sets, although the difference in intercepts indicates that
the database that we developed yields an average age of
death that is older. This may be due to the fact that
Cassidy’s data utilized information from both veterinar-
ian records and owner responses to questionnaires,
whereas our data were biased toward owner surveys,
which typically prefer to reference longer-lived animals.
Although this may produce an inflated mean value of
AOD, it presents a more sensitive signal for genetic
analysis. We therefore utilized our larger database,
together with the genotyping used in Table 1, to identify
QTL for breed-associated age of death (Table 4).

Included in Table 4 are data indicating the presence
or absence of size loci associated with the same SNP.
Seven loci were identified, three of which, CFA 7, 10,
and 15 were associated with significant size (as in weight)
loci. These were also the most significant loci for
longevity. A fourth, on CFA 34, was associated with a
less-significant weight locus. Loci on CFA 9, 23, and 25,

although quite significant for age of death, were not
significant for size with the exception of the locus on
CFA 9, which is linked to a very significant size locus (see
Table 1). When these age-of-death loci were combined
in a multiple regression, three on CFA 10, 25, and 34
were no longer significant and the multiple R2 was ap-
proximately half the value of the sum of the single R2

values.
Behavior: Two aspects of dog behavior that appear to

be highly breed specific are herding and pointing. Pluis
Davern, a nationally recognized dog trainer qualified to
judge a large number of breeds (http://www.infodog.
com/judges/17422/juddat.htm), scored the 148 geno-
typed breeds for two additional phenotypes: ‘‘boldness
vs. timidity’’ and ‘‘trainability.’’ Behavioral scores for the
148 breeds are presented in supplemental Table 3.
Using these scores, we identified several loci of interest
(Table 5). We identified one locus for pointing on CFA 8
with a genomewide significance threshold of 0.01 , P ,

0.05. Three loci were detected for herding; these were
located on CFA 1 (P , 0.01) and on CFA 4 and CFA15
(0.01 , P , 0.05). While the boldness and trainability
gestalts are subjective, and at best descriptive, we

TABLE 3

Single- and multiple-regression results for selected traits with multiple QTL

SNP Chromosome Position (bp) Significance Single R 2 Multiple R 2

WT gnl.ti.390449323_1 7 46,696,633 ** 0.34
BICFPJ1156983 9 46,401,136 ** 0.10
BICF232J28587 10 7,033,361 NS 0.19
gnl.ti.360206886_2 10 11,465,975 ** 0.12
gnl.ti.351411336_1 15 37,006,665 *** 0.14
BICFPJ263341 15 44,228,026 *** 0.48
BICFPJ1062878 34 21,414,695 ** 0.20

S ¼ 1.6 (1.4) 0.69
Snout rat gnl.ti.355951851_2 1 97,045,173 *** 0.15

BICF229J36361 9 50,982,910 ** 0.11
BICF236J54123 12 57,797,364 ** 0.11
gnl.ti.390310078_3 21 27,755,937 ** 0.15
BICF229J63639 32 32,959,130 *** 0.24

S ¼ 0.8 0.44
HT gnl.ti.390449323_1 7 46,696,633 *** 0.35

BICF232J28587 10 7,033,361 NS 0.17
gnl.ti.360206886_2 10 11,465,975 *** 0.16
BICFPJ263341 15 44,228,026 *** 0.53
BICFPJ1062878 34 21,414,695 ** 0.19

S ¼ 1.4 (1.2) 0.65
head.rat BICF229J19878 9 25,422,459 NS 0.08

gnl.ti.350815589_1 22 10,294,335 *** 0.13
BICFPJ1062878 34 21,414,695 *** 0.15
gnl.ti.390146013_1 38 24,931,616 *** 0.13

S ¼ 0.5 (0.4) 0.34

Trait, SNP, SNP chromosome location, and SNP base-pair position on the chromosome are indicated in the first four columns.
Significance is noted as not significant (NS); (*) 0.01 , P , 0.05; (**) 0.001 , P , 0.01; (***) P , 0.001. ‘‘Single R 2’’ presents the
amount of variation explained by a single SNP in the single-regression model. ‘‘Multiple R 2’’ presents the amount of variation
explained with all SNPs in the same model. The sum of SNP single R 2 is presented in two forms: the total sum (S) or the total
minus the R 2 of values that were not significant. Some traits were transformed to achieve a better fit to the normal distribution:
Snout.rat was squared. Height was arcsine square root transformed; head.rat was log transformed.
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nevertheless found one significant (P , 0.01) locus for
trainability on CFA 10 as well as five for boldness on CFA
15 and 22 (P , 0.01) and on CFA 1, 4, and 17 (0.01 , P
, 0.05). In a multiple regression, all of the loci for
boldness remained significant. The locus on CFA 15 is
interesting in that it does not appear to be related to
size, as approximately equal numbers of large and small
breeds were found to be bold (see supplemental Table
3), and boldness and size were not correlated (r ¼ 0.18;
P ¼ 0.3). Possible candidate genes are listed in Table 5
for herding and pointing, along with two of the boldness
QTL. Included in Table 5 are data for excitability
(comprising 56 breeds) taken from Hart and Miller

(1985). Two significant QTL were identified on CFA 7
and 15. Both coincided with major-size loci. Unlike the
relationship between boldness and size, excitability was
highly correlated with size (r ¼ �0.8; P , 10�12, despite
the small data set (56 breeds vs. the 148 used in the
analysis of boldness).

DISCUSSION

Three powerful genetic procedures are now available
using a canine model:

1. Segregation in planned crosses or within a breed
population can be used to identify loci for simple and

complex phenotypes. This approach takes advantage
of the large LD distances that can be attributed
to founder effects and bottlenecks (for example,
Mignot et al. 1991; Acland et al. 1998, 1999; Lingaas

et al. 1998; Van de Sluis et al. 1999; Jonasdottir et al.
2000; Chase et al. 2005a, 2006; Todhunter et al. 2005).

2. LD mapping across breeds has been used to reduce
haplotypes of simple and complex phenotypes to
reasonably small DNA sequences and often to iden-
tify single genes (Clark et al. 2006; Goldstein et al.
2006; Karlsson et al. 2007; Parker et al. 2007;
Sargan et al. 2007).

3. The across-breed mapping method described here,
which combines association with multiple-breed LD
mapping, thereby associating small regions of the
genome with the phenotype, can be used.

The results presented here illustrate the power of
across-breed mapping using a data set of .100 breeds.
Using morphological phenotypes, we have found an
interaction between loci regulating weight on CFA 10
and CFA 15 and implicating a major locus for size on
CFA 7. We have validated loci, first described in the
Portuguese water dog: one, a major locus regulating
shape (limb length vs. width) on CFA 12 (Lark et al. 2006)
and two size loci on CFA 15 (44 and 37 Mb) identified
in previous studies (Chase et al. 2002, 2005b ; Sutter

Figure 4.—Longevity or AOD as a function of body weight in pounds. For details, see text. Solid symbols represent the database
created from websites (see supplemental Table 3). Open symbols are data from the database of Cassidy (http://users.pullman.
com/lostriver/longhome.htm). A few dog breeds with extreme values are noted.
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et al. 2007). In addition, we have found a number of loci
affecting morphology, some of which may be indepen-
dent regulators of the relation of the size of the skull to
the post-cranial body. For these and other traits, the LD

distance associated with any SNP is �500 kb. This is
much smaller than the LD distance associated with
markers when mapping within a single breed (Sutter

et al. 2004). Nevertheless, as seen in Tables 1, 2, and 5,
many genes remain to be explored in searching for
alleles that regulate the phenotypes in question (in the
data presented, this number ranges from 1 to 19,
depending on the QTL).

Most often, across-breed mapping identifies markers
that tend to be near or at fixation (homozygous) in
breeds with the associated phenotype. Breeds in which
the phenotype is still segregating will not contribute to
the power of QTL identification. However, they will
provide a resource in which the association can be
validated using within-breed segregation analysis. Such
breeds are readily identified from the across-breed SNP
genotyping database. It should be possible now to
validate the most significant (P # 0.001) of the other
loci in Table 2 using breeds in which the implicated
SNPs are segregating ½e.g., the locus on CFA 32 for short
coat (Table 2) was identified by segregation analysis
using dachshunds or corgis (Housley and Venta

2006)�.
Limitations to across-breed mapping will always ne-

cessitate validation using within-breed segregation anal-
ysis. One limitation of the method is the potential for
false positives that may arise from population structure,
whereby causative regions of the genome displaying
significant associative P-values cannot be distinguished
from noncausative ones. Our simple association analysis
has made the assumption that dog breeds are indepen-

TABLE 4

QTL associated with AOD and the probability that size is also
associated with that SNP

Trait Chromosome
Position

(bp) logP
Threshold

P , x

Age of death CFA 7 46,696,633 7.06 0.001
Size CFA 7 46,696,633 7.73 0.001
Age of death CFA 9 48,230,567 4.18 0.01
Size CFA 9 48,230,567 2.82 .0.1
Age of death CFA 10a 7,033,361 4.46 0.01
Size CFA 10a 7,033,361 5.15 0.001
Age of death CFA 15 44,228,026 8.94 0.001
Size CFA 15 44,228,026 4.59 0.01
Age of death CFA 23 35,509,334 4.12 0.01
Size CFA 23 35,509,334 2.58 .0.1
Age of death CFA 25a 18,193,826 3.94 0.05
Size CFA 25 18,193,826 2.55 .0.1
Age of death CFA 34a 21,414,695 3.73 0.05
Size CFA 34 21,414,695 3.36 0.1

Trait, chromosome (CFA), logP, and significance (genome-
wide P-value threshold) are as in Table 2. Genomewide signif-
icance thresholds for logP for association with AOD were 3.27
for P # 0.1, 3.45 for P # 0.05, and 3.95 for P # 0.01. Most
significant are in italics. Thresholds for size were 3.26 for
P # 0.1, 3.45 for P # 0.05, and 4.00 for P # 0.01.

a Loci no longer significant in a multiple-regression model
(see text).

TABLE 5

QTL associated with behavior

Trait Chromosome Position (bp) logP Threshold P , x No. of genes Candidate genes

Herding CFA1 27630805 7.20 0.001 4 MC2R, C18orf1
Boldness CFA1 67693978 4.26 0.05 7
Herding CFA4 42765963 4.83 0.05 6
Boldness CFA4 40782966 4.15 0.05 7 DRD1
Excitabilitya CFA7 46696633 4.06 0.01 7
Pointing CFA8 33344686 5.33 0.05 6 CNIH
Trainability CFA10 13396503 3.77 0.05 4
Excitabilitya CFA15 44228026 4.63 0.01 5
Herding CFA15 44229716 4.89 0.05 5
Boldness CFA15 44137464 5.05 0.001 5
Boldness CFA17 15478350 4.40 0.05 1
Boldness CFA22 25446003 6.09 0.001 1 PCDH9

The genomewide SNP scan (see Table 2) was used to associate SNP markers with several behavioral phenotypes: pointing, herd-
ing, boldness, and trainability. Scoring for these phenotypes is presented in supplemental Table 3. From left to right (top), col-
umns list the trait, chromosome, nucleotide position on the chromosome, the logP value of the significance, the genomewide
threshold of significance, the number of known genes in the LD interval (400 kb), and possible candidate genes. More significant
loci are underlined. The genomewide significance thresholds for the four traits were herding, 0.01 , P , 0.05¼ 4.38 and P # 0.01
¼ 5.04; pointing, 0.01 , P , 0.05 ¼ 4.69 and P # 0.01 ¼ 5.69; boldness, 0.01 , P , 0.05 ¼ 4.09 P # 0.01 ¼ 4.81; and trainability,
0.01 , P , 0.05 ¼ 3.48 and P # 0.01 ¼ 3.86.

a Two loci for excitability were identified using data by Hart and Miller (1985). The genomewide threshold P # 0.01 for this
trait was logP¼ 3.67. For more details, see supplemental Tables 4 and 5. The number of genes within 200 kb of the SNP that were
investigated for candidate genes and the names of the candidate genes are listed.
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dent of each other. However, this is rarely the case. Breed
structure is the network of haplotype regions shared
between breeds. For example, we would expect a high
proportion of sharing between the genomes of the
standard and the toy poodle, although we expect sig-
nificant differences in regions with loci related to
control of size. The mean FST between the breeds used
in our study is 0.25 (SD¼ 0.11), indicating that they have
not diverged greatly. Moreover, principal component
(PC) analysis of the allele frequencies (data not pre-
sented) shows that the allele shared between breeds is
not coherent (e.g., the first PC explains only 4% of the
total variation in allele frequency). Thus, different
breeds share different parts of the genome.

Reviewing similar techniques applied to inbred
mouse strains, Payseur and Place (2007) have sum-
marized the power and pitfalls of the technique (e.g.,
they showed that unequal relatedness between strains
can give rise to false-positive associations, since causative
regions of the genome may be co-inherited with non-
causative regions). Studies in the mouse suggest exten-
sions to this technique in the dog as more robust SNP
and phenotype data become available: (1) use of SNP
haplotypes spanning a small physical distance (e.g., 300
kb) instead of single SNP alleles (Karlsson et al. 2007;
Salmon Hillbertz et al. 2007; Sutter et al. 2007), (2)
correction for relatedness between breeds using mixed-
model analysis, (3) balanced representation of breeds,
and (4) correction for nonsystenic LD by testing
multiple loci in the same model.

We have used an across-breed averaged correction for
breed structure to correct for effects of breed structure
on weight and head-to-body ratio and a multi-QTL
regression model to rule out nonsystenic LD among
loci that we have detected. Nevertheless, interactions
and coselection can result in false positives and, as with
mouse inbred strains, it will always be necessary to
validate loci.

The current data set has several limitations. In Figure
2, we presented evidence that significance is limited to
250 kb on each side of a SNP. By this criterion, our
database analyzes only 26% of the genome with the
remainder not considered in the association mapping
that identified the loci used in the multiple-regression
model in Table 3. Therefore, within-breed validation of
segregating loci will be required to completely rule out
nonsystemic LD. Beyond shadow effects, there remain
other complex effects, such as interactions between loci
and/or coselection of loci during breed formation that may
confound results. The data in Table 3 indicate that such
effects may be present for most of the traits examined.

In the future, genotyping platforms should offer
deeper coverage of the genome (�50,000 well-placed
and informative SNPs), more robust and balanced
breed representation, and more dogs per breed (30–
50). Finally, improved phenotypic characterization of
breed stereotypes is needed.

Phenotypes that have been under stringent selection
are best suited to across-breed association mapping, and
this is apparent in the data in Table 2 where highly
significant values for several stringently selected mor-
phological QTL were observed. Similarly, stringent
selection for behavior may be responsible for the be-
havioral loci identified here. Candidate genes associated
with these loci (Table 5) include ones that might be
expected to play a major role in regulating behavior:
MC2R on CFA 1 (27,381,939 bp) is a melanocortin re-
ceptor, and C18orf1 (27,572,327 bp) has been impli-
cated in schizophrenia. DRD1, on CFA 4 (40,743,436
bp), encodes a dopamine subtype receptor. CNIH,
on CFA 8 (33,396,000 bp), has been implicated in
cranial nerve development. Finally, PCDH9, on CFA 22
(24 273 482 bp), encodes a protein localized to syn-
aptic junctions and believed to be involved in specific
neural connections and signal transduction. Although
the behaviors involved are poorly defined, the pres-
ence of candidate genes appropriate to behavior is
encouraging.

Despite the likely possibility of false positives, the
across-breed mapping technique can focus attention on
loci that may regulate genetic differences between breeds
when these cannot be investigated using segregation
within breeds. In an extensive study of within-breed
longevity involving many different breeds, Galis et al.
(2007) were unable to find evidence for an inverse cor-
relation between longevity and size and neither have we
seen such an inverse correlation in Portuguese water
dogs that display a range of sizes approaching threefold
(our unpublished data). The peculiar inverse correla-
tion between longevity and size seen in Figure 4 is strictly
a between-breed phenomenon and provides an excel-
lent example of a trait that can be approached with
across-breed mapping. The data in Table 4 suggest that a
subset of loci, which control body size, also contribute to
longevity, with some playing a greater role in the aging
process than others.

Across-breed mapping depends on variants of the
genomic architecture that are relatively fixed in a large
number of different breeds. Given accurate estimations
of breed-disease frequency, this technique can be used
to determine the impact of the breed-fixed genome
regions on the disease. All of these breeds represent
‘‘successful’’ genome architectures. While some may be
more or less prone to a disease, they are still functional
productive genomes. It is not likely that a large number
of breeds harbor a single deleterious mutation that can
be detected in this fashion. Thus, it is likely that one of
several functional genome variants will predispose to a
disease state as, for example, one might encounter with
size loci where particular alleles may predispose toward
orthopedic diseases.

Because power in across-breed mapping derives from
variation between breeds in the frequency of disease (as
in the simulation in Figure 3), this approach functions

1042 P. Jones et al.



only if disease reporting is accurate. While databases of
disease frequency exist, they are often based on breeder-
directed health surveys and inherent biases exist. More
useful may be the growing number of veterinary school
databases spanning several years.

The quality of genotypic data is paramount as well.
Ideally, large public databases providing comprehensive
SNP data on �50 independent lineages for most AKC-
recognized dog breeds should be made available as the
genotypic breed standard for future mapping studies.
Such an effort, termed CanMap (http://www.sciencemag.
org/cgi/content/full/sci;317/5845/1668), is currently
underway in an effort initially involving investigators
from Cornell, the University of California at Los Angeles,
and the National Human Genome Research Institute
(Pennisi 2000). The initial end point will be a public
repository of dense SNP profiles of about a dozen dogs
from each of nearly a hundred breeds, plus a set of wild
canids, which together will be an invaluable resource for
the genetic dissection of complex polygenic diseases, a
large number of which are common to both dogs and
humans.

In summary, across-breed mapping is another facet of
the canine model that complements within-breed map-
ping and LD mapping. It implicates new regions of
interest and can provide validation of previously iden-
tified loci.
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Stefánsson et al., 2002 Assessing population differentiation
and isolation from single-nucleotide polymorphism data. JRSS(B)
64: 695–715.

Ostrander, E. A., and L. Kruglyak, 2000 Unleashing the canine
genome. Genome Res. 10: 1271–1274.

Palmer, J., 1994 The Illustrated Encyclopedia of Dog Breeds. Wellfleet
Press, Edison, NJ.

Park, Y. G., R. Clifford, K. H. Buetow and K. W. Hunter,
2003 Multiple cross and inbred strain haplotype mapping of
complex-trait candidate genes. Genome Res. 13: 118–121.

Parker, H. G., and E. A. Ostrander, 2005 Canine genomics and
genetics: running with the pack. PLoS Genet. 1: e58.

Parker, H. G., L. V. Kim, N. B. Sutter, S. Carlson, T. D. Lorentzen

et al., 2004 Genetic structure of the purebred domestic dog. Sci-
ence 304: 1160–1164.

Parker, H. G., A. V. Kukekova, D. T. Akey, O. Goldstein, E. F.
Kirkness et al., 2007 Breed relationships facilitate fine-mapping
studies: a 7.8-kb deletion cosegregates with Collie eye anomaly
across multiple dog breeds. Genome Res. 17: 1562–1571.

Payseur, B. A., and M. Place, 2007 Prospects for association map-
ping in classical inbred mouse strains. Genetics 175: 1999–2008.

Pennisi, E., 2000 Human genome: finally, the book of life and in-
structions for navigating it. Science 288: 2304–2307.

Pletcher, M. T., P. McClurg, S. Batalov, A. I. Su, S. W. Barnes et al.,
2004 Use of a dense single nucleotide polymorphism map for
in silico mapping in the mouse. PLoS Biol. 2: e393

R Development Core Team, 2006 R: A language and environment for
statistical computing. R Foundation for Statistical Computing.
Vienna. http://www.R-project.org.

Salmon Hillbertz, N. H., M. Isaksson, E. K. Karlsson, E. Hellmén,
G. R. Pielberg et al., 2007 Duplication of FGF3, FGF4, FGF19
and ORAOV1 causes hair ridge and predisposition to dermoid
sinus in Ridgeback dogs. Nat Genet. 39(11): 1318–1320.

Sargan, D. R., D. Withers, L. Pettitt, M. Squire, D. J. Gould et al.,
2007 Mapping the mutation causing lens luxation in several ter-
rier breeds. J. Hered. 98: 534–538.

Sutter, N. B., M. A. Eberle, H. G. Parker, B. J. Pullar, E. F. Kirkness

et al., 2004 Extensive and breed-specific linkage disequilibrium
in Canis familiaris. Genome Res. 14: 2388–2396.

Sutter, N. B., C. D. Bustamante, K. Chase, M. M. Gray, K. Zhao

et al., 2007 A single IGF1 allele is a major determinant of small
size in dogs. Science 316: 112–115.

Todhunter, R. J., R. Mateescu, G. Lust, N. I. Burton-Wurster, N.
L. Dykes et al., 2005 Quantitative trait loci for hip dysplasia in a
cross-breed canine pedigree. Mamm. Genome 16: 720–730.

van de Sluis, B. J., M. Breen, M. Nanji, M. van Wolferen, P. de Jong

et al., 1999 Genetic mapping of the copper toxicosis locus in
Bedlington terriers to dog chromosome 10, in a region syntenic
to human chromosome region 2p13-p16. Hum. Mol. Genet. 8:
501–507.

Wang, J., G. Liao, J. Usuka and G. Peltz, 2005 Computational ge-
netics: From mouse to human? Trends Genet. 21: 526–532.

Wang, X., R. Korstanje, D. Higgins and B. Paigen, 2004 Hap-
lotype analysis in multiple crosses to identify a QTL gene. Ge-
nome Res. 14: 1767–1772.

Wilcox, B., and C. Walkowicz, 1995 The Atlas of Dog Breeds. T. F. H.
Publications, Neptune City, NJ.

Wuertz, D., 2006 fExtremes: Rmetrics: Extreme Financial Market
Data, R package version 240.10068. http://www.rmetrics.org.

Communicating editor: M. Johnston

1044 P. Jones et al.


