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*Department of Forest Genetics and Plant Physiology, Swedish Agricultural University (SLU), SE-901 83 Umeå, Sweden, †Department of
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ABSTRACT

Accurate and fast computation of quantitative genetic variance parameters is of great importance in both
natural and breeding populations. For experimental designs with complex relationship structures it can be
important to include both additive and dominance variance components in the statistical model. In this
study, we introduce a Bayesian Gibbs sampling approach for estimation of additive and dominance genetic
variances in the traditional infinitesimal model. The method can handle general pedigrees without
inbreeding. To optimize between computational time and good mixing of the Markov chain Monte Carlo
(MCMC) chains, we used a hybrid Gibbs sampler that combines a single site and a blocked Gibbs sampler.
The speed of the hybrid sampler and the mixing of the single-site sampler were further improved by the use
of pretransformed variables. Two traits (height and trunk diameter) from a previously published diallel
progeny test of Scots pine (Pinus sylvestris L.) and two large simulated data sets with different levels of
dominance variance were analyzed. We also performed Bayesian model comparison on the basis of the
posterior predictive loss approach. Results showed that models with both additive and dominance com-
ponents had the best fit for both height and diameter and for the simulated data with high dominance. For
the simulated data with low dominance, we needed an informative prior to avoid the dominance variance
component becoming overestimated. The narrow-sense heritability estimates in the Scots pine data were
lower compared to the earlier results, which is not surprising because the level of dominance variance was
rather high, especially for diameter. In general, the hybrid sampler was considerably faster than the blocked
sampler and displayed better mixing properties than the single-site sampler.

MOST traits related to adaptation in nature and
breeding improvement are influenced by many

genes (polygenic traits; Lynch and Walsh 1998). In
quantitative genetics, the genetic variation of a poly-
genic trait is generally estimated as the additive genetic
variance (and as the heritability). Estimation of the her-
itability is of fundamental importance because this ratio
affects the response that can be expected to natural and
artificial selection in the considered population (Falconer

and Mackay 1996). Hence, considerable attention has
been devoted to the development of statistical methods
for estimation of breeding values and of heritability
(Henderson 1984; Searle et al. 1992; Lynch and
Walsh 1998).

The genetic variance may be further partitioned into
additive genetic and nonadditive genetic components.
The dominance variance results from interactions
between alleles at the same locus, whereas the epistatic
variance is caused by interactions of alleles at different
loci. Traditionally, complex crossing designs have been

performed to estimate dominance and epistatic varian-
ces ½e.g., North Carolina (NC)II designs and triple test-
crosses; Kearsey and Pooni 1996; Lynch and Walsh

1998�. Henderson (1985a,b) showed how mixed-effects
models based on polygenic component and pedigree
information (often referred to as animal or individual
models) could be used for inference of nonadditive
genetic effects and variances in experiments of general
design. Given that the additive, dominance, and epistatic
genetic effects are uncorrelated in unselected, noninbred
populations in linkage equilibrium (Cockerham 1954),
it should theoretically be possible to estimate all these
genetic effects by multiplication of various combinations
of the additive and dominance relationship matrices
and using these in the mixed-model equations. For ex-
ample, the additive-by-additive epistatic relationship ma-
trix would be obtained by elementwise multiplication
of two additive genetic relationship matrices. Unfortu-
nately, in practice, the epistatic relationship matrices will
be multiples of each other, which can lead to problems of
identifiability of the parameters in the statistical model
(for a discussion about identifiability see Gelfand and
Sahu 1999). Also, one should be careful with models that
include a dominance component because the consid-
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ered pedigree may be too small to lead to identifiable
results (Misztal 1997). Estimation of the nonadditive
genetic variance components is crucial for several rea-
sons. First of all, it will produce more correct statistical
estimates and as a result more accurate selection strate-
gies could be practiced (Du and Hoeschele 2000). This
is particularly important in collateral experimental de-
signs (Henderson 1985b). In this case the standard
additive model (which assumes that residual errors are
uncorrelated with constant variance) can produce biased
estimates of the additive genetic values because the
simple residual variance structure is erroneous (Lynch

and Walsh 1998). It has been found that nonadditive
genetic effects can have a considerable effect on the
ranking of breeding values (Wall et al. 2005). Second,
the dominance itself is of interest because it is coupled to
the expected level of inbreeding depression (Cockerham

and Weir 1984). Hence, without dominance there would
be no inbreeding depression and avoidance of inbreeding
would be of less importance in the design of breeding and
conservation programs.

Recently, it has also been advocated, from a theoret-
ical perspective, that dominance and epistasis can be
converted into additive genetic variance following bot-
tlenecks and inbreeding (e.g., Willis and Orr 1993;
Wang et al. 1998; Lopez-Fanjul et al. 2002; Barton and
Turelli 2004). These findings have been supported
to some extent by empirical studies on model or-
ganisms (e.g., Garcı́a et al. 1994; Fernandez et al.
1995; Whitlock and Fowler 1999). Hallander and
Waldmann (2007) investigated the importance of non-
additive genetic interactions when truncation selection
was applied to a breeding population. They found that
nonadditive variance initially could be converted into
additive genetic variance during truncation selection
(see also Fuerst et al. 1997). However, these issues need
to be further investigated with pedigree-based statistical
approaches.

Bayesian statistical methods have become very popular
in genetics (Gianola and Fernando 1986; Shoemaker

et al. 1999; Blasco 2001; Walsh 2001; Xu 2003; Beaumont

and Rannala 2004) because posterior distributions
summarize uncertainty (accuracy) around the point
estimate in a probabilistic form. Markov chain Monte
Carlo (MCMC) methods, used in Bayesian inference to
approximate posterior distributions, were introduced
to quantitative genetics in the first half of the 1990s
(Wang et al. 1993; Sorensen et al. 1994), facilitated by
the development of the Gibbs sampling algorithm
(Geman and Geman 1984; Gelfand and Smith 1990).
Gibbs sampling has been used for inference of many
different quantitative genetic parameters, for example,
in estimation of posteriors of additive, permanent
environment, and maternal effects, and on multivariate
data sets with missing data (Sorensen and Gianola

2002). From a variance component model perspective,
Bayesian methods accounting for dominance and

epistasis have been developed for finite-locus models
(Du and Hoeschele 2000), which can be interpreted as
finite-locus approximations to polygenic components.
A polygenic component is also present in some Bayesian
QTL mapping methods (Yi and Xu 2000; Lee and Van

Der Werf 2006).
Whether a model with both additive and dominance

components is preferable over a simpler additive model
can be evaluated by model selection. Several different
methods exist for model selection analysis of alternative
statistical models. In frequentist statistics, likelihood-
ratio tests (LRTs) and Akaike’s information criterion
(AIC) are most common, while the Bayes factor, the
Bayesian information criterion (BIC), the deviance in-
formation criterion (DIC), and the posterior predictive
loss statistic are tools proposed in the Bayesian litera-
ture. Recent analyses of LRTs and AIC have shown that
those methods may yield incorrect results in mixed
models (Crainiceanu and Ruppert 2004; Vaida and
Blanchard 2005). The Bayesian model comparison
approaches are more general, but also need to be fur-
ther evaluated.

In this article, we formulate a fast Bayesian Gibbs
sampling approach for estimation of additive and dom-
inance genetic variances in the infinitesimal animal (or
individual) model applied to experiments of general
design without inbreeding. We use a hybrid Gibbs sam-
pler, which is a combination of the fast but slow-mixing
single-site Gibbs sampling algorithm (e.g., Sorensen

and Gianola 2002) and the slow but fast-mixing
blocked Gibbs sampling algorithm (Carcı́a-Cortés

and Sorensen 1996). The novelty of our approach is the
use of variable transformations, where the covariance
structures (i.e., the inverse of the additive and domi-
nance relationship matrices) of the new transformed
variables are diagonal, which considerably speeds up the
computations of both Gibbs samplers and improves the
mixing of the single-site Gibbs sampler. The method
is applied to data from two traits (height and trunk
diameter) of a previously published quantitative genetic
study on Scots pine (Waldmann and Ericsson 2006)
and to simulated data from a large NCII design with both
high and low dominance variance. Moreover, we use the
posterior predictive loss criteria to compare models with
different numbers of variance components (Laud and
Ibrahim 1995; Gelfand and Gosh 1998).

METHODS

Model: Henderson (1985a,b) showed how standard
linear model methods could be used for combined
estimation of additive and dominance genetic variance
components. The mixed model

y ¼ Xb 1 Zaa 1 Zdd 1 e ð1Þ

was used, where y is a vector of phenotypic records on
n individuals, b is a vector of fixed effects including
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environmental covariates, and a (additive) and d (dom-
inance) are normally distributed vectors of random
genetic effects with covariances As2

a and Ds2
d, respec-

tively. Here, e is the vector of error terms, where each
component ei is independently normally distributed with
mean zero and variance s2

e. Further, X, Za, and Zd are
known incidence matrices associating b, a, and d with y,
respectively. A is the additive genetic relationship matrix
and it describes additive genetic covariance between
relatives (Henderson 1984), and several methods for
computation of A and its inverse from general pedigrees
exist (e.g., Henderson 1976). It should be emphasized
that the actual size of the pedigree q can be larger than
the number of individuals with records n (see the
discussion for further details). In the absence of in-
breeding, the elements of the dominance relationship
matrix (D) can be calculated on the basis of the values of
A as follows. Let the parents of individual i be indexed
with k and l and those of individual j with m and n; then
di;j ¼ ðak;mal ;n 1 ak;nam;l Þ=4, where dr ;s and ar ;s are ele-
ments (row r and column s) of matrices D and A,
respectively. The elements on the diagonal of D are 1.
In the case of inbreeding, the simulation approach of
Ovaskainen et al. (2007) can be utilized to infer ele-
ments of D. However, the presence of inbreeding induces
nonzero covariances that complicate the estimation
significantly (see De Boer and Hoeschele 1993). Thus,
we consider only the case of no inbreeding here.

Bayesian inference on transformation of relation-
ship matrices: To improve on the speed achieved, we
introduce an approach that utilizes transformations of
the relationship matrices. By applying such transforma-
tions to the original genetic variables the phenotype
model (1) can be rewritten as

y ¼ Xb 1 Faca 1 Fdcd 1 e; ð2Þ

where Fa ¼ ZA1=2, Fd ¼ ZD1=2, ca ¼ A�1=2a, and cd ¼
D�1=2d (see the appendix; cf. Mrode and Thompson

1989).
In Bayesian inference the assumptions regarding the

statistical phenotype model define a likelihood function
and the unknown model parameters are assigned prior
distributions. The likelihood function associated with
the phenotype model in Equation 2 is

Pðy ju;sÞ ¼
Yn

i¼1

Pðyi ju;s2
eÞ

} ðs2
eÞ�

n
2 exp � 1

2s2
e

ky�Xb� Faca � Fdcdk2

� �
;

ð3Þ

where u ¼ ðb; ca; cdÞ are the unknown location effects,
s ¼ ðs2

a;s
2
d;s

2
eÞ are the variance components, and kuk

denotes the Euclidean norm of u. By Bayes’ theorem
the joint posterior density of the unknown parameters
is proportional to the joint density of the data and
parameters that can be further factorized as

Pðu;s j yÞ} Pðu jsÞPðsÞPðy ju;sÞ; ð4Þ

where P ðu jsÞ ¼ P ðbÞP ðca js2
aÞP ðcd js2

dÞ and PðsÞ ¼
P ðs2

aÞP ðs2
dÞP ðs2

eÞ are the prior densities of the loca-
tion effects and variance components, respectively.

Each term bj in b is assigned the commonly used
improper flat prior distribution

PðbÞ} constant: ð5Þ

For the transformed genetic effects we adopt the
prior assumption

ci j I;s2
i � MVNð0; Is2

i Þ; i ¼ a; d; ð6Þ

where 0 is a vector of q zeros. The prior assumption (6) is
identical to positing prior a jA;s2

a � MVNð0;As2
aÞ and

d jD;s2
d � MVNð0;Ds2

dÞ on the original effects, because
EðgiÞ ¼ R1=2

i EðciÞ ¼ 0 and VarðgiÞ ¼ R1=2
i VarðciÞR1=2

i ¼
Ris

2
i for gi ¼ a;d and Ri ¼ A;D. The scaled inverted

chi-square distribution is a practical choice as a prior for
the variance components

Pðs2
i j ni ; S

2
i Þ} ðs2

i Þ�ðni=211Þexp � niS
2
i

2s2
i

� �
; i ¼ a; d; e;

ð7Þ

where ni can be interpreted as a degree of belief
parameter (larger values indicate higher confidence)
and S2

i is thought of as a prior value for the appropriate
variance (Sorensen and Gianola 2002). We chose to
set ni ¼ �2 and S2

i ¼ 0 to obtain flat priors (but see
below for alternative priors for the simulated data with
low dominance variance). Gelman (2006) provides a
useful discussion of alternative priors.

For the fixed and transformed genetic effects u ¼
ðb9; ca; cdÞ the fully conditional posterior distribution is

u js; y � MVNðû;C�1s2
eÞ; ð8Þ

where

C ¼
X9X X9Fa X9Fd

F9aX F9aFa 1 Ika F9aFd

F9dX F9dFa F9dFd 1 Ikd

2
4

3
5; ð9Þ

û ¼ C�1W9y; ki ¼ s2
e=s2

i , and W ¼ ½X;Fa;Fd�. The fully
conditional posterior distribution of s2

i is

s2
i j u; y � ñi S̃

2
i x�2

ñi
; i ¼ a; d; e; ð10Þ

where S̃2
a ¼ ðc9aca 1 naS2

a Þ=ṽa, S̃2
d ¼ ðc9dcd 1 ndS2

dÞ=ṽd;
ṽa ¼ q 1 na, and ṽd ¼ q 1 nd. For the residual variance,
S̃2

e ¼ ððy � Xb� Faca � FdcdÞ9ðy � Xb� Faca � FdcdÞ 1

neS2
e Þ=ṽe, where ñe ¼ n 1 ve.

Garcı́a-Cortés and Sorensen (1996) described a
blocked Gibbs sampling approach for Gaussian linear
models. In general, blocked Gibbs sampling has a faster
convergence rate and better mixing when correlated
parameters (e.g., because of family relations) are pre-

Bayesian Analysis of Additive and Dominance Variance 1103



sent in the data. The Garcı́a-Cortés and Sorensen

(1996) approach avoids calculation of the matrix in-
verse of C in each iteration, but the requirement for
solutions to large equation systems still makes this
algorithm slow. Instead, we combine the faster single-
site Gibbs sampler (Sorensen and Gianola 2002)
and the blocked Gibbs sampler (Garcı́a-Cortés and
Sorensen 1996) into a hybrid Gibbs sampler that is
described in the appendix. The benefit of presenting
the model in the transformed form is that the new
variables are a priori statistically independent, which
enables huge savings (at least fivefold) in the imple-
mentation of the Gibbs sampler of Garcı́a-Cortés and
Sorensen (1996). For example, sampling from a mul-
tivariate normal distribution reduces to sampling in-
dependent one-dimensional normal components (see
the appendix). An important property of the approach
is that the variance components s2

i are the same in both
approaches and therefore the estimates obtained using
the transformed variables can be directly interpreted as
those of the original variables. Thus the same prior
distributions are assigned to the variances and also the
likelihood function stays the same. Further, if needed,
estimates of the original breeding values (effect sizes)
can be attained from the transformed counterparts
using the back-transformations as gi ¼ R1=2

i ci . This
allows complete MCMC paths of the original effect sizes
to be derived ex post facto, with only one set of matrix
multiplications.

Posterior predictive loss criteria: Many different
methods exist to evaluate and perform a selection
among competing statistical models. See the discus-

sion for more information about different model
comparison approaches. We decided to use the poste-
rior predictive loss approach that has been found to
work well for most exponential family models (Laud

and Ibrahim 1995; Gelfand and Gosh 1998). Pre-
diction is here based on generating new replicates Y‘;rep

of the observed data, Y‘;obs; ‘ ¼ 1; . . . ; n. The criterion
is calculated as

Dm ¼ Gm 1 Pm; ð11Þ

where

Gm ¼
Xn

‘¼1

ðm‘ � y‘;obsÞ2; ð12Þ

and

Pm ¼
Xn

‘¼1

s2
‘ : ð13Þ

Here m‘ ¼ EðY‘;rep j yÞ is the posterior predictive mean,
and s2

‘ ¼ VarðY‘;rep j yÞ is the corresponding variance.
Gm is a goodness-of-fit term, whereas Pm is a penalty
term. For poor models one would expect large pre-
dictive variance and poor fit. When the model improves,

both terms should get better (i.e., smaller). Eventually,
once the model becomes overfitted, Gm will still de-
crease but the variance will become inflated (i.e., Pm

increases). Hence, the model with smallest Dm is pre-
ferred. Computation of Dm is described in the appen-

dix. For comparative purposes, we derived restricted
maximum-likelihood (REML) estimates of the variance
components and calculated AIC (on the basis of the
rank of the incidence matrix of the fixed effects plus the
number of variance components) statistics using AS-
Reml software (Gilmour et al. 2006).

We also compared the breeding values of the additive
and additive plus dominance models by ranking the
mode of the posterior distribution of the additive effects
for both traits of the Scots pine data. We used the mode
of the posterior distributions because it provided the
point estimates that were closest to the predicted
breeding values obtained by ASReml. To compare the
rank, the top 100 individuals from the additive plus
dominance models were matched with their rank
obtained with the additive models. Correlations be-
tween the rank vectors and the average difference in
rank were computed using the software R (R Project

2002).
Scots pine data: Real data from a 26-year-old Scots

pine (Pinus sylvestris L.) progeny test in northern
(64�189N) Sweden were analyzed. Fifty-two unrelated
parent trees were crossed according to an approximate
circulant partial diallel design (Kempthorne and Curnow

1961). In 1971, �8000 seedlings were planted out un-
restricted, randomly using 2.2-m2 spacing. The planta-
tion was thoroughly mapped and subdivided into 70
nearly square blocks that are used as a fixed effect in our
statistical models. The remaining trees (4970 individu-
als) were measured in 1997 for various traits of breeding
interest. In this study we concentrate on total tree height
and diameter (at 130 cm above ground). No data were
available from the parent trees. Moreover, we did not
standardize the data as in Waldmann and Ericsson

(2006), and comparison with their results should be
done bearing this in mind. For further details of the
experiment, see Waldmann and Ericsson (2006). Bi-
variate analysis was not considered here because of
computational limitations.

Simulated data: A North Carolina design II (Lynch

and Walsh 1998) was used to generate the pedigree for
the simulated data. We decided to focus on two large
data sets instead of many small ones because of identifi-
ability problems with the dominance variance (detected
in some earlier test runs). Hence, 70 unrelated parents
were crossed so that each of the 35 mothers was mated
with all 35 fathers and each mating resulted in 3
offspring (totally 3675 offspring). The A and D matrices
were calculated from this design as described in the
Model section. The population mean (m) was set to 100,
the random polygenic effects were drawn from a �
MVNð0;As2

aÞ and d � MVNð0;Ds2
dÞ, and the error
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terms e � MVNð0; Is2
eÞ. Data on phenotypic records

were generated also for the parents. To evaluate that the
posterior predictive loss statistic penalized overfitted
models, two data sets were generated with two differ-
ent levels of the variance components: one data set
using s2

a ¼ 60; s2
d ¼ 40, and s2

e ¼ 20 ðh2 ¼ 0:5 and d2 ¼
s2

d=s2
tot ¼ 1

3), and the other data set employing s2
a ¼

50; s2
d ¼ 0:05, and s2

e ¼ 50 (h2 ¼ 0:5 and d2 ¼ 5:0 3

10�4). The phenotypic values (y) for each individual
were then generated by summing the effects according
to y ¼ m � 1 1 a 1 d 1 e, where 1 is a vector containing
only ones and of the size equal to the number of in-
dividuals in the simulated design. Both simulated data
sets were analyzed with full ðy ¼ m 1 a 1 d 1 eÞ and
reduced ðy ¼ m 1 a 1 eÞ models to test that the Dm sta-
tistic selected the correct model.

RESULTS

Scots pine data: On the basis of visual inspection of
some preliminary MCMC chains, we decided to use one
chain of 225,000 iterations per trait. We set the burn-in
to 25,000 iterations and thinned every 10th iteration,
yielding a total sample of 20,000 iterations for both
traits. The mode of the posterior densities of the
parameters was obtained using a kernel density ap-
proach (Hoti et al. 2002; Waldmann and Ericsson

2006). The highest probability density (HPD) intervals
were defined throughout this article as 95% of the
posterior distributions, and they were estimated by
using language R, library boa (Smith 2005).

Summary results of the analyses of both tree diameter
and height are shown in Table 1. The posterior dis-
tributions were skewed and therefore the mode, me-
dian, and mean estimates were different for both the
additive and the dominance variance components
(Table 1). However, the distribution of the residual vari-
ance was closer to normality. Mean, median, and mode
estimates of the posterior distributions were larger for
the dominance variance than for the additive variance.
Moreover, the lower and upper HPD interval estimates
were higher for the dominance variance than for the
additive variance. For tree diameter, the summary point
estimates of the posterior distribution for the domi-
nance proportion were higher than the corresponding
estimates of the posterior distribution for the heritabil-
ity. Also, the lower and upper HPD estimates were larger
for the dominance proportion.

The difference in estimates of mode, median, and
mean for additive variance of height suggests that the
additive variance posterior distribution was somewhat
skewed, whereas the densities of both dominance and
residual variance were close to normality (Table 1). The
heritability was considerably higher for height than for
diameter. This result has been found in several stud-
ies in conifer species (e.g., Yanchuk 1996; Fries and
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Ericsson 1998; Waldmann and Ericsson 2006). The
REML estimates agreed well with the Bayesian point
estimates, but were generally closer to the mode and
median than to the mean (Table 1).

The results of the model comparison analysis for the
Scots pine data using the posterior predictive loss crite-
rion are presented in Table 2. As expected, inclusion of
both additive and dominance terms yielded a lower Dm

compared to the simpler models for both traits. The
difference is relatively small between the additive and
the full model for diameter. For height on the other
hand, the difference in Dm is larger between the models
and the full model is clearly the preferred one. The
fixed-effect model gave the largest predictive variance
and the worst fit (highest level of Pm and Gm, respec-
tively) for both traits. Also AIC was clearly lowest for the
full models for both traits (Table 2). Hence, it seems as
if the dominance term improves the statistical models
and gives a better fit to the data compared to simpler
models.

The difference in ranks of the additive effects (mode
estimates) of the top 100 individuals from the additive
and additive plus dominance models is plotted in
Figures 1 (diameter) and 2 (height). The correlation
between the rank positions of the 100 highest-ranked
individuals was 0.668 for diameter and 0.696 for height.
Thirteen of the top 100 individuals from the additive
plus dominance model were not among the top 100
individuals in the additive model for diameter. The
corresponding value for height was 21 of 100.

Simulated data: The hybrid Gibbs sampler with block
update every 50th iteration was almost 100 times faster
than the pure blocked Gibbs sampler (0.035 sec/
iteration compared to 3.0 sec/iteration) when applied
to a simulated data set containing 850 individuals.
Moreover, the nonnull autocorrelations extended over
considerably less iterations for both the additive and the
dominance variances in the hybrid sampler than in the
single-site sampler (implemented following Sorensen

and Gianola 2002). For example, the lag-10 autocor-
relation decreased from 0.61 (single site) to 0.22
(hybrid) and from 0.95 (single site) to 0.64 (hybrid)
for the additive and dominance variance, respectively.
Note that these numbers reflect the MCMC efficiency
similarly as the effective sample size, because the latter
can be estimated as a direct function of autocorrelation.

The flat priors worked fine with the simulated data
with high dominance variance. Once again, the mode
and REML estimates agreed best (Table 3). That the
additive variance was slightly higher than the expected
value of 60 could be attributed to the stochastic
generation of the simulated data. Evaluation of a large
number of large simulated data sets is currently not
computationally feasible for the Gibbs sampler. For the
simulated data with low dominance variance, the un-
informative prior with degree of belief parameter
(ni ¼ �2) resulted in considerable overestimation of
the dominance variance (Table 3). Therefore, we also
chose to use an informative prior with a degree of belief
of 1% on the dominance variance, which was obtained

TABLE 2

Model choice parameters for the Scots pine data

Diameter (3105) Height (3105)

Model for y Gm Pm Dm AIC Gm Pm Dm AIC

Xb 1 e 46.45 47.75 94.20 0.18492 84.01 86.59 170.6 0.09909
Xb 1 Zaa 1 e 41.67 46.95 88.63 0.18378 61.10 79.86 140.9 0.09498
Xb 1 Zaa 1 Zdd 1 e 41.61 46.07 87.68 0.18361 49.04 78.95 128.0 0.09473

A lower posterior predictive loss statistic Dm indicates a better model. Gm is a goodness-of-fit term, whereas Pm is a penalty
term. AIC is the standard Akaike’s information criterion (calculated as number of fixed-effect classes plus number of variance
components).

Figure 1.—Rank of the additive genetic effects for the ad-
ditive (A) and additive plus dominance (A 1 D) models of
Scots pine diameter. The y-axis plots the position in the A
model of the 100 highest ranked individuals in the A 1 D
model. The straight line indicates no discrepancy in rank be-
tween the two models.

Figure 2.—Rank of the additive genetic effects for the ad-
ditive (A) and additive plus dominance (A 1 D) models of
Scots pine height. The y-axis plots the position in the A model
of the 100 highest ranked individuals in the A 1 D model.
The straight line indicates no discrepancy in rank between
the two models.
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by setting nd ¼ 38 (Wang et al. 1994). With this prior the
posterior point estimates of s2

d from the Gibbs sampler
matched the REML estimate much better.

We also calculated correlations between the simu-
lated random effects and the estimated posterior modes
of all individuals of both the additive and dominance
effects from the full additive plus dominance model
with high genetic variances. The correlation between
the additive effects was 0.804 and between the domi-
nance effects 0.662. The corresponding correlations for
the REML estimates were 0.805 and 0.667, respectively.

The results of the model comparison analysis for the
simulated data are presented in Table 2. When the
analyses of the data set with high dominance variance
were performed with uninformative priors, Dm was
lowest for the full model (Table 4). Once the un-
informative priors were used for all parameters on the
data with low dominance, Dm turned out to be smallest
for the full model. The reason for this is the over-
estimation of s2

d. On the other hand, with the in-
formative prior on s2

d, Dm could rightly select the
additive model as best fit. AIC correctly picked up the
additive model for the low dominance data and the full
model for the high dominance data (Table 4).

DISCUSSION

In this study, we have developed an efficient strategy
for estimation of genetic parameters including domi-
nance variance by using Bayesian inference and variable
transformation. The method performs well when eval-
uated on both real and simulated data. Moreover, the
narrow-sense heritability in this study was lower than
what was found by Waldmann and Ericsson (2006) for
a pure additive model on the same data. Hence, de-
pending on the experimental design and trait data, it
is sometimes important to estimate both additive and
nonadditive genetic components in populations. Other-
wise, ranking of breeding values may be nonoptimal and
heritability estimates can be overestimated, sometimes
considerably.

Impact of nonadditive genetic effects on breeding:
In dairy cattle, Wall et al. (2005) investigated the effects
of inbreeding, heterosis, recombination loss, and mi-
gration on fertility (fitness) traits and milk production.
One of the purposes of the study was to examine if
nonadditive effects changed the estimates of breeding
values and the ranking of bulls. They reported that
nonadditive effects had an effect on fertility traits and
milk production, although not very dramatic. In addi-
tion, there was a difference in ranking of bulls if
nonadditive effects were included, which resulted in
considerable changes in rank for some individuals. In
our study, the ranking of the additive genetic effects
differs considerably between the additive and additive
plus dominance models for both Scots pine traits. For
the top 100 individuals, the risk of selecting a non-
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optimal candidate is as high as 21% (height) and 13%
(diameter). This shows that it could be important to
include nonadditive effects in ranking and selection of
individuals in breeding programs, to the extent that
they exist.

Moreover, in a simulation study (Varona and Misztal

1999), it was shown that inclusion of the dominance
component could contribute an increase in genetic
response to selection of �10% compared to selection
based on a pure additive model (in pedigree designs with
specific combining abilities). The highest increase in
selection response occurred when the additive heritabil-
ity was low, the dominance heritability high, selection
intensity low, and proportion of full sibs high (Varona

and Misztal 1999). The design and results from the
Scots pine analysis coincide well with these findings and
we could therefore expect that inclusion of the domi-
nance component will increase the selection response in
future generations of this population, especially if the
breeding target is diameter.

Empirical estimates of nonadditive genetic effects:
The association between dominance variance and
selection was examined in a comprehensive review by
Crnokrak and Roff (1995). Their compilation of
studies showed that the level of dominance variance
varied between different trait categories for wild species.
Dominance was highest for life-history traits, slightly
lower for physiological traits, and lowest for morpho-
logical traits (VD/VA¼ 1.17, VD/VA¼ 1.06, and VD/VA¼
0.19, respectively). Moreover, they found that there was
no general trend in the level of dominance variance
between different trait categories for domestic species,
but VD/VA was relatively high (between 0.79 and 0.91).

In a recent review, Roff and Emerson (2006) com-
piled studies of both dominance and epistasis from
line-cross experiments. They found that dominance in-
teractions existed in almost all studies of both life-
history and morphological traits (96.5 and 97.4%,
respectively). But, the ratio of dominance to additive
effects in life-history traits was twice as high as for
morphological traits. Epistatic interactions were less
common than dominance, but still found in 79.4 and

67.1% for life-history and morphological traits, respec-
tively. Similar to the case of dominance, the ratio of
epistatic to additive effects was higher in life-history than
in morphological traits.

Nonadditive parameters in forest trees: Historically,
attention to nonadditive variance components has been
limited in forest tree breeding. Unfortunately, many
studies on nonadditive variance components in forest
trees are based on far too small data sets and therefore
we restrict our discussion to a few well-designed experi-
ments. Fries and Ericsson (1998) estimated the
dominance variance in six different traits in Scots pine
and found high dominance values, especially for tree
diameter (VD/VA ¼ 2.80). However, they could not esti-
mate the dominance variation in tree height. In loblolly
pine, Jansson and Li (2004) estimated the variance
ratio of specific combining ability to general combining
ability ðs2

SCA=s2
GCAÞ in growth volume at 0.36, while

Balocchi et al. (1993) investigated age trends in height
and reported that VD/VA varied between 0.20 and 4.42
over time. In radiata pine, Wu and Matheson (2004,
2005) estimated s2

SCA=s2
GCA for tree height at 0.90 and

0.95, respectively. Wu and Matheson (2004) suggested
that special mating designs should be applied to utilize
nonadditive variance in breeding purposes while, on the
other hand, Jansson and Li (2004) argued that only
additive variance should be taken into consideration in
breeding programs. Also in Douglas fir, Yanchuk

(1996) used a large data set to estimate nonadditive
variance. They concluded that the level of additive
variance was on average three times greater compared
to nonadditive variance and that diameter had greater
levels of nonadditive variance compared to tree height.
In conclusion, there seems to be no general trend about
the level of dominance compared to additive variance,
but it often seems as if at least some dominance is
present.

Statistical issues: Use of family-based models for esti-
mation of dominance variance (via the interaction
factor) may bias both the additive and the dominance
variance estimates because the information in the ped-
igree is not used simultaneously. Pedigree-based ap-

TABLE 4

The values of model choice parameters for simulated data

Low dominance (3105) High dominance (3105)

Model for y Gm Pm Dm AIC Gm Pm Dm AIC

Xb 1 Zaa 1 e 1.291 2.637 3.927 0.201854 1.469 3.126 4.596 0.20871
Xb 1 Zaa 1 Zdd 1 e 1.097 2.658 3.756 0.201874 0.1279 2.401 2.530 0.20835
Xb 1 Zaa 1 Zdd 1 ea 1.296 2.640 3.936 — — — — —

A lower posterior predictive loss statistic Dm indicates a better model. Gm is a goodness-of-fit term, whereas Pm is a penalty term.
The posterior predictive losses are based on MCMC chains with uninformative priors, except for that listed in footnote a. AIC is
the standard Akaike’s information criterion (calculated as number of fixed-effect classes plus number of variance components).

a A degree of belief of 1% on s2
d.
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proaches (i.e., animal models) have been used several
times in animal breeding for estimation of dominance
variances (e.g., Hoeschele and Vanraden 1991; Misztal

1997). Typically, genetic evaluations are performed in
populations of nonrandom mating (e.g., breeding pop-
ulations), where the animal model accounts for selection
in multiple generations unlike family-based approaches
(Kennedy et al. 1988). Furthermore, estimates of general
and specific combining abilities using a family-based
model will include a portion of higher-order epistatic
terms (Lynch and Walsh 1998) that generally are
ignored. As a result, overestimations of both additive
and dominance variances may occur.

In the animal model, the number of random effects to
be estimated is typically large compared to the number
of observations, resulting in an overparameterized sys-
tem of equations that may result in nonidentifiability
of the parameters. This is especially challenging if sev-
eral genetic factors are fitted in the model. One can
improve the problem of identifiability by adding extra
generations without records to the pedigree. In other
words, using complicated pedigrees to separate the
nonadditive variance components from the additive
components is more efficient because the nonadditive
identical-by-descent matrices tend to have more non-
zero elements in complicated pedigrees than in simple
pedigrees (Mao and Xu 2005).

Informative priors can be used to make parameters
more identifiable in Bayesian models (Gelfand and
Sahu 1999; Sorensen and Gianola 2002). It is also well
known in statistics that repeated and correlated trait
measurements will alleviate the problem of identifiabil-
ity. The use of a more economical parameterization
could also help, for example, the sire or reduced animal
model where nonparental breeding values are ex-
pressed in terms of parental breeding values (Quaas

and Pollak 1980). Alternatively, the number of equa-
tions can be reduced by manipulating the coefficient
matrix of animal models, which leads to asymmetric
coefficient matrices (see Henderson 1984; Lynch

and Walsh 1998). Finally, it is also possible to use a
finite-locus approximation to infinite-locus models for
estimation of nonadditive parameters (e.g., Du and
Hoeschele 2000). A general drawback, however, is that
the estimates depend on the number of loci used.

We used a posterior predictive loss criterion to com-
pare models including different numbers of random
genetic components. In frequentist statistics it is com-
mon to perform hypothesis testing of genetic variance
components using LRTs, which evaluate whether a
reduced model gives the same fit to the data as a full
model. In general, this test performs well for two-sided
hypotheses if the sample size is large because the dis-
tribution of LRTs then follows a chi-square distribution,
asymptotically. On the other hand, when the amount of
data increases, all hypotheses eventually become statis-
tically significant (Sillanpää and Auranen 2004) and,

for bounded parameters like variance components, the
null distribution might be difficult to estimate in
general (Crainiceanu and Ruppert 2004). Conse-
quently, in these situations, approximating the distribu-
tion of LRTs using a chi-square distribution can give
incorrect results. Another commonly used statistic is
AIC that uses both likelihood (goodness of fit) and a
penalty terms that corresponds to the number of
parameters (K) in the model. K is typically calculated
as the rank of the design matrix of the fixed effects plus
the number of variances. Vaida and Blanchard (2005)
argued that when the focus of inference is on the
random effects in mixed models, K needs to be sub-
stituted with a parameter referred to as the effective
number of parameters (which takes correlation be-
tween parameters into account). Estimation of the effec-
tive number of parameters is not straightforward and
was not performed in our analysis.

In Bayesian analysis, the Bayes factor has been used
for testing polygenic genetic parameters in animal
models both with and without molecular markers
(Garcı́a-Cortés et al. 2001). However, the Bayes factor
is suitable only for models with fully proper priors and is
sensitive to the parameterization of the model. The DIC
was recently proposed as a general model choice
criterion and has been used for evaluation in animal
models (e.g., Rekaya et al. 2003). Sorensen and
Waagepetersen (2003) provide an extensive discussion
of different Bayesian model comparison criteria for
animal models. In this study, after disappointing initial
experiments with the DIC, we have chosen to use the
posterior predictive loss approach. The results of the
model comparison of the Scots pine data showed that
models including both additive and dominance effects
should be favored over the reduced models. The
analyses of the simulated data also showed that Dm

worked, but was sensitive to the levels of the variance
components and we recommend estimation of this
statistic from several runs with different priors in the
case of small variances.

Damgaard (2007) used a transformation for breed-
ing values based on the ideas from Mrode and
Thompson (1989) to obtain a priori uncorrelated
breeding values for application of single-site Gibbs
sampling. During development of our method, we tried
a similar approach for large pedigrees considered here
but encountered mixing problems due to too high a
posteriori correlation of breeding values (results not
shown). To overcome this mixing problem here, we
propose the hybrid sampler. Moreover, we do not
rescale variance components to unit variance in our
transformation and therefore we are not required to
apply a back-transformation. Two other Gibbs sampling
approaches for additive and dominance models were
presented by Chalh and El Gazzah (2004). The first
approach obtains estimates from an animal model with
only an additive (A) component and then calculates

Bayesian Analysis of Additive and Dominance Variance 1109



dominance effects as a direct function of additive effects.
The second approach is based on modifying mixed model
equation residuals from the animal model with only addi-
tive (A) components. The speedup compared to the tradi-
tional additive plus dominance single-site Gibbs sampler
was considerable, but further comparative analyses are
required regarding mixing properties.

This work was supported by The Research School in Forest Genetics
and Breeding, Swedish Agricultural University (SLU), Umeå, Sweden,
and by a research grant (202324) from the Academy of Finland.
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APPENDIX

Construction of diagonalizing transformations for
the covariance matrices: Let A be a symmetric matrix
(this holds for the genetic relationship matrices). The
singular value decomposition of A is USU9, where U is
an orthonormal matrix; i.e., U 9U ¼ I and detðU Þ ¼ 1,
and S is a diagonal matrix with nonnegative elements on
the diagonal; i.e., S ¼ diagðs1; . . . ; snÞ. Now, the required
diagonalizing transformations, the square-root matrix
and the inverse of the square-root matrix, are defined as
A1=2 ¼ US1=2U 9 and A�1=2 ¼ US�1=2U 9, respectively.

Hybrid Gibbs sampler with block sampling on
transformed relationship matrices: The single-site
Gibbs sampler (Sorensen and Gianola 2002) updates
each parameter in u consecutively and therefore often
suffers from slow mixing properties in the Markov chain
because of strong autocorrelations between iterations.
In some cases, a sampler can even get stuck within some
range of values for one variable because other corre-
lated variables will practically prevent it from moving to
other parts of the parameter space. The autocorrela-
tions tend to reach over more iterations the more
individuals there are in the animal model and therefore
sometimes require MCMC chains of several million
iterations. However, the single-site sampler is fast
because there is no need for matrix inversions. On the
other hand, the blocked Gibbs sampler suggested by
Garcı́a-Cortés and Sorensen (1996) has good mixing
properties, but entails huge computational demands,
and is therefore very time consuming. As a compromise,
we have implemented a hybrid Gibbs sampler that
combines the single-site Gibbs sampler and the blocked
Gibbs sampler. The main idea is that the hybrid sampler
is less time consuming than a sampler based only on
block updating, but has better mixing properties than
the single-site sampler.

The fixed and random genetic effects are collected
in the location parameter vector u ¼ ðb; ca; cdÞ for the
transformed variables. C is the coefficient matrix of the
left-hand side of the mixed-model equation as described
in (9). Let W9y ¼ t represent the right-hand side of the
transformed mixed-model equation. Moreover, denote u
without the ith component as u�i and C without element
i of the ith row as Ci;�i . The steps of the hybrid Gibbs
sampler are as follows:

1. Initialize the parameters b; ca; cd;s
2
a;s

2
d;s

2
e.

2. Single-site sampling:
a. Draw ui from N ûi ;C

�1
i;i s2

e

� �
, where ûi ¼

ðti � Ci;�iu�iÞC�1
i;i .

b. Calculate Ŝ 2
a ¼ c9aca; Ŝ2

d ¼ c9dcd, and

Ŝ2
e ¼ ðy � Xb� Faca � FdcdÞ9ðy � Xb� Faca � FdcdÞ:

c. Sample x̂�2
i from 1=x2

n̂i
, where n̂a;d ¼ q 1 na;d

and n̂e ¼ n 1 ne.
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d. Calculate ŝ2
i ¼ x̂�2

i Ŝ2
i for i ¼ a; d; e.

e. If ŝ2
i , 1:0 3 10�5 for i ¼ a; d; e,

e1: set ŝ2
i ¼ 1:0 3 10�5 for i ¼ a; d; e:

f. Update k̂i ¼ ŝ2
e=ŝ2

i for i ¼ a; d.
3. Block sampling (every 50th iteration):

a. Generate a* from MVNð0; Is2
aÞ and d* from

MVNð0; Is2
dÞ.

b. Generate adjustment factors z* from MVNðFaa*
1 Fdc*; Is2

eÞ.
c. Denote the adjustment y � z* with f.
d. Compute a sample of the location effects as

û ¼ ½u9; a*;d*�9 1 C�1Wf , where u is zero vec-
tor of length nfixed.

e. Calculate Ŝ 2
a ¼ ĉ9aĉa; Ŝ2

d ¼ ĉ9dĉd, and

Ŝ2
e ¼ ðy � Xb̂� Faĉa � FdĉdÞ9ðy � Xb̂� Faĉa � FdĉdÞ:

f. Sample x̂�2
i from 1=x2

n̂i
; where n̂a;d ¼ q 1 na;d and

n̂e ¼ n 1 ne.
g. Calculate ŝ2

i ¼ x̂�2
i Ŝ2

i for i ¼ a; d; e.
h. If ŝ2

i , 1:0 3 10�5 for i ¼ a; d; e,
h1: set ŝ2

i ¼ 1:0 3 10�5 for i ¼ a; d; e:
i. Update k̂i ¼ ŝ2

e=ŝ2
i for i ¼ a; d.

j. Go to 2a.

It should be emphasized that having bounds in the
prior of the variance components in the single-site
sampler would have been another way to guarantee
that the variance components do not become too small
(step 2e) during the iteration process. To solve the
equation system C�1Wf , several matrix decomposition
and iterative methods are available (see Golub and Van

Loan 1989). In this study, we have used a conjugate
gradient iterative method (Barrett et al. 1994) in the
numerical algorithm group (NAG) C library for a real
symmetric linear system. Matrix C contains many zero
entries and was therefore stored in sparse symmetric
coordinate storage (SCS) format. The code is freely
available from the authors.

Modifications resulting from the use of transformed
genetic effects: The largest effect is at steps 3a and 3b of
the above algorithm, where samples are drawn from the
prior distributions of the genetic effects. When trans-
formed genetic effects are used the sampling is done
from a multivariate normal with uncorrelated compo-
nents, which is a much simpler task than sampling from
a multivariate normal with correlated components. Also
in step 2b and 3e the calculations of S̃i simplify from
S̃2

i ¼ ðgi9R
�1
i gi 1 niS

2
i Þ=ṽi to S̃2

i ¼ ðgi9gi 1 niS
2
i Þ=ṽi .

Computation of model comparison parameters: We
use the posterior predictive loss approach (Laud and
Ibrahim 1995; Gelfand and Gosh 1998) to perform
model comparison analysis. In this method, a MCMC
chain of simulated/predicted phenotypes for each
individual ðY ð1...T Þ

l ;rep Þ conditional on the observed pheno-
type ðyl ;obsÞ is derived by randomly sampling elements
from the MCMC chains of bð1...T Þ

j ; að1...T Þ
l ; dð1...T Þ

l ;
and eð1...TxlÞ, respectively. The joint residual eð1...TxlÞ is
obtained by first computing

e
ð1...T Þ
l ¼ yl ;obs � b

ð1...T Þ
j � a

ð1...T Þ
l � d

ð1...T Þ
l

and then merging the error term of each individual
eð1...TxlÞ ¼ ½eð1...T Þ

1 ; eð1...T Þ
2 ; . . . ; eð1...T Þ

n �. Here, l ¼ 1; . . . ;n
is the number of individuals with observations, j ¼
1; . . . ;m is the number of levels of the fixed effects,
and T is the number of MCMC samples. The posterior
predictive loss criteria are computed as

Dm ¼ Gm 1 Pm;

where Gm is the goodness of fit and Pm is the summation
of all individual simulated/predicted phenotypic vari-
ance and provides a penalty term when computing Dm.
These terms can be obtained by using

Gm ¼
Xn

l¼1

yl ;obs � E Y
ð1...T Þ
l ;rep j y

� �� �2
;

Pm ¼
Xn

l¼1

Var Y
ð1...T Þ
l ;rep j y

� �
;

where

E Y
ð1...T Þ
l ;rep j y

� �
¼ ml ¼

1

T

XT

t¼1

�
b
ð*tÞ
j 1 a

ð*tÞ
l 1 d

ð*tÞ
l 1 eð*tÞ

�
;

and

Var Y
ð1...T Þ
l ;rep j y

� �
¼ s2

l

¼ 1

T � 1

XT

t¼1

��
b
ð*tÞ
j 1 a

ð*tÞ
l 1 d

ð*tÞ
l 1 eð*tÞ

�
� ml

�2
;

with * denoting a random sample from the posterior
MCMC chains.
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