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ABSTRACT

Empirical evidence indicates that the distribution of the effects of mutations on quantitative traits is not
symmetric about zero. Under stabilizing selection in infinite populations with normally distributed
mutant effects having a nonzero mean, Waxman and Peck showed that the deviation of the population
mean from the optimum is expected to be small. We show by simulation that genetic drift, leptokurtosis of
mutational effects, and pleiotropy can increase the mean–optimum deviation greatly, however, and that
the apparent directional selection thereby caused can be substantial.

IN most models of the maintenance of genetic
variance in quantitative traits by mutation–selection

balance it is assumed, not least for mathematical sim-
plicity, that the distribution of the effects of mutations
on these traits is symmetric about zero (e.g., Bulmer

1980; Turelli 1984; Barton 1990; Keightley and Hill

1990; Zhang and Hill 2002). Mutation-accumulation
experiments indicate, however, that mutations sig-
nificantly affect average values of quantitative traits
(Santiago et al. 1992; Lyman et al. 1996; Mackay 1996;
Keightley and Ohnishi 1998; Lynch et al. 1998;
Garcia-Dorado et al. 1999; Vassilieva and Lynch 1999;
Ostrow et al. 2007; P. D. Keightley and D. L. Halligan,
personal communication). For example, Garcia-Dorado

et al. (1999) found that the mean effect of mutations on
abdominal bristle number in Drosophila melanogaster is
�0.24 environmental standard deviations.

Recently, Waxman and Peck (2003) investigated a
model in which this symmetry assumption was relaxed,
i.e., a bias from zero in the mean of the distribution of
mutational effects. They found that the deviation
between the mean phenotypic value of the trait and
the optimum (the mean–optimum deviation) is small.
Similar estimates were previously obtained by Bürger

(2000; see p. 247, Equation 7.13). Both analyses were
based on a number of other similar assumptions,
however, which turn out to have an important influence
on the mean–optimum deviation. In this note we
consider some of these assumptions and focus on their
impact on Waxman and Peck’s (2003) conclusions.

Waxman and Peck (2003) assumed a model in which
the allelic effects of mutations at individual loci were
normally distributed, but with a mean that departed
from zero. Although they allowed differences among
the parameters of the distribution of mutant effects at
four different loci, in accordance with Welch and
Waxman (2002), this generated overall distributions
that did not deviate far from the normal (e.g., kurtosis
�4 in the model for their Figure 3; cf. 3 for the normal).
Furthermore, in Waxman and Peck’s method of gener-
ating mutations, the mutants occurring most commonly
have an effect equal to the bias. Empirical evidence
shows, however, that the distribution of mutational
effects on quantitative traits is leptokurtic, with most
mutations having very small effects and a few having very
large effects (Simmons and Crow 1977; Mackay et al.
1992; Caballero and Keightley 1994; Garcia-Dorado

et al. 1999; Lynch et al. 1999; P. D. Keightley and L. D.
Halligan, personal communication). Hence a normal
distribution is inappropriate.

The mutational variance produced per generation
is of rather similar magnitude for different traits
and species, VM ¼ 1

2 lEða2Þ � 10�3s2
E (Falconer and

Mackay 1996; Houle et al. 1996; Lynch and Walsh

1998; Keightley 2004), where s2
E is the environmental

variance, l is the average number of mutations per
generation per haploid genome, and a is the difference
in value between mutant and wild-type homozygotes.
As VM from published experiments depends on the
mean square rather than the variance of mutational
effects and the mutational bias on the trait implies that
E(a)¼ D 6¼ 0, this indicates that, even if all mutants had
the same effect, the bias D could not exceed

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VM=l

p
(see
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Vassilieva and Lynch 1999, p. 122). Thus the bias has to
be small if the mutation rate is high, whereas Waxman

and Peck’s (2003) method of generating biased muta-
tional effects with unlimited nonzero mean also implies
that the mutational variance VM can take any value.

A further important and unrealistic assumption of
Waxman and Peck’s model is that mutants have an effect
on fitness solely through their effect on the trait by
stabilizing selection and have no pleiotropic effect on fit-
ness acting through other traits, contrary to the known
widespread pleiotropic effect of mutations (Barton

and Keightley 2002; Mackay 2004). Bürger’s (2000)
model was also based on the assumptions of no pleio-
tropic selection and distributions of mutant effects that
are close to the normal. Therefore, to take into account
empirical knowledge of mutation parameters, we use a
more general joint-effect model as in our previous
studies (Zhang and Hill 2002). This includes both
pleiotropic and stabilizing selection and a distribution
of effects that is much more leptokurtic than the normal
and has a mode at zero. We have previously assumed a
symmetric effect of mutations on the trait, but we now
remove this assumption.

MODEL AND METHOD

A population of N diploid monoecious individuals,
with discrete generations, with random mating, and at
Hardy–Weinberg equilibrium, is assumed. Mutations
are assumed to have additive effects on a quantitative
trait z, with a being the difference in value between
homozygotes, and pleiotropic effects on fitness, with s (s
$ 0) being the difference in the fitness between ho-
mozygotes. Further, it is assumed for simplicity that
there is no linkage, epistasis, or overdominance. The
quantitative trait is assumed to be under real stabilizing
selection with the optimum phenotype at zero and
strength characterized by the variance Vs of its fitness
profile. As mutational effects tend to reduce the magni-
tude of quantitative traits (see references listed above),
we consider only negative bias, but the same conclusions
would hold for positive bias.

Mutants can have positive or negative effects on the
trait. Both were assumed to follow a gamma (aa, ta)
distribution with scale parameter aa and shape param-
eter ta, but with a higher chance P (. 1

2) of having a
negative value, so that mutational effects have mean
(i.e., the bias) D ¼ (1 � 2P)ta/aa and mean square
e2

a [ Eðjaj2Þ ¼ taðta 1 1Þ=a2
a ¼ 2VM=l. This was termed

the ‘‘proportional’’ method by Keightley and Hill

(1987) and is illustrated in Figure 1. The maximum bias
in this sampling method is therefore D ¼ �ta/aa. The
mutational bias and the mean–optimum deviation are
expressed in terms of the environmental standard devi-
ation sE. The pleiotropic effect �s (s . 0) on fitness of
mutations was assumed to follow a gamma (as, ts)
distribution.

The pleiotropic effect of mutations can cause appar-
ent stabilizing selection because individuals that carry
more mutations are more likely to have extreme trait
values and lower fitness, inducing a quadratic relation-
ship between them (Keightley and Hill 1990). With
biased mutations, the population mean will be drawn in
the direction of bias, and apparent directional selection
on the trait due to a linear association between pheno-
typic value and fitness will arise from the real stabilizing
selection. If the trait value under selection is z and its
fitness is w, the strength of selection can be decomposed
into linear and quadratic terms using regression meth-
ods (Lande and Arnold 1983): w ¼ a 1 bz 1 gz2.
Suppose that the observed fitness, which includes the
pleiotropic effect, is wi for an individual having simulated
trait value zi. Employing least squares, we can estimate
both the linear and the quadratic selection gradients,

b ¼ Covðw; zÞm4 � covðw; z2Þm3

s2m4 � m2
3

and g ¼ Covðw; z2Þs2 � covðw; zÞm3

s2m4 � m2
3

; ð1Þ

where s2, m3, and m4 are the observed variance and the
third and fourth moments of trait values, respectively. If
m3 is very small these formulas reduce to

b ¼ Covðw; zÞ
s2 and g ¼ Covðw; z2Þ

m4
ð2Þ

(Lande and Arnold 1983).
Analysis was undertaken by including biased muta-

tion in our individual-based Monte Carlo simulation
program (Zhang et al. 2004). Each generation the
sequence of operations was mutation, selection, mating,
and reproduction. The fitness of individual i was
assigned as wi ¼ 1 � ½Sjsij 1 zi

2/2Vs�, where zi ¼ Sjaij is
the value of the trait and the optimum is assumed to be

Figure 1.—The distribution of mutational effects on the
quantitative trait. Mutants of positive and negative effects fol-
low the same gamma (aa, ta) distribution, but with sign re-
versed. A proportion P . 50% have negative effects, so the
mean effect is D ¼ (1 �2P)ta/aa but the mode is zero.
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zero. If 0 , wi # 1, then the chance that individual i was
chosen as a parent of the next generation was pro-
portional to wi; otherwise, it had no offspring.

The population was started from an isogenic state.
Under the approximation of the house-of-cards model
(Turelli 1984), Monte Carlo simulations show that
after 3N generations the population reaches a dynamic
equilibrium with its mean phenotypic value and the
genetic variance distributed around constant values.
Hence, for the following 1000 generations, the mean,
the variance, and the third and fourth moments of trait
values were computed and averaged to calculate the
mean phenotypic value, the variance, and linear and
quadratic selection gradients ½using formulas (1)� at
equilibrium. Results given in the figures were calculated
from 16 replicates. In addition, it was assumed that the
genomic mutation rate l¼ 0.1, the mutational variance
is VM ¼ 0:001s2

E, there are 500 mutable loci, and the
strength of stabilizing selection is Vs ¼ 5s2

E (except
Figure 6, where Vs ranges from 5 to 30).

RESULTS

Waxman and Peck (2003) assumed an infinite pop-
ulation and found that the predicted mean–optimum
difference (M–OD) is proportional to the per-locus rate
of mutation. For plausible choices of parameter values,
their estimate of the maximum M–OD could not be
.0.01sE. Using their model of normally distributed
mutant effects, but in a finite population, numerical
simulations show that genetic drift can enhance the
M–OD as pointed out by Waxman and Peck, such that
this deviation can be substantial if the population size
(N) is small (Figure 2). For example, it can be up to
0.1sE when the effective population size is�100 and the
mutational bias is D ¼ �0.04. Hence the apparent
directional selection becomes much stronger with re-
duced population size. With our joint-effect model,
similar but smaller increases are found in both the M–
OD and the strength of the apparent directional
selection (Figure 2).

With our proportional model of gamma-distributed
effects with more than half the mutants decreasing the
trait, simulations show that the genetic variance VG

appears insensitive to mutational bias, as predicted by
Waxman and Peck (2003). With increasing mutational
bias within its possible range, the size of the M–OD and
the apparent directional selection increase, but the ap-
parent strength of stabilizing selection decreases (Fig-
ure 3). If the mutational effects on the trait are sampled
from a reflected gamma distribution (i.e., symmetric
about the mean) but with mean equal to the bias, as
assumed by Waxman and Peck but using a normal distri-
bution, we also found that the M–OD increased non-
monotonically. However, for given parameter values,
the M–OD is slightly larger than that obtained by the
proportional method, but the linear selection gradients
of the two models are roughly the same (data not
shown).

Pleiotropic effects of mutants on fitness obviously add
to the effects of stabilizing selection and therefore
reduce genetic variance (Figure 4, a and d), just as
when mutation effects are unbiased (Zhang and Hill

2002). For a given bias D, pleiotropic selection increases
the M-OD up to some point, but then stronger pleiotro-
pic selection decreases it (Figure 4b). When pleiotropic
selection is much stronger than stabilizing selection,
clearly all mutants will be deleterious and will be lost
rapidly, leading to small genetic variance and small M–
OD. It is analogous to the situation when the mutation
rate l / 0 (Bürger 2000, p. 236, Equation 6.10). When
pleiotropic selection is relatively weak, however, such
that stabilizing selection predominates, the argument is
more subtle (see the appendix for analysis). In the
absence of pleiotropic effects, mutants of positive effect
are at a relative selective advantage to the majority of the
mutants that reduce the trait, thereby maintaining the
mean near the optimum (see Equation A1). With small
pleiotropic effects, the duration of segregation and
fixation probability of the increasing mutants is also
reduced, allowing the mean to drift away from the
optimum. Increasing strength of the pleiotropic selec-

Figure 2.—Influence of
effective population size
on (a) genetic variance,
(b) the mean–optimum de-
viation, and (c) the linear
selection gradient. Results
are given for two models:
stabilizing selection with mu-
tation effects normally dis-
tributed with mean equal
to the bias, as assumed by
Waxman and Peck (2003)

(diamonds), and joint pleiotropic and stabilizing selection with positive and negative mutation effects on the trait gamma dis-
tributed with ta ¼ 0.1 and the bias dependent on the proportion decreasing the trait and with pleiotropic effects on fitness fol-
lowing an independent exponential distribution with mean E(s)¼ 0.05 (squares). The mutational bias on the trait is D ¼�0.04sE

for the pure stabilizing selection model and D ¼ �0.02sE (the probability of decreasing mutants P ¼ 0.753) for the joint-effect
model.
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tion increases the apparent directional selection mono-
tonically, however, because individuals that carry more
mutants are expected to have a lower trait value and thus
smaller fitness. The increase in apparent directional
selection can be substantial: for example, with pleiotro-
pic selection of strength E(s) . 0.1, the gradient b of
apparent directional selection increases from near zero
to 0.06 for the parameters used in Figure 4.

As in the nonbiased mutation model, genetic variance
decreases as trait effects of mutants become more
leptokurtic (Zhang and Hill 2002); with extreme

leptokurtosis (ta , 0.2), the M–OD depends greatly
on the value of the shape parameter ta, but is affected
little at higher values of ta (Figure 5b). The leptokur-
tosis can greatly strengthen the apparent directional
selection (Figure 5c) but appears to have a weak effect
on the apparent strength of quadratic selection (data
not shown). If the real stabilizing selection is weaker
(i.e., increasing Vs), the apparent stabilizing selection
also weakens and the genetic variance increases, and
also, as predicted by Waxman and Peck (2003), the M–
OD increases but the apparent directional selection

Figure 3.—Influence of mutational bias on (a)
genetic variance, (b) the mean–optimum devia-
tion, (c) the linear selection gradient, and (d)
the quadratic selection gradient. Increasing and
decreasing mutational effects on the trait have
a gamma distribution with ta ¼ 0.1 and a higher
probability, P ¼ 1

2(1 � Daa/ta), of having negative
values, and pleiotropic effects on fitness are expo-
nentially distributed with mean E(s) ¼ 0.05. The
population size is N ¼ 600.

Figure 4.—Influence of the pleiotropic effect
on fitness on (a) genetic variance, (b) the mean–
optimum deviation, (c) the linear selection gradi-
ent, and (d) the quadratic selection gradient.
Mutational effects on the trait have a reflected
gamma distribution with ta¼ 0.1 but have a higher
probability P ¼ 0.753 of negative values, and
pleiotropic effects on fitness are exponentially
distributed with mean E(s). N ¼ 600 and D ¼
�0.022sE. In c, the linear selection gradients
are calculated from the full expression (Equation
1, squares) and by ignoring the skew of the distri-
bution of mutational effect on trait (Equation 2,
triangles) such that the gradient is overestimated.
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weakens (Figure 6). With an increase in the leptokur-
tosis of the pleiotropic effect (i.e., decreasing its shape
parameter ts), both apparent directional and quadratic
selection weaken and genetic variance increases (Zhang

and Hill 2002), but the M–OD remains roughly the
same (results not shown).

DISCUSSION

In this simulation-based study we find that the mean–
optimum deviation and the magnitude of apparent
directional selection can be substantial. Within the
range of biologically plausible values of mutation and
selection parameters, the mean–optimum deviation can
be large (up to 10% of an environmental standard de-
viation) and the apparent directional selection caused
by such a deviation can also be large, with a linear
selection gradient up to �0.06 for the parameter values
investigated in this study. This is in contrast to the results

of Waxman and Peck (2003) and Bürger (2000),
whose models were based on real stabilizing selection,
infinite populations, and mutation distributions that do
not deviate far from the normal. In both studies, pre-
dicted values of the M–OD were small under plausible
choices of parameter values, ,1 and ,2% of the envi-
ronmental standard deviation, respectively. Our simu-
lations show that genetic drift (see Figure 2), pleiotropic
selection (Figure 4), and leptokurtosis of the mutational
effects on the trait (Figure 5) can all increase the M–OD
and apparent directional selection. Clearly the consider-
able discrepancy between our results and those of
Waxman and Peck (2003) and Bürger (2000) comes
from the combination of all three differences between
the models.

These findings provide useful information for un-
derstanding some problems in evolutionary biology.
Perhaps the clearest example that quantitative traits are
under stabilizing selection is for birth weight in humans

Figure 5.—Influence of
leptokurtosis of trait effects
of mutation on (a) genetic
variance, (b) the mean–
optimum deviation, and (c)
the linear selection gradi-
ent. Mutational effects on
the trait have a reflected
gamma distribution but
have a higher probability
P¼ 1

2(1� Daa/ta) of having
negative values, and pleiotro-
pic effects on fitness are ex-
ponentially distributed
with mean E(s) ¼ 0.05. N ¼
600 and D ¼ �0.022sE.

Figure 6.—Influence of strength of real stabi-
lizing selection on (a) genetic variance, (b) the
mean–optimum deviation, (c) the linear selec-
tion gradient, and (d) the quadratic selection
gradient. Mutational effects on the trait have a re-
flected gamma distribution with ta¼ 0.1 but have
a higher probability P ¼ 0.852 of negative values,
and pleiotropic effects on fitness are exponen-
tially distributed with mean E(s) ¼ 0.05. N ¼
1000 and D ¼ �0.03sE.
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before modern medicine; but the optimum birth weight
was greater than the observed mean (Cavalli-Sforza

and Bodmer 1971; Zhivotovsky and Feldman 1992).
As the bias of mutation effects on most traits in different
model species (e.g., Drosophila, Daphnia) appears to be
downward (e.g., Garcia-Dorado et al. 1999 and other
references above), it can surely be one explanation for
the mean–optimum deviation.

Directional selection has been detected for many
traits in natural populations, with a median gradient of
0.15 (Hoekstra et al. 2001; Hereford et al. 2004). This
estimate may be biased upward by publication bias and
also by skew in the distribution of trait phenotypes,
when Lande and Arnold’s (1983) formula can over-
estimate the strength of selection. Skew in the pheno-
typic distribution due to asymmetric mutations can
double the linear selection gradient (Figure 4c). In
some field studies no genetic response in quantitative
traits under functional (real) directional selection has
been observed, even though there is adequate heritable
variation (Kruuk et al. 2002). Our results provide a pos-
sible or partial explanation: under joint pleiotropic and
stabilizing selection the apparent directional selection
caused by mutational bias can be substantial, especially
in small populations and where mutational effects on
the trait are highly leptokurtic.
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APPENDIX: INFLUENCE OF PLEIOTROPIC SELECTION ON THE MEAN–OPTIMUM DEVIATION

Assume strong selection such that the frequency of any mutant allele is low and its overall selective value can be
approximated by

s̃ ¼ s 1 ½a2 1 4a�z�=ð4VsÞ ðA1Þ

(Zhang et al. 2004). Its mean frequency can be approximated by EðxÞ ¼ 2l=s̃ (Kimura 1969), and the population
mean �z ¼

Pn
i¼1 xiai can be evaluated as

�z ¼ 2l

ð‘

�‘

ð‘

0
hða; sÞa½s 1 ða2 1 4a�zÞ=4Vs��1dads; ðA2Þ

where h(a, s) is the joint distribution of trait effect a and pleiotropic effect s of mutations. If pleiotropic selection is
much stronger than stabilizing selection, s?ða2 1 4a�zÞ=ð4VsÞ, then the mean value of the trait can be approximated by
�z � 2lD=_s, where _s is the harmonic mean of pleiotropic effect on fitness, indicating that the M–OD decreases with
pleiotropic selection.

For the situation where s is much smaller than stabilizing selection, we consider a simplified situation where there
are only two different mutants with the same pleiotropic effect�s but opposite effects on the trait: a and�a (s, a . 0).
If the probability that the negative mutant occurs is P . 1

2, we have from Equation A2

�z ¼ 2l
Pð�aÞ

s 1 ða2 � 4a�zÞ=ð4VsÞ
1

ð1� PÞa
s 1 ða2 1 4a�zÞ=ð4VsÞ

� �
: ðA3Þ

It is easy to see that the mean value of the trait from (A3) is negative. We want to prove the M–OD decreases with the
pleiotropic effect of mutation when it is weak (i.e., pleiotropic selection increases the size of the M–OD); that is, y [

d�z=dsjS¼0 , 0. Differentiating both sides of Equation A3 with respect to s, after some algebra we have at s ¼ 0,

y ¼ 32lV 2
s ½ðPaða2 1 4a�zÞ2 � ð1� PÞaða2 � 4a�zÞ2Þ=ða2 � 4a�zÞ2ða2 1 4a�zÞ2�
f1 1 32lVs½Pa=ða2 � 4a�zÞ2 1 ð1� PÞa=ða2 1 4a�zÞ2�g

} Pða 1 4�zÞ2 � ð1� PÞða � 4�zÞ2 ¼ ð2P � 1Þða2 1 16�z2Þ1 8a�z; ðA4Þ

where �z is the solution to (A3) at s ¼ 0; i.e.,

16�z3 � ð32lVs 1 a2Þ�z 1 8ð1� 2PÞlaVs ¼ 0: ðA5Þ

Under the condition of 32lVs ? a2, which should be satisfied for most plausible mutants, (A5) can be reduced to an
approximately linear equation with solution �z ¼ ð1� 2PÞa=4: Then 8a�z 1 ð2P � 1Þða2 1 16�z2Þ � 4Pð1� PÞð1� 2PÞ
a2 , 0, and therefore y , 0.

If a trait is controlled by many pairs of mutants, (�s, �ai) (�s, ai) i ¼ 1, . . . , n, the same inequality d�z=dsjS¼0 , 0 is
expected to hold. Therefore, weak pleiotropic selection can increase the size of the M–OD. However, as shown
following Equation A2, strong pleiotropic selection leads to rapid loss of mutants and small M–OD.
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