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ABSTRACT

Threshold models are useful for understanding the evolution of dimorphic traits with polygenic bases.
Selection for threshold characters on individuals is expected to be frequency dependent because of the
peculiar way that selection views underlying genetic and environmental factors. Selection among indi-
viduals is inefficient because individual phenotypes fall into only two discrete categories that map im-
perfectly to the underlying genes. Incidence, however, can be continuously distributed among groups,
making among-group selection relatively more efficient. Differently put, the group-mean phenotype can
be a better predictor of an individual’s genotype than that individual’s own phenotype. Because evolution
in group-structured populations is governed by the balance of selection within and between groups,
we can expect threshold traits to evolve in fundamentally different ways when group mean fitness is
a function of morph frequency. We extend the theory of selection on threshold traits to include group
selection using contextual analysis. For the simple case of linear group-fitness functions, we show that
the group-level component of selection, like the individual-level component, is frequency dependent.
However, the conditions that determine which component dominates when levels of selection are
in conflict (as described by Hamilton’s rule) are not frequency dependent. Thus, enhanced group
selection is not an inherent property of threshold characters. Nevertheless, we show that predicting the
effects of multiple levels of selection on dimorphic traits requires special considerations of the threshold
model.

MANY interesting phenotypes have a polygenic
basis but are expressed as discrete character

states. Examples include wing dimorphism in insects,
presence or absence of enlarged horns or other struc-
tures in male insects, male size and mating behavior
dimorphism in various animal taxa, life-cycle dimor-
phism in salamanders, trophic dimorphism in sala-
manders and fish, and reproductive caste dimorphism
in eusocial animals (reviewed by Roff 1996). Threshold
models provide a quantitative genetic framework for
studying the evolution of such dimorphic phenotypes.
These models assume that polymorphisms are caused
by variation in an unobservable but normally distrib-
uted phenotype termed ‘‘liability’’ (Wright 1934; Lush

et al. 1948; Dempster and Lerner 1950; Falconer

1965a). Individuals with liability above a threshold
value express one phenotypic character state (induced)
and those with liability below the threshold express
the alternate state (uninduced). Quantitative genetic
parameters, such as narrow-sense heritability and ge-
netic correlations, can be estimated on this liability
scale by considering the joint patterns of induction

among relatives (Mercer and Hill 1984; Sorensen

et al. 1995).
Predictive evolutionary theory requires that we

understand selection and inheritance (Fisher 1930;
Robertson 1966; Price 1970). If we are interested in
the evolution of a threshold trait, then selection must be
considered on the liability scale. Classical theory pre-
dicts that mass selection on liability should be frequency
dependent (Dempster and Lerner 1950; Crow and
Kimura 1970; Falconer and Mackay 1996) because
the threshold function shields part of the liability
variation (the within-morph component) from the
purifying effects of selection; the size of the cryptic
fraction depends upon the proportion of the popula-
tion that is induced (the population incidence). How-
ever, when populations are partitioned into groups (e.g.,
demes or family units), random genetic drift will lead to
variations among groups in mean liability and, hence,
mean incidence. Group-mean liability can vary contin-
uously and the function that maps fitness to group-
mean liability is free to take any shape. In this way,
selection can discriminate better between groups than
between individuals. The threshold function causes
mass selection to be inefficient, leading some to
recommend that breeders apply family-level selection
to more effectively change the population incidence
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(Dempster and Lerner 1950; Crow and Kimura 1970;
Mikami and Fredeen 1979; Falconer and Mackay

1996).
Current models of selection on threshold traits

consider only the genes that map directly from individ-
uals’ genotypes to phenotypes (i.e., direct genetic
effects). Consequently, ‘‘family-level selection’’ in the
classical animal breeding literature implies artificial
selection on the mean phenotype of family members
that results only from direct effects. In reality, the
genotypes of social partners (e.g., mothers, siblings, or
coresidents) often affect the phenotypes of individuals
through indirect genetic effects (Cheverud and
Moore 1994; Moore et al. 1997; Wolf and Brodie

1998; Wolf et al. 1998; Agrawal et al. 2001), which are
also known as associative effects (Griffing 1967, 1968,
1976, 1981; Muir 2005; Bijma et al. 2007a). Maternal
effects are the best studied and perhaps most wide-
spread type of indirect effect (Falconer 1965b;
Willham 1972, 1980; Cheverud 1984) and have been
shown to affect the expression of threshold traits in
several species, including diapause in cricket eggs
(Huestis and Marshall 2006), sex in reptiles with
temperature-dependent sex determination (Freedberg

and Wade 2001), the presence or absence of horns in
male dung beetles (Moczek 1998; see Hunt and
Simmons 2002), and reproductive caste in some species
of ants (Linksvayer 2006; Schwander et al. 2008).
Indirect effects arising from both genetic and environ-
mental effects can cause differences in group-mean
fitness that lead to group-level selection that may work
in concert or in conflict with individual-level selection
(Moore et al. 1997; Wade 1998). Family-level selec-
tion in the social evolution literature implies selection
among families that have been kept intact so that social
interactions contribute to the phenotypes expressed by
the social members.

The evolution of traits that are affected by direct and
indirect social factors can be understood more fully by
partitioning selection into individual and group-level
components, using the regression-based method of
contextual analysis (Goodnight et al. 1992; Heisler

and Damuth 1987; Okasha 2004; Goodnight 2005).
This approach has been used to generalize Hamilton’s
rule (Hamilton 1964), a definition of the conditions
necessary for the spread of an ‘‘altruistic’’ trait that has
opposing group and individual effects (Hamilton

1970; Wade 1980). Despite the special significance
given to dichotomous traits in discussion of the evolu-
tion of altruism, such as the evolution of discrete queen
and worker reproductive castes in eusocial animals
(Linksvayer and Wade 2005), selection on threshold
traits has not yet been studied using contextual analy-
sis. Here we use this approach to explore how multilevel
selection operates on a threshold trait with an un-
derlying genetic model that includes indirect genetic
effects.

THE LIABILITY MODEL

Liability is a phenotype composed of contributions
from genetic and environmental effects. Both of these
can be further decomposed into direct or indirect
effects. Direct effects are genetic (AD) or environmen-
tal effects (ED) that are intrinsic to individuals and
affect their phenotype, regardless of the individuals’
social interactions. Indirect effects act upon focal
individuals, but are generated by the accumulation of
genetic (AS) and environmental effects (ES) experi-
enced by social partners and transferred to the focal
individual (Moore et al. 1997; Wolf et al. 1998). Here
we apply the phenotypic model of direct and indi-
rect effects described by Bijma et al. (2007a) to a lia-
bility phenotype. The liability z of a focal individual i
that is affected by interactions with a group of n � 1
social partners, each with an indirect effect on in-
dividual i, is

zi ¼ m 1 AD;i 1 ED;i 1
Xn

i 6¼j

AS;j 1
Xn

i 6¼j

ES;j ; ð1Þ

where m is the population mean liability and j indicates a
social partner that interacts with focal individual i. This
model is general and applies to populations composed
of groups of socially interacting individuals, e.g., demes
of interacting individuals or families with maternal
effects.

The maternal-effect case is special because all indi-
viduals within a family experience the same indirect
(maternal) effect; i.e., the summation terms in Equation
1 are simply the maternal genetic and environmental
effect, which can be written as Am 1 Em (Willham 1972;
Cheverud 1984). We assume that the distributions of
each of the effects in Equation 1 are Gaussian and i.i.d.
across individuals and groups. Direct and indirect
genetic effects can covary in our model and, in fact,
evidence of direct–indirect genetic correlations is fre-
quently observed (Cheverud 1984; Cheverud and
Moore 1994; Linksvayer 2006). The distribution of
liability is standardized such that sz ¼ 1. The variance
among groups is f0 # s2

�z # 1g and the within-group
variance is 1� s2

�z . The liability phenotype of any in-
dividual i translates into an incidence phenotype by a
simple step function,

qðziÞ ¼
0; zi , 0
1; zi $ 0:

�

An individual is said to be induced if and only if its
liability phenotype exceeds zero. Group and population
mean liability can be inferred from the inverse cumu-
lative normal distribution and the appropriate inci-
dence and liability variation for each,

��zð��qÞ ¼ F�1ð��qÞ; ð2aÞ
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�zð�qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

�z

q
F�1ð�qÞ; ð2bÞ

where ��q is the frequency of induction in the population
(the population incidence) and �q is the incidence of a
group with mean liability �z. There is a one-to-one map of
�z to �q.

Selection may act upon the phenotypes of both indi-
viduals and groups. Selection components are found
using the covariances between relative fitness and the
phenotype at the level of the individual and the group:
covðw̃; zÞ and covðw̃; zÞ. Because these covariances are
not independent of one another (Heisler and Damuth

1987; Frank 1997; Okasha 2004), contextual analysis is
used to fully disentangle the levels of selection, thereby
decomposing total selection into components of in-
dividual and group-level selection. We apply this ap-
proach to explore multilevel liability selection in the
next section.

RESULTS

Here we explore the ramifications of the threshold
model when (1) individual phenotypes determine
fitness, (2) group phenotypes determine fitness, and
(3) individuals and group phenotypes determine fit-
ness. When fitness depends upon both individual and
group-level phenotypes, total selection can be parti-
tioned into individual and group-level components.
Because we find that individual-level and group-level
selection are both frequency dependent, we investigate
if the relative efficiency of these levels of selection may
change with the mean incidence.

Fitness and individual phenotypes: When fitness
depends only upon the phenotype of the individual,
selection is simply the covariance between relative
fitness and individual liability. This is the ‘‘hard-selec-
tion’’ model (Goodnight et al. 1992). The observable
phenotype of the uninduced state is 0, which occurs
in the population with frequency 1� ��q, and the induced
state is 1, which occurs with frequency ��q. From the
perspective of selection, individuals of the same state
have the same liability phenotype, which is the expec-
tation of the appropriately truncated normal distribu-
tion (Falconer and Mackay 1996). We define selection
by first expanding the covariance between relative
fitness and individual liability,

D��z ¼ sðw̃; zÞ ¼ ð1� ��qÞðEfz j q ¼ 0g � ��zÞðw̃0 � 1Þ
1 ��qðEfz j q ¼ 1g � ��zÞðw̃1 � 1Þ: ð3Þ

The expectations follow from Barr and Sherrill

(1999),

Efz j q ¼ 0g ¼ � 1

ð1� ��qÞ
ffiffiffiffiffiffi
2p
p

�
exp

���z2

2

� �
1 ��z

�
ð4aÞ

Efz j q ¼ 1g ¼ 1
��q
ffiffiffiffiffiffi
2p
p

� �
exp

���z2

2

� �
1 ��z: ð4bÞ

We substitute Equations 4a and 4b into Equation 3 and
simplify to find selection in the absence of group
selection,

D��z ¼ ðw̃1 � w̃0ÞP��z; ð5Þ

where P��z ¼ ð1=
ffiffiffiffiffiffi
2p
p

Þ exp ð���z2=2Þ, the height of the unit
normal curve at the population’s liability mean. In-
dividual liability selection in the absence of group
selection is frequency dependent, approaching a max-
imum magnitude of �0.8 as ��q / 1

2 and a minimum of
zero as ��q / f0; 1g. We note that because there are only
two possible relative fitness values, the slope of the
regression of relative fitness on individual incidence bw̃q

is always linear and proportional to the difference in
relative fitness between morphs. Equation 5 shows that
evolution, measured as change in mean liability, stops
when the fitnesses of the two morphs are equal, making
D��z ¼ 0.

Fitness and group phenotypes: Here we consider the
case when fitness depends only upon the mean pheno-
type of the group; selection is simply the covariance
between relative fitness and group-mean liability. This is
the ‘‘group-selection’’ model (Goodnight et al. 1992).
Because group means are continuously distributed
(unlike the dichotomous liability values of individuals),
we find the covariance by integrating over all groups. We
infer group liability means using Equation 2b because
liability cannot be observed directly. Given some func-
tion that relates relative fitness to the observed group
incidence w̃ð�qÞ, the covariance between relative fitness
and group liability follows from the definition of a
covariance and p�q , the probability density function
(pdf) of group incidence,

D��z ¼ covðw̃;�zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

�z

q ð1

0
p�qF�1ð�qÞw̃ð�qÞd�q �F�1ð��qÞ:

ð6Þ

The probit function F�1 that transforms incidence to
mean liability is nonlinear. We expect that this will cause
the covariance in Equation 6 to depend upon the
population incidence. We investigate how the threshold
model causes frequency-dependent selection by assum-
ing a linear relationship between group fitness and
group incidence. By the chain rule, the instantaneous
slope of relative fitness on group-mean liability is

bw̃�z j�z ¼ ðbw̃�q j �qÞðb�q�z j�zÞ: ð7Þ
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We find covðw̃;�zÞ by finding the mean slope bw̃�z j�z taken
over all values of �z,

covðw̃;�zÞ ¼ s2
�z

ð1‘

�‘

p�zðbw̃�q j �qÞðb�q�z j�zÞd�z; ð8Þ

where p�z ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffi
2ps2

�z

p
Þ exp ð�ð�z � ��zÞ2=2s2

�z . Because we
have assumed that relative group fitness changes line-
arly with incidence,

w̃ð�qÞ ¼ 1 1 bw̃�qð�q � ��qÞ: ð9Þ

This ensures that bw̃�q j �q ¼ bw̃�q for all group incidences
and

covðw̃;�zÞ ¼ bw̃�qs2
�z

ð1‘

�‘

p�zðb�q�z j�zÞd�z: ð10Þ

Group incidence follows from the normal cumulative
distribution function (cdf) with variance 1� s2

�z . Be-
cause the slope of the cdf of a distribution is its pdf, the
slope of group incidence on group-mean liability is the
ordinate of the normal curve at �z with parameters m¼ 0
and s2 ¼ 1� s2

�z ,

b�q�z j�z ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1� s2
�z Þ

q exp ���z2=2ð1� s2
�z Þ

� �
: ð11Þ

Substituting Equation 11 and the definition of p�z given
by Equation 8 into Equation 10 and rearranging, we find

covðw̃;�zÞ ¼
bw̃�qs2

�z

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

�z ð1� s2
�z Þ

q ð1‘

�‘

f ð�zÞd�z; ð12Þ

where f ð�zÞ ¼ expð�ðð�z � ��zÞ2=2s2
�z Þ � z2=2ð1� s2

�z ÞÞ. The
antiderivative of f ð�zÞ is

F ð�zÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ps2

�z ð1� s2
�z Þ

2

s
exp �

��z

2

� �
� yð�zÞ; ð13Þ

where yð�zÞ ¼ erfðð�z � ð1� s2
�z Þ��zÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2

�z ð1� s2
�z Þ

p
Þ. We

solve for covðw̃;�zÞ by evaluating the integralÐ 1‘

�‘
f ð�zÞd�z ¼ F ð1‘Þ � F ð�‘Þ. Noting that y / 11 as

�z / 1‘ and y /�1 as �z /�‘ and the remainder of
F ð�zÞ is insensitive to changes in �z, we find that

covðw̃;�zÞ ¼
bw̃�qs2

�zffiffiffiffiffiffi
2p
p exp �

��z

2

� �
¼ bw̃�qP��zs

2
�z : ð14Þ

This covariance depends upon the population inci-
dence by virtue of its proportional relationship to P��z,
just as the covariance between relative fitness and
individual liability (Equation 5). We can now examine
the joint effects of individual and group-level liability
selection now that we have expressions that describe the
covariance between relative fitness and individual lia-
bility (Equation 5) and group liability (Equation 14).

Partitioning components of liability selection: When
fitness depends upon the phenotype of the individual
and the group, we can define individual- and group-
level liability selection using partial covariances. In the
general case (i.e., for both continuous and threshold
traits), selection on the individual-level phenotype is the
partial covariance between relative fitness and individ-
ual phenotype holding the group phenotype constant,
covðw̃; z � �zÞ. Selection on the group-level phenotype is
the partial covariance between relative fitness and group
phenotype holding the individual phenotype constant,
covðw̃;�z � zÞ. We can restate these components of selec-
tion in terms of variances and covariances:

D��zindividual ¼ covðw̃; z � �zÞ ¼ covðw̃; zÞ � covðw̃;�zÞ; ð15Þ

D��zgroup ¼ covðw̃;�z � zÞ ¼ covðw̃;�zÞ � covðw̃; zÞs2
�z

s2
z

ð16Þ

(Li 1975; Goodnight et al. 1992). For liability selection,
Equation 16 simplifies slightly because s2

z ¼ 1. These
equations help to clarify the contributions of direct and
indirect effects to group-level selection. Both direct and
indirect effects can contribute toward the variation
among groups. If the groups are made up of related
individuals, there are by definition genetic differences
between groups that can be direct and indirect in
nature. We can see how this variation increases the
strength of group selection by restating the right-hand
side of Equation 16 in terms of regression coefficients:
D��zgroup ¼ ðbw̃;�z � bw̃;zÞs2

�z . Indirect effects contribute
mainly toward the among-group component of liability
variance ðs2

�z Þ because members of the social group
experience similar indirect effects ½see Equation 1; note
that when all group members experience the same
indirect effect, as with maternal effects, indirect effects
contribute only to the among-group components (Wade

1998)�. In contrast, direct effects generally contribute to
variation within groups (e.g., direct genetic effects will
be variable within groups unless the individuals are
clones). This limits the relative amount of among-group
phenotypic variance generated by direct effects. As a
result, indirect effects contribute more to group selec-
tion than direct effects.

Conflict between levels of liability selection: Models
of multilevel selection are frequently applied to situa-
tions in which there is conflict between levels of
selection; the evolution of altruism (Hamilton 1964,
1970) is a notable example. Hamilton’s rule defines the
conditions necessary for selection to favor the spread of
an altruistic phenotype as br . c, where c is the cost to
the individual if it expresses the altruistic character, b is
the benefit to the group conveyed by the altruistic
individual, and r is the ‘‘relatedness’’ between individu-
als. Whereas relatedness was originally intended as a
measure of genetic kinship, it is now more broadly
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recognized to be the fraction of the total phenotypic
variance that is sequestered between groups (Frank

1997; Goodnight 2005). The absolute value of Equa-
tion 15 is the cost term c and the absolute value of
Equation 16 is br in the parlance of contextual analysis.
We apply the more general form of Hamilton’s rule to
the two components of selection given in Equations 15
and 16 (Goodnight et al. 1992; Goodnight 2005):

covðw̃;�z � zÞ2 . covðw̃; z � �zÞ2: ð17Þ

That is, selection will favor the spread of an altruistic
phenotype when group selection is stronger than in-
dividual selection. We find the ratio of slopes of relative
fitness on group to individual phenotype by substituting
Equations 15 and 16 into Equation 17 and rearranging,

bw̃�z

bw̃z

.
s2

z 1 s2
�z

2s2
�z

: ð18Þ

The threshold function generates frequency-dependent
liability selection on individuals in the absence of group
selection (Equation 5) and frequency-dependent selec-
tion on groups in the absence of individual-level
selection (Equation 14). We want to know if the thresh-
old function causes Hamilton’s rule to become fre-
quency dependent, too. We apply this general rule to
the case of a threshold trait where the relationship
between group fitness and group incidence is linear. We
substitute Equations 5 and 14 into Equation 18 and
rearrange and find the rule in terms of the ratio of
slopes on the incidence scale,

bw̃�q

bw̃q

.
ð1 1 s2

�z Þ
2s2

�z

; ð19Þ

which is the same as for conventional continuous traits
(compare to Equation 18) because s2

z ¼ 1. Thus, the
conditions of Hamilton’s rule for threshold traits do not
depend upon population incidence. Furthermore, the
rule can be evaluated using the fitness regression slopes
on either the incidence scale (Equation 19) or the
liability scale (Equation 18). This result requires the
assumption that group-mean fitness is a linear function
of group incidence. We note that Hamilton’s model and
most formal expressions for it (e.g., Wade 1980; Gardner

et al. 2007) make exactly the same assumption of a linear
group fitness function—for example, substituting two
nonaltruists with altruists incrementally raises group
mean fitness by twice the effect of a single substitution.

DISCUSSION

Classical quantitative genetic theory predicts that
selection for threshold traits has two interesting prop-
erties. First, mass selection on threshold characters
should be frequency dependent. Second, family-level
selection can be more effective than individual-level

selection when the less-fit morph is rare. If these
predictions hold when selection acts at both levels
simultaneously, then they suggest profound implica-
tions for the evolution of threshold traits in structured
populations. For example, the threshold model could
cause the conflict between levels of selection to have a
frequency-dependent outcome. Consider the evolution
of reproductive altruism in eusocial animals where
selection for fertility at the level of the individual acts
in opposition to selection at the level of the group.
When the frequency of altruism is very low, individual-
level selection against sterility might be intense and total
selection may favor a decrease in the likelihood of
individual sterility. As fertility increases, however, in-
dividual-level selection would relax, thereby intensifying
the relative importance of the family-level selection for
increased sterility. Stable equilibria would evolve to an
intermediate population incidence.

We explored this possibility by developing a formal
multilevel selection model for threshold traits. Using
contextual analysis, we showed how threshold selection
can be decomposed into individual and group-level
components of liability selection. We confirmed that
both components of selection are frequency dependent
when considered independent of one another (see
Equations 5 and 14). However, they are both propor-
tionally frequency dependent to the same degree. As a
result, the conditions that determine which of the
conflicting levels of selection dominates total liability
selection (i.e., Hamilton’s rule) can be independent of
the population incidence. Frequency dependence of
Hamilton’s rule may exist if the relationship between
group incidence and fitness is nonlinear but our study
demonstrates that this is not an emergent property of
the threshold model. We infer that Hamilton’s rule
applies to threshold traits just as it does for continuous
traits (Gardner et al. 2007).

The threshold model was developed largely to allow
a breeder to predict a response to mass selection on
incidence (e.g., Lush et al. 1948; Robertson and
Lerner 1949; Dempster and Lerner 1950). These
early quantitative genetic studies carefully defined
the strength of selection on liability and described the
relationship between narrow-sense heritability on the
scales of liability and incidence. They appreciated that
family-level selection (in the classical sense that ex-
cludes social effects) could increase the response to
selection on incidence above what could be expected
from mass selection. However, these early models do not
consider indirect effects or selection at two levels
simultaneously. Recently, Bijma et al. (2007a) showed
that increased responses to artificial selection can be
made by constructing a multilevel selection index and
simultaneously performing selection at two levels. Our
results indicate that given the constraint that group-
level fitness is a linear function of group incidence, this
optimal selection index does not change with inci-
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dence. In other words, the combination of selection
gradients that works best at one population-level in-
cidence (the optimal index) will work best at all
incidences. In the general case (e.g., with nonlinear
group-fitness functions), this optimal index may change
with incidence, but the degree to which this happens is
governed by the specific group-fitness function.

The relationship between group incidence and fit-
ness can be nonlinear with natural selection (Foster

2004) or artificial selection (Mikami and Fredeen

1979). This is not an impediment to the contextual
analysis framework used here because the definition of
the covariance between group incidence and relative
fitness (Equation 6) is general to all group fitness
functions. Indeed, Hamilton’s rule for threshold traits
may become frequency dependent with a nonlinear
group-fitness function, just as it would be if the rule were
applied to outwardly continuous traits with a nonlinear
group fitness function.

There are two compelling reasons to evaluate Ham-
ilton’s rule on the scale of liability when dealing with
polygenic dimorphisms. In fact, these reasons apply
equally to any evolutionary study of threshold traits that
involves multilevel selection such as hard vs. soft
selection, maternal effects, or kin selection (Wade

1985, 1998; Goodnight et al. 1992; Goodnight

2005). The first reason involves the partitioning of
variance into within- and among-group components.
This is important because the among-group component
figures prominently into how we partition levels of
liability selection (Equation 16). In conventional quan-
titative traits, the among-group phenotype variance is
readily observable. However, the among-group compo-
nent of liability variance must be inferred. Fortunately,
several methods have been devised to infer narrow-
sense heritability on the liability scale using the joint
incidence patterns of relatives (reviewed in Lynch and
Walsh 1998). Whereas these methods are designed to
find the slope of the parent–offspring liability regres-
sion, they apply equally to the regression of individual
on group liability. The square of this slope is the among-
group component of liability variance because the total
liability variance is defined as one.

The second reason for considering the liability scale
when we study the evolution of polygenic dimorphisms
is that liability is the metric with which we must model
inheritance. We cannot predict the response to selection
on threshold traits without estimates of heritability and
genetic correlations. Fortunately, there is a rich litera-
ture dedicated to extracting these liability parameters at
the level of the individual (Mercer and Hill 1984;
Sorensen et al. 1995; Lynch and Walsh 1998) that
makes predictions of evolutionary trajectories possible
when selection acts at the level of the individual. Anal-
ogous group-level parameters are needed to accurately
predict a response to multilevel selection (Goodnight

2005). New approaches for estimating these parameters

for outwardly continuous traits have been proposed
(Bijma et al. 2007b). Available methods for estimating
relevant group-level liability parameters are still un-
derdeveloped, however (but see Linksvayer 2006).
More general approaches for estimating these liability
parameters will need to be developed if we are to better
understand the evolution of threshold characters.

Predicting the evolution of threshold characters
requires an understanding of selection and inheritance
on the latent scale of liability. Current models of liability
selection and inheritance are adequate if an individual’s
phenotype is determined solely by direct effects. In the
presence of indirect effects, however, a multilevel
selection approach coupled with genetic models in-
corporating indirect genetic effects is required to pre-
dict evolutionary trajectories (Bijma et al. 2007a). We
extend the contextual analysis methodology to multi-
level liability selection. We show how the arbitrary
relationships between fitness and group incidence,
fitness and individual induction, and group structure
can be transformed onto a scale that is useful for making
evolutionary inferences. Although we show that the
threshold transformation generates frequency-depen-
dent selection at both levels, we find that the trans-
formation does not distort Hamilton’s rule.
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