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ABSTRACT

There is great interest in using amplified fragment length polymorphism (AFLP) markers because they
are inexpensive and easy to produce. It is, therefore, possible to generate a large number of markers that
have a wide coverage of species genomes. Several statistical methods have been proposed to study the
genetic structure using AFLPs but they assume Hardy–Weinberg equilibrium and do not estimate the
inbreeding coefficient, FIS. A Bayesian method has been proposed by Holsinger and colleagues that
relaxes these simplifying assumptions but we have identified two sources of bias that can influence
estimates based on these markers: (i) the use of a uniform prior on ancestral allele frequencies and (ii)
the ascertainment bias of AFLP markers. We present a new Bayesian method that avoids these biases by
using an implementation based on the approximate Bayesian computation (ABC) algorithm. This new
method estimates population-specific FIS and FST values and offers users the possibility of taking into
account the criteria for selecting the markers that are used in the analyses. The software is available at our
web site (http://www-leca.ujf-grenoble.fr/logiciels.htm). Finally, we provide advice on how to avoid the
effects of ascertainment bias.

THE range of many if not most species is spatially
subdivided and can be generally described as a

metapopulation composed of many local populations.
Thus, the genetic diversity of a species is spatially
structured into within and between components. This
so-called genetic structure has important implications
for the evolution of species and knowledge of it is
fundamental for applications in the domains of
conservation biology and genetic epidemiology. Ge-
netic structuring is typically assessed using the so-called
F-statistics first introduced by Wright (1951), who
distinguished three statistics, FIS, FST, and FIT. They have
been widely used in population genetics but the
interpretation of results has been difficult because of
ambiguities about their definitions. Loosely speaking,
FIS represents the shared ancestry between alleles of an
individual relative to the population and is usually
called the inbreeding coefficient. FST represents the
shared ancestry within the population relative to the
metapopulation and is usually used to measure the de-
gree of differentiation among populations. Finally, FIT

represents the shared ancestry between alleles of an
individual relative to the metapopulation and provides
an overall measure of inbreeding. Traditionally the

study of population genetic structuring is done using a
global FST coefficient, which ignores differences in the
strength of genetic drift across populations. Over a
decade ago, Balding and Nichols (1995) proposed
the use of population specific FST’s in the context of a
migration–drift equilibrium model. More recently,
Balding (2003) proposed a general framework to
rigorously define all F-statistics using the beta–binomial
model proposed by Balding and Nichols (1995). This
new formulation, and in particular its multiallelic
version, the multinomial Dirichlet, has been used re-
cently to address many different problems. Ciofi et al.
(1999) used it to distinguish between two types of
model of population structure and to estimate pop-
ulation-specific FST coefficients, Falush et al. (2003)
used it for clustering individuals into populations,
Beaumont and Balding (2004) used it to identify
candidate loci under natural selection, and Foll and
Gaggiotti (2006) used it to identify biotic/abiotic
factors that are responsible for the observed spatial
structuring of genetic diversity and to infer population
history.

There are a wide variety of molecular markers avail-
able for studying genetic structure. The use of co-
dominant markers such as allozymes, microsatellites,
or SNPs leads to clearly distinguishable genotypes and,
therefore, they can be readily analyzed using existing
software (see Excoffier and Heckel 2006). On the
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other hand, using dominant markers leads to serious
difficulties because of the inability to distinguish het-
erozygous individuals from those that are homozygyous
for the dominant allele. Nevertheless, they have became
very popular in the last decade, mostly due to the
development of the amplified fragment length poly-
morphism (AFLP) technique, an inexpensive and easy
way of obtaining a large number of genetic markers
from a wide variety of organisms (Bensch and Akesson

2005; Meudt and Clarke 2007). It is therefore impor-
tant to clearly understand the potential problems that
may arise when dominant markers are used for the study
of genetic structure. The main problem is that estima-
tion of F-statistics requires the allele frequencies to be
inferred, which is not straightforward for dominant
markers. AFLPs are in fact binary data: for each in-
dividual the information is ‘‘band presence’’ or ‘‘band
absence,’’ which can be viewed as a phenotype.

One possible solution is to suppose Hardy–Wein-
berg equilibrium to estimate allele frequencies but this
imposes the strong hypothesis of no inbreeding. In-
deed, this is what is assumed by most of the methods
available (Lynch and Milligan 1994; Zhivotovsky

1999; Hill and Weir 2004). Simply taking the square
root of the frequency of null homozygotes leads to a
downward bias in the frequency of the null allele. The
method proposed by Lynch and Milligan (1994) for
RAPDs is applicable to AFLPs but, as indicated by
Zhivotovsky (1999), also leads to a downward bias.
Thus, this latter author proposed a Bayesian method
that seems to perform better when departures from
Hardy–Weinberg equilibrium are not strong. All these
methods estimate allele frequencies and use them to
subsequently calculate genetic diversity measures such
as the heterozygosity. Thus, Hill and Weir (2004)
propose a moment-based method that simultaneously
estimates allele frequencies and diversity measures,
but this approach produces estimates with a high
variance.

The only method that includes the estimation of the
inbreeding coefficient is that of Holsinger et al. (2002).
The inbreeding coefficient FIS can be defined as the
probability that two alleles in an individual are identical
by descent. At the population level, we can view FIS as the
probability of sampling an individual inbred for a
particular locus i. If we denote by A1 the dominant
allele, with frequency p, and by A2 the recessive allele,
with frequency q¼ 1� p, then the dominant phenotype
frequency g½A1� can be linked to the allele frequency p
and the inbreeding coefficient FIS by

g½A1� ¼ ð1� FISÞp2 1 FISp 1 ð1� FISÞ2pð1� pÞ:

We have a similar relation between the phenotype
frequency g½A2� and the allele frequency q and FIS:

g½A2� ¼ ð1� FISÞq2 1 FISq: ð1Þ

Note that this equation is exactly the same as
Equation 6 in Holsinger et al. (2002) with q ¼ (1 �
p), g½A2� ¼ gA2,ik, and FIS ¼ f. For simplicity we next focus
on this equation without loss of generality because q ¼
1 � p and g½A2� ¼ 1 � g½A1�. The problem here is that we
have only one equation with two unknown parameters
and there are an infinite number of different combina-
tions of q and FIS that can give the same observed
phenotype frequency g½A2�. This problem arises only in
the case of dominant markers. With codominant
markers it is possible to use a more direct approach
such as the one proposed by Gao et al. (2007).

Holsinger et al. (2002) overcame this problem by
considering multiple loci, all of which share the same
value of FIS. The distribution of g½A2� can be viewed as a
mixture of outbred and inbred components, q2 and q,
respectively, with respective mixture weights 1� FIS and
FIS. So the shape of the phenotype frequency distribu-
tion gives information about FIS. This phenotype distri-
bution can be easily simulated because, as Wright

(1931) showed, allele-frequency distributions can be
modeled using a beta distribution. Thus, it suffices to
choose the value of FIS and draw the allele frequency
from a beta distribution to get the corresponding
phenotype frequency from Equation 1. As an example
let us consider a population of N ¼ 25 individuals with
an immigration rate of m ¼ 0.01. This leads to an allele
frequency that follows a beta distribution with both
parameters equal to 1/(1 1 4Nm) ¼ 0.5. Figure 1 shows
the resulting ½A2� phenotype frequency distributions as
a function of the value of FIS calculated with Equation 1.
For a given value of FIS, the resulting distribution
(Figure 1b) is a mixture between the case FIS ¼ 0 (only
outbred individuals, Figure 1a) and the case FIS ¼ 1
(only inbred individuals, Figure 1c). Note that Figure 1c
is also the distribution of allele frequencies (beta(0.5,
0.5)) because in that case g½A2� ¼ q.

Using these principles, Holsinger et al. (2002)
implemented a novel MCMC inference method in the
software Hickory that can estimate both FIS and FST.
However, these authors noted that sometimes the
estimates of FIS obtained were implausible on the basis
of detailed knowledge of the biology of the studied
species ½see latest version of the manual of Hickory
(1.0.4)�. This problem is due to the biases that affect
the estimation of FIS from dominant markers, and in
particular AFLPs, mostly due to ascertainment in the
choice of markers. The objective of this article is to
thoroughly describe these problems and propose ways
of avoiding them. In doing so we further extend the
method to consider population-specific FIS and FST

parameters.
In what follows, we first present the Bayesian formu-

lation that we implement in our method and then
describe the biases that we identified in the original
version of Holsinger et al. (2002). We then propose a
general solution using an ABC approach and close by
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giving some suggestions on how to minimize estimation
biases when using AFLP data.

THE BAYESIAN MODEL

The model for genetic differentiation used is based
on ideas first introduced by Balding and Nichols

(1995) (see Foll and Gaggiotti 2006 for a more
detailed description of the different formulations lead-
ing to that model). Strictly speaking, the approach
applies to an island model (Wright 1931) but it has also
been used to describe a fission model (Falush et al.
2003). For the sake of simplicity we describe the details
of our approach using the terminology of this latter
model. We consider a collection of J populations that
evolved in isolation after splitting from an ancestral
population. The extent of differentiation between
population j and the ancestral population is measured
by FST

j and is the result of its demographic history. We
consider a set of I loci, each one with two possible alleles
A1 and A2, and we denote by pi the frequency of allele
A1 in the ancestral population at locus i. We denote by
p ¼ pif g the entire set of allele frequencies of the
ancestral population and by p̃ ¼ fpij

� �
the allele fre-

quencies in the descendant populations, wherefpij is the
current frequency of A1 at locus i for population j.
Under these assumptions, the allele frequencies at locus
i in population j follow a beta distribution with param-
eters ujpi and ujð1� piÞ,

fpij � betaðuj pi ; ujð1� piÞÞ; ð2Þ

where uj ¼ 1=F j
ST � 1.

In the context of dominant markers, the data N
consist of the sample counts of observed phenotypes
instead of allele counts. They are linked to allele
frequencies by Equation 1, which includes the inbreed-

ing coefficient F j
IS for each population j. Let n½A1�,ij and

n½A2�,ij be, respectively, the observed number of pheno-
types ½A1� and ½A2� at locus i for population j. The full
data set is presented as a matrix N ¼ n½A1�;ij ;n½A2�;ij

� �
and

the sample size at locus i for population j is nij¼ n½A1�,ij 1

n½A2�,ij. We can consider that the number of phenotypes
n½A1�,ij follows a binomial distribution with parameters
g½A1�,ij and nij, where g½A1�,ij is the unknown ½A1� pheno-
type frequency at locus i in population j:

n½A1�;ij � binomialðg½A1�;ij ;nijÞ: ð3Þ

And we showed in the previous section that we can
write

g½A1�;ij ¼fpij
2 1� F

j
IS

� �
1 F

j
IS
fpij 1 1� F

j
IS

� �
2fpij 1�fpij

� �
ð4Þ

g½A2�;ij ¼ 1� F
j
IS

� �
1�fpij

� �2
1 F

j
IS 1�fpij

� �
ð5Þ

¼ 1� g½A1�;ij : ð6Þ

Note that the binomial distribution is a particular case
of the multinomial distribution and the beta distribu-
tion a particular case of the Dirichlet distribution, both
used for models with more than two alleles. If we assume
independence we can multiply across loci and popula-
tions to obtain the likelihood function,

Lðp̃;FISÞ ¼
YI

i¼1

YJ

j¼1

Pðn½A1�;ij j g½A1�;ijÞ

and the full prior distribution of allele frequencies,

Figure 1.—(a–c) Distribution of the ½A2� phenotype frequency for three values of FIS. Allele frequencies were simulated from a
beta(a, a) with a¼ 1/(1 1 4Nm) ¼ 0.5. When FIS¼ 0 (a), the distribution corresponds to the Hardy–Weinberg proportions g½A2� ¼
q2; when FIS ¼ 1 (c), the phenotype distribution is the same as the allele distribution because g½A2� ¼ q. An intermediate mixture
situation (b) is presented with FIS ¼ 0.5. These numbers show how multiple dominant loci contain information about FIS in the
shape of the phenotype distribution.
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pðp̃ jp;FSTÞ ¼
YI

i¼1

YJ

j¼1

p fpij j pi ; F
j
ST

� �
; ð7Þ

where P n½A1�;ij j g½A1�;ij
� �

denotes the likelihood given by
Equation 3, p fpij j pi ; F

j
ST

� �
the prior distribution given by

Equation 2, FIS ¼ F
j
IS

� �
, and FST ¼ F

j
ST

� �
. Note that

g½A1�,ij and g½A2�,ij are not parameters of the model
because they can be calculated from Equations 4 and
6; we use them only to simplify notation.

Up to here, our model differs from that of Holsinger

et al. (2002) only in that we consider population-specific
F j

IS and F j
ST parameters. We now introduce an additional

modification by assuming a prior for the ancestral allele-
frequency distributions that differs from the uniform
used by them. More precisely, we use a beta(a, a) prior
for every pi, where a is a hyperparameter to estimate.
The justification for this is Wright’s (1931) observation
that allele-frequency distributions for biallelic loci can
be approached by such a distribution. With these as-
sumptions, the posterior distribution of the full model
represented by the directed acyclic graph (DAG) in
Figure 2 is given by

pðp; a;FST;FIS; p̃ jNÞ
}Lðp̃;FISÞpðp̃ jp;FSTÞpðFISÞpðp j aÞpðFSTÞpðaÞ: ð8Þ

We take noninformative priors for every
F

j
IS : F

j
IS�U 0; 1½ �, and every F

j
ST : F

j
ST�U 0; 1½ �. The pa-

rameter a is scaled between zero and infinity so we use a
lognormal distribution as prior: a � lognormal(0, 1).
Note that priors for p, FIS, and FST are respectively given
by the products of priors of pi, F j

IS, and F j
ST. This Bayesian

formulation was implemented using both a classical
MCMC approach and the ABC approach proposed by
Beaumont et al. (2002) and is described in detail below.

SOURCES OF BIAS

In what follows we describe two sources of bias that are
introduced when analyzing AFLP data. The first one is
due to the ‘‘noninformative’’ prior of the ancestral allele
frequencies used in the original method (Holsinger

et al. 2002), and the second one is due to the way
markers included in the analysis are chosen (ascertain-
ment bias). In what follows we explore the effects of
these biases by comparing results given by an approxi-
mate Bayesian computation (ABC) implementation
that does not correct for them with another one that
does take them into account (this latter one is described
in the solution: an abc approach).

Bias due to noninformative priors: Holsinger et al.
(2002) followed the common practice of using a flat
prior on all ancestral allele frequencies pi. In this model,
as we explained above, the information on F j

IS is
contained in the shape of the genotype frequency
distribution and so, even if a uniform prior is generally
called ‘‘uninformative,’’ imposing here a flat prior leads
to biased F

j
IS estimates if data sets (simulated or real) do

not match this prior. Even if no information is available
individually on frequencies, we have information on the
general ‘‘shape’’ that allele frequencies should have in
natural populations. As explained above, Wright

(1931) showed that they can be approached by a beta
distribution. For a single population (with no migra-
tion) and assuming low and symmetric mutation rates
we obtain a ‘‘U-shaped’’ beta distribution with both
parameters equal to 4Nm , 1, where N is the effective
size and m is the mutation rate. With migration, and
assuming that mutation is negligible, we obtain a
uniform distribution if the migration rate m ¼ 1/2N, a
U-shaped beta distribution if m , 1/2N, and a bell-
shaped beta otherwise. Thus, we use a beta prior for
each pi, i ¼ 1, � � � , I, with both parameters equal to a,
which has to be estimated: pi � beta(a, a). We suppose
that the distribution is symmetric, which is equivalent to
assuming symmetric mutation rates and no selection. A
more general prior would need a second parameter to
estimate, but only little information is available on this
hyperprior and F j

IS so using a second parameter would
lead to more uncertainty.

Figure 2.—DAG of the model given in Equation 8. The
square node denotes known quantity (i.e., data) and circles
represents parameters to be estimated. Lines between nodes
represent direct stochastic relationships within the model.
The variables within each node correspond to the different
model parameters discussed in the text. N is the genetic data,
FIS is the vector of inbreeding coefficients, p̃ and p are, re-
spectively, the actual and ancestral allele frequencies, FST is
the vector of the genetic differentiation coefficient for each
local population, and a is the hyperprior determining the
shape of the ancestral allele frequencies.
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We illustrate the improvement of this new hyperprior
by comparing the results of the full model introduced
here, where a is estimated, with those of a model that
uses the same uniform prior (a ¼ 1) as in Holsinger

et al. (2002). We consider a simple example with five
populations and 100 loci, FST ¼ 0.1, FIS ¼ 0.2, and 50
individuals in each population. We simulate 50 repli-
cates of three different data sets: in the first one
ancestral allele frequencies were simulated from
beta(0.5, 0.5) (a ¼ 0.5), in the second one from a
uniform distribution (a ¼ 1), and in the last one from a
beta(2, 2) (a ¼ 2) as in Holsinger et al. (2002). Results
are presented in Figure 3 and were obtained using the
software described below. We present results for only
one of the five populations considered in our scenario
because results for the remaining ones are very similar.
First we observe that all box plots for FIS where a is
estimated by our method are centered around the true
value of 0.2. In the case where allele frequencies are
simulated from beta(2, 2) (a¼ 2) and a uniform prior is
imposed, F j

IS’s are overestimated around 0.33. The case
where a¼ 0.5 seems to be less influenced by the uniform
prior since FIS is only weakly underestimated. As ex-
pected, when a ¼ 1 the results are identical whether we
estimate a or not because allele frequencies were
simulated from a beta(1, 1) distribution. Finally when
a is estimated, it appears that the accuracy of the
estimates decreases as the parameter a decreases; this
is discussed further below.

Ascertainment bias: Besides the bias due to the choice
of prior, there are also important biases due to intrinsic

properties of AFLP markers and to the way these
markers are chosen.

An important property of AFLP markers is that if all
individuals have the recessive ½A2� phenotype, no band
will be observed at all and we will not be able to identify
this as a locus. As a result, we can never observe a locus i
where all individuals have the ½A2� phenotype; this
corresponds to the case

PJ
j¼1 n½A1�;ij ¼ 0 (we call this a

hidden locus in the following). This is an intrinsic
problem of AFLP markers and cannot be avoided. The
second one is due to the way markers are chosen. In
general, markers are not picked up at random and
people prefer markers to be polymorphic with the
intuition that they will give more information on genetic
diversity. For example, Meudt and Clarke (2007, p. 106)
in a review on AFLP markers suggest that ‘‘a marker must
be polymorphic (i.e., show both plus and null alleles) to
be informative.’’ It should be noted that what is called a
fixed locus is a marker where all individuals have the
same dominant ½A1� phenotype and

PJ
j¼1 n½A2�;ij ¼ 0,

but this can reflect different genotypes (A1A1 or A1A2).
Excluding nonpolymorphic loci can dramatically
change the shape of the phenotype distribution. This
introduces a strong bias in the estimation of FIS because,
as discussed above and illustrated in Figure 1, the
information on FIS is contained in the shape of the
phenotype distribution.

There is yet another ascertainment bias that is in-
troduced when choosing the loci that will be used in the
analyses. To distinguish artifacts from ‘‘real’’ bands,
people often fix arbitrary minimum and maximum
numbers of individuals with the dominant phenotype
½A1� and choose only those loci for which the frequency
of A1 lies within this interval. For example, some people
exclude loci for which the frequency of the band is ,1%
or .99%. This procedure worsens the bias intrinsic to
AFLPs that we described above. To incorporate it into
the analysis, we introduce the notation hl (‘‘hidden
locus’’) to identify the lower threshold and fl (‘‘fixed
locus’’) to identify the upper threshold. Then, a locus i
where n½A1�;i ¼

PJ
j¼1 n½A1�;ij , hl is called a hidden locus

(almost no individuals have the ½A1� phenotype at locus
i), and a locus i where n½A2�;i ¼

PJ
j¼1 n½A2�;ij , fl is called a

fixed locus (almost all individuals have the ½A1� pheno-
type at locus i). Note that the intrinsic bias of AFLPs
described at the beginning of this section sets a
minimum lower bound of hl ¼ 1.

The first consequence of these biases is that the
observed phenotype frequencies are not actually drawn
from a binomial distribution as assumed by Equation 3.
Faced with this, previous studies on single-nucleotide
polymorphisms (SNPs) have modified the likelihood by
conditioning on observing frequencies only between
fixed bounds (Nicholson et al. 2002; Nielsen et al.
2004). Using the same approach, this time for pheno-
type frequencies rather than allele frequencies, we can
rewrite the likelihood as

Figure 3.—Box plot of the estimates of FIS based on 50 rep-
licates of three different data sets, depending on the value of
the hyperprior parameter a using the full model presented in
Figure 2 (a estimated) and the original model presented in
Holsinger et al. (2002) with a flat hyperprior on ancestral al-
lele frequencies (a fixed to 1). Data sets are based on five pop-
ulations and 100 loci, FST ¼ 0.1, and 50 individuals in each
population; FIS is fixed to 0.2. Boxes are constructed using
the lower quartile and the upper quartile so that 50% of
the values are in the boxes. The horizontal solid line in the
box gives the median. The vertical dashed lines are called
the ‘‘whiskers’’ and indicate the minimum and maximum val-
ues but only if they lie within 1.5 times the box height (the
interquartile range). Points (solid circles) outside the
whiskers are outlier values and are plotted.
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Lðp̃; FISÞ

¼
YI

i¼1

Pðn½A1�;i1 . . . n½A1�;iJ j g½A1�;i1 . . . g ½A1�;iJ ; n½A1�;i $ hl; n½A2�;i $ flÞ

¼
YI

i¼1

Pðn½A1�;i1 . . . n½A1�;iJ j g½A1�;i1 . . . g½A1�;iJ Þ
Pðn½A1�;i $ hl ; n½A2�;i $ fl j g½A1�;i1 . . . g½A1�;iJ Þ

¼
YI

i¼1

QJ
j¼1 P ðn½A1�;ij j g½A1�;ij Þ

1�Pðn½A1�;i , hl j g½A1�;i1 . . . g½A1�;iJ Þ � Pðn½A2�;i , fl j g½A1�;i1 . . . g½A1�;iJ Þ
:

ð9Þ

The numerator is then the same product of binomial
distributions as in the original likelihood function and
the denominator can be calculated by considering all
the possible cases, for example, for hidden loci (we have
similar equations for fixed loci):

Pðn½A1�;i , hl j g½A1�;i1 . . . g½A1�;iJ Þ ¼
Xhl�1

k¼0

Pðn½A1�;i ¼ kÞ

with

Pðn½A1�;i ¼ kÞ ¼
X

k1...kJ $0

k11���1kJ¼k

YJ

j¼1

Pðn½A1�;ij ¼ kj j g½A1�;ijÞ:

And then P n½A1�;ij ¼ kj j g½A1�;ij
� �

is just a binomial
density. This equation is a generalization of the trun-
cated binomial likelihood used by Nielsen et al. (2004)
and could be used in the context of a maximum-
likelihood approach such as the one used by them for
SNPs. However, as is shown in the appendix (G.
Guillot, personal communication), it is not possible
to use it in a hierarchical Bayesian approach. More
specifically, if we follow Nicholson et al. (2002) and
simply use this expression as our likelihood function in
Equation 8, the ascertainment process is not correctly
modeled. This is most conveniently explained by con-
sidering the following algorithm for generating a sample
that conforms to the model above.

Algorithm 1:
1. Simulate a from lognormal(0, 1).
2. For each population j in 1 � � J,

a. Simulate F
j
IS from U 0; 1½ �.

b. Simulate F j
ST from U 0; 1½ � and calculate uj ¼

1=F j
ST � 1.

3. For each locus i in 1 � � I,
a. Simulate allele frequency pi in the ancestral

population from beta(a, a).
b. For each population j in 1 � � J,

i. Simulate allele frequencyfpij from beta(ujpi,
uj(1 � pi)).

ii. Calculate phenotype frequency

g½A1�;ij ¼fpij
2 1� F

j
IS

� �
1 F

j
IS
fpij 1 1� F

j
IS

� �
2fpij 1�fpij

� �
:

c. For each population j in 1 � � J,
i. Simulate phenotype counts n½A1�,ij from

binomial(n½A1�,ij, g½A1�,ij).

d. If
PJ

j¼1 n½A1�;ij , hl or if
PJ

j¼1 n½A2�;ij , fl, go back
to 3c.

This algorithm implies a rather peculiar model for
discovering loci: if a locus does not conform to the
discovery criteria it will be discarded, and the next locus
will have exactly the same parametric population frequen-
cies as the one discarded. This process will continue
until a locus is accepted. Intuitively this is not a reason-
able process. Rather, once a locus is discarded the next
locus should be drawn with completely independent
frequencies in all populations. Thus, at step 3d algo-
rithm 1 should move to step 3a. Unfortunately, we have
not been able to calculate the analytical expression
(presented in the appendix) for this biologically more
realistic ascertainment model, but demonstrate that this
is possible using likelihood-free inference (Beaumont

et al. 2002; Marjoram et al. 2003).
Two main problems arise from the use of the

ascertainment model described by algorithm 1. First
there is a violation of the assumption of statistical
independence among the allele-frequency distributions
of the different populations implicit in Equation 7, and,
second, the ascertainment process modifies the distri-
bution of ancestral allele frequencies.

As an illustration of the first effect, for a given
ancestral allele frequency, we can simulate a large
number of replicates of allele frequencies and number
of bands in actual populations from the exact model
and then estimate the correlation coefficient between
these sets of frequencies before and after having applied
the ascertainment process described above with hl ¼ 1
and fl¼ 1. We do this for FIS¼ 0.1 and FIS¼ 0.9 and two
populations with 30 individuals and FST ¼ 0.2 in each
population. The effect of varying the number of
populations and sample size is investigated later (see
Sensitivity study). The correlation coefficients are plotted
in Figure 4 against the value of the ancestral allele
frequency. For unbiased data sets, the correlation is
around zero because allele frequencies are indepen-
dent in the two populations. But as expected, low and
high ancestral allele frequencies produce a high corre-
lation for biased data sets. For example, when the
ancestral frequency is low (respectively high), if the
allele frequency is close to zero (resp. one) in the first
population, it is unlikely to be also close to zero (resp.
one) in the second one because the locus was not
hidden (resp. fixed).

The second effect, the modification of the distribu-
tion of ancestral allele frequencies, arises because when
we remove hidden and fixed loci, we remove at the same
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time the ancestral allele frequencies that produced
them. For example, as hl increases (resp. fl), the
probability of observing low (resp. high) ancestral allele
frequencies decreases because they are more likely to
produce hidden (resp. fixed) loci. As an illustration,
with simulated data sets, we can draw the distribution of
ancestral allele frequencies after having applied the
ascertainment process because we know their true
values. For this, we first simulate an unbiased large
number of loci with ancestral allele frequencies drawn
from a beta distribution with a ¼ 0.5. Then for each
locus, we simulate the allele frequencies in five pop-
ulations with FST ¼ 0.2 from the beta distribution of
Equation 2. Finally for each locus in each population we
draw the corresponding number of bands observed for
30 individuals and FIS ¼ 0.2 from the binomial distribu-
tion of Equation 3. By this way, we know for each locus
the true value of allele frequencies in each population
and in the ancestral population. After that, we remove
all hidden and fixed loci from this data set using the
ascertainment process described above with hl ¼ 3 and
fl ¼ 3 to obtain a biased data set. This allows us to plot
the distribution of ancestral allele frequencies in the
biased data set because we know the true values of each
ancestral allele frequency in this simulated data set (we

do not need to estimate them). We plot these distribu-
tions for both unbiased and biased data sets in Figure 5.
We can see that as expected, the loci with low and high
frequencies are less likely to appear in the biased data
set than in the original one.

Ignoring these effects, and continuing to use the
modified likelihood function, following the approach
of Nicholson et al. (2002), leads to strong biases in
estimation. We illustrate the influence of the bias using a
typical example that may be problematic: we consider
five populations, a sample size of 30 individuals per
population, and a high differentiation coefficient FST¼
0.25 in each one. Ancestral allele frequencies are
simulated from a U-shaped beta distribution with
parameter a ¼ 0.7. We simulate two series of data sets:
the first one with FIS¼ 0.8 and the second one with FIS¼
0.2 in each population. To introduce the ascertainment
bias, we imposed the constraint that at each locus there
should be at least hl and at most fl individuals with the
band, and we generated data sets with 100 loci. In each
of the two series we simulated 50 replicates of different
data sets with hl and fl varying independently from 0 to 3
(3 corresponds to 2% of the total number of 150
individuals). The results obtained for each of the five
populations are very similar so we present the results for

Figure 4.—Plot of the correlation co-
efficient between allele frequencies of
two populations for unbiased (dashed
lines) and biased (with hl ¼ 1 and
fl ¼ 1, solid lines) data sets against the
ancestral allele frequency. We simulated
30 individuals and FST ¼ 0.2 in each
population for FIS ¼ 0.1 (a) and FIS ¼
0.9 (b).

Figure 5.—Simulated distributions
of ancestral allele frequencies for an un-
biased data set (a) and a biased data set
(b). The unbiased data were generated
from the exact model with a ¼ 0.5, five
populations, 30 individuals, FIS ¼ 0.2,
and FST ¼ 0.2 in each population. Then
we applied the ascertainment process to
this data set using hl ¼ 3 and fl ¼ 3 to
obtain the biased data set.
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only one of them in Figure 6. When no bias is
introduced by the exclusion of loci from the analysis
(i.e., hl ¼ 0 and fl ¼ 0), the box plots are centered
around the true values of 0.8 and 0.2. On the other
hand, when hl is positive, FIS is underestimated and
when fl is positive, FIS is overestimated. As expected, the
bias is maximal for FIS¼ 0.2 and hl . 0 because there is a
very large number of fixed loci (see Figure 1). The bias is
strong even for hl ¼ 1 or fl ¼ 1; however, increasing
these values further has little effect on the estimates.

THE SOLUTION: AN ABC APPROACH

The solution we propose to overcome the two biases
described above is to use the ABC algorithm of
Beaumont et al. (2002) instead of the classic MCMC
scheme. The most valuable advantage of the ABC for
our problem is that it does not require a closed form for
the likelihood and internal priors (this allows us to
include the ascertainment bias in the model). In
addition, the ABC algorithm has the advantage of being
highly parallelizable. This is an important consideration
because of the emergence of multicore processors and
the availability of calculation clusters. The ease with
which the model is simulated and the fact that the ABC
algorithm is highly parallelizable make the method
proposed here very fast compared to the MCMC version
and allow a very detailed sensitivity study.

The ABC algorithm is a rejection sampler: it generates
data sets from given parameter values and accepts them
when the simulated data set, D9, is ‘‘close’’ enough to the
real data set, D. In the ABC framework, large data sets
are reduced to a vector of summary statistics and close
means that the Euclidian distance k�k between these
statistics is below a given threshold value. If we assume

that the real data set D follows a model M with
parameters f and use p(f) to denote the prior density,
the algorithm is given as follows.

Algorithm 2:
1. Choose a set of summary statistics S that will repre-

sent the data, and calculate s, the value of S for D.
2. Generate f from priors p(�).
3. Simulate D9 from M with parameters f and calculate

s9, the value of S for D9.
4. Accept f if ks � s9k, d and return to 2.
5. Stop when a sufficient number of data sets have been

accepted.

The value of d used in step 4 is pilot tuned in a shorter
run using a target acceptance rate chosen by the user.
For example, an acceptance rate of 0.01 means that the
1% of simulated s9 that are closest to s are accepted in
step 4. Our approach also implements the local linear
regression method proposed by Beaumont et al. (2002)
that allows us to obtain accurate estimates using higher
threshold values, d and, therefore, decreases computa-
tion time. In our case, simulating from the model M is
very easy, including simulating the biases discussed
above. Note that the values of hl and fl need to be
known. The complete algorithm for steps 2 and 3 in
algorithm 2 is the one presented above (algorithm 1),
with step 3d modified to move back to step 3a instead of
step 3c to include the realistic ascertainment model we
described.

In the ABC algorithm, the summary statistics are of
primary importance and their choice determines di-
rectly the accuracy of the final results. Here we use
different statistics to estimate F j

IS and F j
ST coefficients as

proposed by Hamilton et al. (2005). Since the in-
formation about F j

IS is contained in the shape of the
phenotype frequency distribution of population j (see

Figure 6.—Comparison of the estimates of FIS

based on 50 replicates of different data sets with
the ascertainment bias hl and fl varying indepen-
dently from 0 to 3. Estimates are made under the
assumption that there is no ascertainment bias
(supposing that hl ¼ 0 and fl ¼ 0). (a) FIS is fixed
to 0.8; (b) FIS is fixed to 0.2. Simulated data sets
consist of five populations and 100 loci, FST ¼
0.25, and a sample size of 30 individuals per pop-
ulation.
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Introduction), we use the n-quantiles of these distribu-
tions as summary statistics for each population. They are
representative values of the shape of a distribution: n
points are taken at regular intervals from the cumulative
distribution function. For example, the five 6-quantiles
of the distributions presented in Figure 1 are, from left
to right, (0.005, 0.06, 0.25, 0.57, 0.87), (0.04, 0.16, 0.38,
0.66, 0.90), and (0.07, 0.25, 0.50, 0.75, 0.93). These
vectors reflect well that the first two distributions are
skewed to the left (but the effect is less pronounced in
the second case) and that the third distribution is
symmetrical. In the context of the fission model (resp.
island model), the F

j
ST measures how divergent each

local population is from the ancestral population (resp.
from the metapopulation as a whole). For this reason we
calculate the global phenotype frequency at each locus
i as g½A1�;i ¼

PJ
j¼1 n½A1�;ij=

PJ
j¼1 nij and we define the ob-

served phenotype differentiation for population j at
locus i as

Dij ¼
g½A1�;ij � g½A1�;i

g½A1�;i
:

Then for each population j the summary statistics
used are the n-quantiles of the distribution of Dij among
loci. If g½A1�,i ¼ 0 we set Dij ¼ 0 because all populations
will also have g½A1�,ij ¼ 0.

Sensitivity study: The method has been implemented
in a software written in C11. We provide a command
line version for both Linux and Microsoft Windows
operating systems and a graphical user interface for the
Windows version. The ABC algorithm is well adapted for
parallel computing: with an acceptance rate of 0.005
and a sample size of 5000, the algorithm will simulate
1,000,000 independent data sets in steps 2 and 3. They
can be generated independently on different com-

puters or processors. We implemented the ABC algo-
rithm on a computer cluster composed of 72 Itanium
processors at 1.6 Ghz. As an example, it takes ,15 sec for
48 processors to simulate 1,000,000 samples for a data
set composed of five populations of 50 individuals and
100 loci. Multicore processors are now available on
desktop computers and, for example, on a 2.66-Ghz
quad core processor the same simulation would take
,2 min. For each data set we present results based on 50
replicates of the same scenario.

We estimate parameters using 5000 independent
samples from the ABC algorithm. We use the mode as
a point estimate for the posterior distributions and
estimate it using a Gaussian density kernel. Multiparam-
eter least-squares fitting for the local linear regression is
performed using the GNU Scientific Library (Galassi

et al. 2006).
ABC algorithm parameters: The algorithm we introduce

requires the user to set the acceptance rate for the
rejection algorithm. In general, smaller acceptance rates
give more accurate results but also increase computation
time because the user is forced to generate a larger
number of data sets to obtain enough of them to estimate
the parameters (Beaumont et al. 2002). Thus, it is
important to investigate the influence of this parameter
on the estimates. We simulated 50 synthetic data sets of
five populations with 50 individuals per population, the
same values of FIS¼ 0.5 and FST¼ 0.15, and 200 loci. We
estimated FIS and FST parameters for each one of them
using acceptance rates varying between 0.001 and 0.1.
The results are illustrated in Figure 7, a and b, which
shows the relative mean square error (RMSE) of the
estimates of FIS and FST for one of the populations against
the acceptance rate. We calculated the RMSE using
1=50

P50
n¼1ðffn � fÞ2=f2, where f is either FIS ¼ 0.5 or

FST ¼ 0.15. As expected, a lower acceptance rate give

Figure 7.—Plot of RMSE for es-
timates of FIS and FST against the
two parameters of the ABC algo-
rithm: the acceptance rate and
the number of quantiles used.
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lower RMSEs but the effect of this parameter is not very
strong: multiplying the acceptance rate by 100 (0.001–
0.1, which makes the calculation 100 time faster)
increases the RMSE by only 16% for FIS (from 0.061 to
0.071) and doubles the one of FST (0.03–0.06).

We also investigated the effect of the number of
quantiles used for the summary statistics because it is
known that in the ABC framework, using too many
summary statistics can lead to a loss of accuracy
(Hamilton et al. 2005). The problem lies in the fact
that not all summary statistics provide information
about the parameter being estimated. Since the dis-
tance used in the rejection step is based on all statistics,
including many noninformative ones can mask the
signal provided by informative statistics. Thus most of
the variance of the distance measure used in the
rejection step will consist of random noise introduced
by the noninformative statistics. This in turn will in-
crease the RMSE. Results are presented in Figure 7, c
and d. The influence of the number of quantiles on
RMSE is also small. Interestingly, for FIS there is an
optimal number of 15 quantiles while for FST RMSE
decreases first very rapidly and then very slowly; not
much is gained by using values .25. The different
behavior is due to the fact that in the case of FIS the
information is contained in the shape of the phenotype
frequency spectrum (see Figure 1 and the solution:
an abc approach section) while in the case of FST it is
contained in the shape of the distribution of phenotypic
differentiation between local and ancestral populations
(see the solution: an abc approach section). For the
former, the distribution is bimodal while for the latter
the distribution is unimodal (see supplemental mate-
rial). Thus the number of quantiles that suffice to
characterize these two distributions should certainly
be different. To take into account this difference in

behavior we always use 15 quantiles for the estimation of
FIS and 25 for the estimation of FST. Additionally, the
threshold value d was always tuned so as to obtain a
target acceptance rate of 0.005.

Ascertainment bias: To show that the ABC algorithm
can efficiently solve the problem posed by ascertain-
ment bias, we use the same data sets used to plot Figure
6. The bias is corrected fairly well in all the scenarios we
explored (Figure 8). The scenario hl ¼ 0, fl ¼ 0
represents the hypothetically unbiased case while hl ¼
1, fl ¼ 0 represents the case where all observed markers
are included in the analysis. All other scenarios repre-
sent cases where only polymorphic loci are considered;
the only difference among them is the criteria used to
decide if a locus is polymorphic or not. If FIS is high
(Figure 8a), our correction minimizes the loss of
accuracy for the range of threshold values used for the
minimum and maximum number of individuals with
the dominant phenotype. However, if FIS is low (Figure
8b), removing fixed loci for the dominant allele leads to
a moderate loss of efficiency in our correction. Clearly,
removing fixed loci in this latter case leads to a loss of
information for FIS estimation as expected from Figure
1. Note that the only intrinsic limitation of AFLP
markers is hl $ 1; thus, this bias can be avoided simply
by including all the fixed loci in the analyses.

Size of the data set used: We simulated many different
data sets to investigate which kind of data set can give
the best results with AFLPs. The starting point is a
scenario with 100 loci, five populations, and 50 individ-
uals per population. Then we modified each one of
these parameters at a time and calculated the RMSE on
the basis of 50 replicates of each data set. We fixed FST¼
0.25 and FIS¼ 0.5 in each population, and chose a¼ 0.7.
We also included ascertainment bias with hl¼ 1 and fl¼
0. We present the RMSEs for FIS and FST for data sets

Figure 8.—Comparison of the estimates of FIS

based on the same simulated data sets presented
in Figure 6. There are 50 replicates of different
data sets with the ascertainment bias hl and fl
varying independently from 0 to 3. Estimates
are made taking into account the ascertainment
bias in the ABC algorithm presented in the text.
(a) FIS is fixed to 0.8; (b) FIS is fixed to 0.2. Data
sets are based on five populations and 100 loci,
FST ¼ 0.25, and 30 individuals per population.
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containing 50–500 loci in Table 1. As expected, in-
creasing the number of loci greatly reduces the RMSE.
More precisely, the RMSE is reduced by a factor of 4.2
for FIS and by a factor of 11.6 for FST.

Increasing the number of individuals per population
is much less helpful than increasing the number of loci.
There is no significant improvement for FIS with 30, 50,
or 100 individuals per population, and for FST the RMSE
is reduced by only 30% (0.0073–0.0051; data not
shown). Note that the fact that we have used equal
sample sizes for all populations does not affect these
results because we estimate population-specific FST’s
and FIS’s. Therefore, the sample size for population j
should primarily influence the estimate for this pop-
ulation and not that of other populations. In terms of
the number of populations considered, results for FIS

are similar, and the RMSE does not change much when
the number of populations changes. However, the
RMSE of FST is divided by 3 (0.0049–0.0016) when the
number of populations is increased from 5 to 50 (data
not shown). This can be easily explained by the fact that
FST estimates are based on the estimation of the ances-
tral population (resp. metapopulation) allele frequen-
cies, which are better estimated with a large number of
populations.

Influence of biased FIS estimations on FST coefficients: The
biases we described above do not have a direct effect on
FST estimates but they can influence them indirectly if
they lead to highly biased estimates of FIS simply because
then allele frequency distributions will also be biased.

To show this effect, we simulated 50 replicates of two
data sets: one with FIS¼ 0.2 and the other with FIS ¼ 0.8
in each population. For both scenarios the simulated
data sets considered 200 loci, 10 populations, and 50
individuals per population, with a ¼ 0.7 and FST ¼ 0.15
in each population. For both scenarios we used the new
ABC algorithm presented here where FIS is estimated
and an MCMC algorithm where instead of estimating FIS

we used a fixed value. We first fixed the value of FIS to the
true value (0.2 or 0.8) and then to the worst possible
false value (1 for the case of FIS¼ 0.2 and 0 for the case of
FIS¼ 0.8). Results are presented in Figure 9. It is clear that
both the ABC algorithm and the MCMC algorithm with
the correct value of FIS give correct estimates of FST

centered around the true value (0.15). However, the es-
timates of FST are clearly biased when using biased esti-
mates of FIS. FST is overestimated when FIS is overestimated
and FST is underestimated when FIS is underestimated.
Finally it is important to note that the ABC algorithm gives
wider posterior density intervals for FST than the MCMC
algorithm, but the latter can be used only if one knows the
true value of FIS.

DISCUSSION

In this article we identify two sources of bias that affect
the estimation of F-statistics when using dominant
markers and particularly AFLPs. More specifically, we
show that when estimating inbreeding coefficients
using dominant markers, (i) the use of MCMC techni-
ques cannot take into account the ascertainment pro-
cess, (ii) flat priors for allele-frequency distributions
cannot be considered as noninformative, and (iii)
monomorphic loci should be included in the analyses
whenever this is possible. To avoid these biases, we
presented a new statistical method based on the ABC
algorithm. Additionally, our method estimates popula-
tion-specific FIS and FST coefficients and incorporates
parameters to model ascertainment bias.

Our approach takes into account the fact that loci for
which a band is not observed constitute hidden loci; it

TABLE 1

The effect of the number of loci studied on the quality of
the estimates: RMSE of the estimates of FIS and FST using

data sets with different numbers of loci

No. of loci

50 100 200 500

FIS 0.137 0.102 0.052 0.033
FST 0.0116 0.0044 0.0035 0.0010

Figure 9.—Comparison of the estimates of FST

based on 50 replicates of two data sets: one with
FIS¼ 0.2 and the other with FIS¼ 0.8 in each pop-
ulation. We estimated FST with the ABC algorithm
that estimates FIS and with the MCMC algorithm
with a fixed value of FIS: either the true value or a
false value.
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suffices to set hl ¼ 1 (at least one individual has the
band). Also, our study allows us to provide guidance to
researchers developing AFLP markers. The common
practice of excluding loci for which the frequency of
the band is very low or very high should be avoided
whenever possible. Sometimes it is necessary to impose
stringent threshold values for technical reasons. For
example, a locus will be included only if at least five
individuals have the band (hl ¼ 5) and at least five do
not have it (fl ¼ 5). In these cases, our method will still
be capable of giving unbiased estimates (cf. Figure 8)
but only if one knows the values of hl and fl that were
used by the people developing AFLPs. Thus, it is very
important to choose the conditions under which a given
locus will be included in the analyses and then apply
them in a consistent manner. These requirements may
represent a problem when analyzing old data sets for
which these values are not known. Thus, one desirable
extension of our method would be to incorporate the
uncertainty in hl and fl within the simulation step of the
ABC algorithm. However, we note that doing this would
lead to an increase in the RMSE of the estimations.

This article highlights the usefulness of the ABC
algorithm for modeling ascertainment bias. We have
demonstrated that a previous approach for model-
ing demographic history in structured populations
(Nicholson et al. 2002) used formulas for taking into
account ascertainment that are demonstrably problem-
atic and do not conform to the underlying biological
processes. Obtaining closed-form solutions for the
biologically realistic ascertainment model can be very
difficult. Using the ABC approach overcomes this
problem and we demonstrate that this approach is
particularly well adapted to incorporate the complex
ascertainment biases observed for markers such as
AFLPs and SNPs. It should be noted that in the case of
Nicholson et al. (2002) the problem we have un-
covered is unlikely to have a strong effect because they
are dealing with codominant markers for which it is
possible to easily estimate allele frequencies.

An important challenge posed by the use of ABC
methods is finding sufficient summary statistics for
the estimation of model parameters. In fact, no such
statistics are usually available for population genetics
applications but, encouragingly, near-sufficient statistics
provide a reasonable approximation (Tavaré et al.
1997). In general, studies that use the ABC approach
consider summary statistics such as the mean or the
mode of a given parameter (e.g., FST, mean linkage
disequilibrium between pairs of loci, average number of
differences between pairs of DNA sequences, etc.).
Here, we propose to use the quantiles of the summary
statistic distributions across loci, because they provide
much more information than the mean or the mode.

Many methods have been proposed to estimate the
frequency of the null allele and the genetic diversity
when using AFLP data (see Bonin et al. 2007 for a

review) but all of them except that of Holsinger et al.
(2002) assume Hardy–Weinberg equilibrium. It has
been argued that doing this for AFLP markers when
no information on FIS is available is not a problem when
comparing FST values across species or populations
(Bonin et al. 2007). However, this is only the case if
the level of inbreeding is the same for all species/
populations. Otherwise, the magnitude of the bias will
be different among them.

It should be noted that the model of Holsinger et al.
(2002), as in the present article, implicitly assumes that
the probability of observing a heterozygote at one locus
in an individual, given FIS and the allele frequencies, is
independent of observing a heterozygote at another
locus in the same individual. This will be true only if
departures from Hardy–Weinberg are due to cryptic
population structure (often termed the ‘‘Wahlund
effect’’) because, under a model of inbreeding, loci
within an individual are not independent in their
probability of heterozygosity. Indeed, it is possible to
use this information to distinguish between the two
potential causes of departure from Hardy–Weinberg
(Overall and Nichols 2001).

Among all the existing methods dedicated to domi-
nant markers, the model of Holsinger et al. (2002) is
the only one that simultaneously estimates all parame-
ters but, as we have shown, it is affected by the two
sources of bias we have uncovered in this study. Our
method, therefore, represents an important improve-
ment over all existing ones and we expect that it will be of
great help for the many researchers who are interested
in using AFLP markers to study population structure.

Most of the computations presented in this article were performed
on the cluster HealthPhy (CIMENT, Grenoble, France). We thank
Gilles Guillot for very useful comments and providing us the
derivation shown in the appendix. The comments of a second reviewer
also helped to improve the final version of the manuscript. The
software implementing the method is available at http://www-leca.ujf-
grenoble.fr/logiciels.htm both for Unix and for Windows platforms.
This work was supported by the Fond National de la Science (grant
ACI-IMPBio-2004-42-PGDA). M.F. holds a Ph.D. studentship from the
Ministère de la Recherche.
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APPENDIX

The correct algorithm for modeling ascertainment
bias (where step 3d in text algorithm 1 sends us back
to step 3a) can be described using a simplified nota-
tion. Let f ¼ ða;FIS;FSTÞ and ci ¼ ðpi ; epiÞ, with epi ¼fpi1; � � � ;fpiJ

n o
. We also denote by Ai the set of all possible

values for the vector ni ¼ n½A1�;i1; � � � ;n½A1�;iJ
� �

that
match the ascertainment condition (i.e., n½A1�,i , hl
and n½A2�,i , fl).

Algorithm A:
1. Sample f from f(f).
2. For each locus i, while ni;Ai ,

a. Sample ci from g(ci j f).
b. Sample ni from hðni jFIS; epiÞ.

Algorithm A implies a full joint distribution for
locus i, written as

pðf;ci ;niÞ ¼ f ðfÞ 1

Ki
g ðci jfÞhðni jFIS; epiÞIni2Ai

;

where Ini2Ai
¼ 1 whenever the phenotypes match the

ascertainment condition ni 2 Ai and 0 otherwise, and with

K1;i ¼
ð

ci ;ni

g ðci jfÞhðni jFIS; p̃iÞIni2Ai dcidni:

Then the marginal distribution of (f, ci) is

pðf;ciÞ ¼
ð

ni

pðf;ci ;niÞdni

¼ f ðfÞ 1

Ki
g ðci jfÞ

ð
ni

hðni jFIS; p̃iÞIni2Ai
dni:

This equation should be used as the full prior for (f,
ci); the problem is that we have not been able to
calculate the integral K1,i, which in turn precludes us
from using a MCMC approach.

The likelihood can indeed be calculated as

pðni jf;ciÞ ¼
pðf;ci ;niÞ

pðf;ciÞ

¼ hðni jFIS; epiÞIni2AiÐ
ni

hðni jFIS; epiÞIni2Ai
dni

;

which corresponds to the likelihood given in Equation 9
in the text.
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