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Abstract
Prediction of protein-RNA interactions at the atomic level of detail is crucial for our ability to
understand and interfere with processes such as gene expression and regulation. Here, we investigate
protein binding pockets that accommodate extruded nucleotides not involved in RNA base pairing.
We observed that most of the protein interacting nucleotides are part of a consecutive fragment of
at least two nucleotides, whose rings have significant interactions with the protein. Many of these
share the same protein binding cavity and more than 30% of such pairs are π-stacked. Since these
local geometries can not be inferred from the nucleotide identities, we present a novel framework
for their prediction from the properties of protein binding sites. First, we present a classification of
known RNA nucleotide and dinucleotide protein binding sites and identify the common types of
shared 3D physico-chemical binding patterns. These are recognized by a new classification
methodology which is based on spatial multiple alignment. The shared patterns reveal novel
similarities between dinucleotide binding sites of proteins with different overall sequences, folds and
functions. Given a protein structure, we use these patterns for the prediction of its RNA dinucleotides
binding sites. Based on the binding modes of these nucleotides, we further predict an RNA fragment
that interacts with those protein binding sites. With these knowledge-based predictions we construct
an RNA fragment that can have a previously unknown sequence and structure. In addition, we provide
a drug design application in which the database of all known small molecule binding sites is searched
for regions similar to nucleotide and dinucleotide binding patterns, suggesting new fragments and
scaffolds that can target them.
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1 Introduction
Protein-RNA interactions are crucial for many cellular processes, such as gene expression and
regulation as well as protein synthesis. Understanding and predicting such interactions at the
atomic level is crucial for our ability to interfere with malfunctioning processes in disease.
Consequently, analysis of the protein-RNA interactions and RNA binding sites have been a
field of intensive research. The pioneering works of Jones et al.1 and Nadassy et al2 have
provided important insights into the physico-chemical and geometrical nature as well as the
amino acid composition of these regions. The specific atomic interactions formed between
nucleotides and amino acids have been analyzed and compared in several important
contributions 3–8. By analyzing the amino acid composition in RNA binding sites, several
successful methods for prediction of RNA binding sites were developed 9–13.

However, most of these prediction methods do not distinguish between two main interaction
types which were thoroughly studied by Draper14: (1) interactions with the backbone of
double-stranded RNA molecules; (2) interactions of single-stranded RNA bases that are
accommodated in the protein binding pockets. Due to the differences between the two types
their prediction should be addressed separately. As noted in a recent comprehensive review of
Auweter et al15, while the first type of interactions occur through positively charged protein
surface patches, the second type of contacts with single-stranded nucleotides, often involve
hydrophobic patches. The contacts are often with the unpaired nucleic acid bases, while the
direct contacts with the phosphate moieties of the backbone, which point towards the bulk
solution can be rare15. Here, we focus on the prediction of protein interactions formed with
the single-stranded nucleotide bases. Sequences of such nucleotides, which are not involved
in local base pairs and are extruded from the surrounding double-stranded helix, also termed
extruded helical single strands, were recently described as special motifs in SCOR (Structural
Classification of RNA) and were proposed to be mediators in RNA-RNA and RNA-protein
interactions16, 17.

Several works have classified the protein-RNA interactions based on the sequences and/or
overall structures of the corresponding protein18–20 or RNA molecules17, 21, 22. Sykes and
Levitt have classified all doublets of spatially close nucleotides23. However, these do not
always capture the similarity in the local regions which are responsible for protein-RNA
binding. Analysis of these regions is important due to several reasons. First, proteins of the
same family can form different interactions with RNA nucleotides 24–26. Second, RNA
molecules can be flexible and can explore different conformations that are “fixed” by the
protein whose binding site is more rigid and quenches this motion27, 28. This observation is
also supported by a recent study of Ellis and Jones29 who evaluated the conformational changes
in known RNA binding proteins and observed that the flexibility in the protein binding sites
is not significant and should allow the structural prediction of these interaction regions.
Previous works that analyzed the nucleotides’ physico-chemical binding patterns focused on
single nucleotides1, 5, 30, 31. Moreover, to the best of our knowledge, the results of their
studies have never been applied to atomic level prediction of protein-RNA interactions and
RNA structures.

Here, we investigate the protein binding pockets that accommodate extruded nucleotides not
involved in RNA base pairing. We observed that many of these protein cavities are common
to pairs of consecutive nucleotides that are often π-stacked with each other. Consequently, we
suggest that consideration of binding patterns of pairs of consecutive RNA nucleotides may
be essential for the correct prediction of protein-RNA interactions. We observed that the local
nucleotide geometries can not be inferred from the nucleotide identities which led us to develop
a novel framework for their prediction through the recognition of known protein binding
patterns.
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Specifically, we present a classification of nucleotide and dinucleotide binding sites, which are
described by a set of physico-chemical properties that may be created by amino acids with
different identities and spatial location of backbone atoms. Toward this goal, we have
developed a new classification algorithm which performs multiple structural alignments and
validates the spatial superimposition of the cluster members. The created clusters describe the
common types of 3D consensus binding patterns that are used for several applications. First,
by searching for these patterns on the surface of a complete protein, we predict its potential
dinucleotide binding sites at the atomic level of detail. Second, using the binding modes of the
nucleotides bound to the 3D patterns, we further predict a protein interacting RNA fragment.
Finally, we suggest that searching the database of drug binding sites for patterns similar to
nucleotide and dinucleotide binding sites can assist in the prediction of ligands and ligand
fragments that can be used to interfere with protein-RNA interactions.

2 Results
Our goal is to recognize and predict the main types of interactions between protein binding
sites and single-stranded RNA bases. Specifically, we focus on the protein binding pockets
that accommodate extruded16 nucleotides not involved in RNA base pairing (see Figure 1).
We define a nucleotide binding site by the protein Connolly solvent accessible surface
area32 within 2Å from the surface of the RNA nucleotide ring. Nucleotides with a protein
binding site area larger than 3Å2 are considered as protein interacting. Given a pair of extruded
consecutive nucleotides that interact with the protein, a dinucleotide binding site is defined by
the pair of the corresponding nucleotide binding sites. The physico-chemical properties of the
binding sites are represented by points in 3D space termed pseudocenters, extracted from the
protein amino acids according to Schmitt et al33. Each pseudocenter represents a group of
atoms according to the interactions in which it may participate: hydrogen-bond donor,
hydrogen-bond acceptor, mixed donor/acceptor, hydrophobic aliphatic and aromatic (π)
contacts. We consider only nucleotide and dinucleotide binding sites with more than 3 surface
exposed pseudocenters. Figure 1 presents examples of extruded nucleotide pairs and their
protein dinucleotide binding sites.

The analysis below is performed on two datasets of protein-RNA complexes as well as a dataset
of all RNA structures (see Table 1). The non-redundant datasets were constructed in the
following way. Two RNA chains were considered redundant if they share more than 60%
sequence identity35, 36. Two protein chains were considered redundant if they have more than
25% sequences identity34 or share a similar sub domain. The sub domain similarity was
detected using the Pfam database, which contains a manually curated annotation of domains
whose boundaries are also consistent with the SCOP20 structural data50. For each pair of
redundant complexes we retained a single structure with the highest X-ray resolution. We used
two options to define redundancy at the level of protein-RNA complexes. The first dataset,
termed AND-set was constructed by removing those complexes that are redundant in both
protein and RNA chains. It contained 154 complexes, with 288 non-redundant pairs of
interacting protein-RNA chains. The second dataset, termed OR-set, was constructed by
removing all the complexes that are redundant in at least one, either protein or RNA chain. It
contained 92 structures with 95 interacting chains (see Table 1). The difference between the
two datasets of protein-RNA complexes is in considering the structures that are similar in one
interacting chain but are different in the other. For example, there are many examples of similar
proteins that bind different RNA molecules. On the one hand, investigation of such interactions
may provide insights into the binding specificity and can reveal the variability of the different
protein binding platforms (see Figure 4 and Section 2.1). On the other hand, such cases may
introduce bias into the overall statistics. Since each dataset has its limitations, validating the
consistency of the results on both datasets, ensures the robustness of our methods and the
correctness of the observations.
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We analyzed the protein-RNA interactions in these datasets and observed that 80% of protein
interacting extruded nucleotides have at least one RNA strand neighbor that interacts with the
protein via its ring as well (see Supplementary Material). Moreover, many of them share the
same binding cavity and 33–34% of these consecutive extruded nucleotides are π-stacked with
each other (see Table 1 and Methods). When trying to estimate the sequence specificity of π-
stacking, the only dinucleotide pair which was observed to have some tendency for π-stacking
in all the datasets, was the AC pair (see Supplementary Material). This suggests that the local
nucleotide geometries can not be predicted from the RNA sequence alone and nucleotide
identities are not sufficient for the atomic level prediction of nucleotide interactions and spatial
conformations. Consequently, we propose to utilize the protein binding patterns for the
prediction of RNA nucleotide orientations and protein-RNA complexes. As illustrated in
Figure 2 we classify the nucleotide and dinucleotide binding sites and use the common 3D
patterns for the prediction of protein-RNA interactions.

2.1 Classification of nucleotide and dinucleotide binding sites
We classify all the nucleotide and dinucleotide binding sites and create a non-redundant set of
the 3D binding patterns, which describe their main types of interactions. We consider all the
dinucleotide binding sites that accommodate pairs of consecutive extruded nucleotides. In
addition, binding sites of single nucleotides that are not a part of such pairs are considered as
single nucleotide binding sites.

We present a novel classification methodology which validates the cluster quality by multiple
spatial binding site alignment. Specifically, we have developed a center-star classification
algorithm, which creates clusters by iteratively adding binding sites in the order of their
decreasing similarity (based on pairwise spatial alignments) and validates each new addition
by the multiple spatial alignment among all current cluster members. If the multiple similarity,
measured by the score of the common physico-chemical binding pattern, is lower than a
predefined threshold (e.g. ≥ 30% of one of the binding sites) the new member is ignored and
not added to the cluster. The main advantage of this approach is that we validate the spatial
superimposition of the cluster members and assess the quality of the shared physico-chemical
binding pattern.

We applied this methodology to two datasets of protein-RNA complexes and classified all the
nucleotide and dinucleotide binding sites. As expected, many of the clusters obtained in the
two classifications were very similar and the clusters in the OR-set were a subset of those in
the AND-set. Figure 3(a) presents a histogram of the dinucleotide cluster sizes. As can be seen
many of the binding sites were unique and were left as singleton clusters. The number of
dinucleotide clusters with more than one member was 53 and 20 in the AND-set and OR-set
respectively. Forty four percent of the significant clusters of the AND-set involve proteins with
different sequences (less than 25% sequence identity and different Pfam annotations). The full
details of all the clusters are provided in the Supplementary Material. Due to the low number
of significant clusters of single nucleotide binding sites, which was 21 and 4 in the AND-set
and OR-set classifications respectively, here we focus on the analysis of dinucleotide binding
patterns. We distinguish between two types of clusters: (1) patterns formed by dinucleotide
binding sites of proteins with similar structural folds; (2) patterns formed by dinucleotide
binding sites of proteins with different structures. We start this section with a description of
the clusters that involve members of the RNA-binding domain family which exhibit all of these
types of similarities and illustrate the differences between our two datasets. Then, we present
examples of additional similarities revealed by our classifications.

2.1.1 The RNA-binding domains—The RNA recognition motif (RRM), also known as
RNA-binding domain (RBD) or ribonucleoprotein domain (RNP) is considered to be one of
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the most abundant protein domains24. In spite of its overall structural simplicity this domain
can recognize a wide variety of RNAs and can perform various biological functions. Our AND-
set contained 9 complexes with RRMs of the following 6 types20, 38: (1) splicesomal U1A
proteins (PDBs: 1urn:AP, 1m5o:CB, 1sj3:PR, 2nz4:AP); (2) splicing factor U2B” (PDB:
1a9n:BQ); (3) sex lethal protein, Sxl (PDB: 1b7f:AP); (4) HuD protein (PDB: 1fxl:AP) and
(5) poly(A)-binding protein (PDB: 1cvj:AM); (6) Pre-mRNA splicing factor U2AF65 (PDB:
2g4b:AB). The clusters of the AND-set reveal the similarities and the differences of the various
nucleotide binding sites which allow these proteins to achieve a range of required biological
functions. As can be seen in Table 2, the created clusters divide our proteins into three main
groups: (1) U1A and U2B” proteins that share more than 70% sequence identity and 5 similar
dinucleotide binding sites; (2) HuD and Sxl, which share 50% sequence identity and 4
dinucleotide binding sites; (3) U2AF65 and poly(A) binding proteins, which are clear outliers.
Alternatively, the OR-set contained only 2 complexes with U1A (1urn) and HuD (1fxl)
proteins. These proteins have 19% sequence identity and the similarity of their dinucleotide
binding sites is not high enough to be clustered together. Notably, our classifications are
consistent with the available manual observations and comparisons which were previously
performed for some of the complexes24, 25.

RRMs and proteins of other folds: In addition to the classification of the binding patterns
within the family of RNA-binding proteins, the clusters detailed in Table 2 reveal novel
similarities of RRMs to other structurally, functionally and evolutionary unrelated proteins.
Below we describe several examples of such similarities, the first of which involves a well
studied Tyr-Phe aromatic binding platform of RRMs.

RRMs are known to contain two highly conserved aromatic residues, Phe56 in RNP1 and Tyr13
in RNP2 (U1A numbering), which stack with the RNA bases39. Our clusters reveal the
similarities and the differences of the spatial physico-chemical environments of these
platforms. Specifically, while the platforms of the U1A and U2B” proteins were recognized
to be similar, the binding pattern of the HuD protein was recognized to be different (see clusters
94, 23 in Table 2). Moreover, our AND-set contained three complexes of Rho termination
factors which are different in their structure and sequence from RRMs and do not contain the
required RNP sequence motifs. Notably, two of the structures were recognized to have a pattern
similar to that of U1A and U2B” proteins, while the third structure was recognized to have an
aromatic platform similar to the HuD protein. As can be seen in Figure 4, although the Rho
termination factors are structurally different from RRMs, our method revealed an aromatic
binding platform which binds dinucleotides in a manner very similar to RRMs. Furthermore,
although the conformations of the aromatic residues are similar in all the complexes, the
physico-chemical properties around them can be classified into two types of 3D patterns. These
patterns, which are detailed in the Supplementary Material, are independent of the similarity
of the overall sequences of these proteins. Most of these observations are lost in our OR-set
which contained only a single Rho termination complex which was classified together with a
single complex of U1A.

Figure 4 illustrates two additional examples of similarities of dinucleotide binding sites of
RRMs to those of cysteinyl-tRNA synthetase and NSP3 homodimer (clusters 124 and 168
respectively). The first example shows the similarity between the dinucleotide binding sites of
π-stacked A{C|G} pairs of U1A and U2B” to the binding site of a π-stacked anticodon pair
G33–C34 of cysteinyl-tRNA synthetase (PDB: 1u0b). The second example, reveals the
similarity between the poly(A)-binding protein and the NSP3 homodimer (PDB: 1knz). In both
examples, in spite of the structural differences between the proteins, the binding sites have
similar surfaces and shapes and bind the π-stacked nucleotide pairs in exactly the same
orientation. A very similar situation is observed in the rest of the clusters of this type, which
are detailed in Table 2.
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2.1.2 Similar structures, similar dinucleotide binding sites—Similar binding
patterns formed by structurally similar proteins are expected and are not surprising. This type
of similarity is usually well illustrated in the biological literature, which allows us to verify the
correctness of the recognized physico-chemical patterns. In addition, the correct
superimposition of the overall structures by the transformations calculated for the dinucleotide
binding sites allows us to validate the correctness of the alignment. Table 3 details all the
recognized clusters of this type. Below we describe several clusters that provide some insights
into the RNA sequence specificity and reveal the repetitive nature of certain binding patterns.

Nucleotide sequence specificity: MS2 RNA hairpin coat-protein complexes, have been
widely used as a model system for studying RNA sequence specificity40, 41. Our AND-set
contained 6 complexes of RNA bacteriophage capsid proteins, most of which were determined
as part of these studies. These studies have revealed that the main driving force for the complex
formation is the π-stacking interaction between the -5 base and the conserved tyrosine side
chain. Our clusters support this finding. First, they reveal that the only extruded dinucleotides
which have a sufficient contact with the protein are nucleotide bases -4 and -541 (see Table 3
cluster 215). Second, they recognize the physico-chemical binding pattern common to all
binding sites of this dinucleotide pair (see Figure 5(a)). They clearly show the conservation of
the critical tyrosine side chain (Tyr85, PDB: 2izn), which can tolerate any nucleotide sequence
mutations (U|G|A|C)42. In addition, the specific pattern recognized for the binding site of
adenosine, can explain the specificity of this position to this nucleotide type42.

Repetitive Protein Patterns: Our datasets contained a structure of a Pumilio protein (PDB:
1m8x), that regulates mRNA expression43. Interestingly, our classification revealed similar
patterns of interactions that appear in three different regions of this protein (see clusters 81–
82 in Table 3). This is consistent with the previous, crystallographic studies of this protein
which manually analyzed the interactions of the regions, termed repeats 2–4, 4–6 and 6–8. The
contribution of our method to these previous observations is the recognition of conservation
of the spatial physico-chemical binding patterns of these regions that bind RNA nucleotides
in a similar manner (see Figure 5(b) and Supplementary Materials).

K homology (KH) motifs: The K homology (KH) is a widespread RNA-binding sequence
motif, which spans about 70 residues with a characteristic pattern of an invariant Gly-X-X-Gly
segment44. Our datasets contained 3 structures of proteins with KH-motifs: (1) Nova-1 (PDB:
2anrA); (2) Poly(rC)-binding protein 2 (PDB: 2py9A); (3) Neuro-oncological ventral antigen
2, Nova-2 (PDB: 1ec6A). Since the overall sequence identity among these three proteins is
less than 20%, they appeared in both AND-set and OR-set and formed exactly the same clusters
in the two classifications. These clusters, which are detailed in Table 4, recognized the
similarity between 3 consecutive dinucleotide binding sites. They reveal the remarkable
conservation of the binding patterns of the four corresponding consecutive nucleotides
UCAC (2anr,1ec6) and CCCU (2py9). Figure 6 shows the surfaces of these binding sites which
have almost identical physico-chemical properties and shapes. The common pattern, detailed
in Supplementary Materials, is consistent with the previous manual analysis of the separate
crystal structures19, 44. However, no previous studies have compared the spatial arrangement
of the physico-chemical properties up to the level of surface points that they create.

2.1.3 Different structures, similar dinucleotide binding sites—As illustrated above,
similarity of the sequence patterns can lead to the similarity of the dinucleotide binding sites.
Since our methodology does not assume the similarity of the protein sequences or structures,
many of our clusters, detailed in Table 4, reveal similar dinucleotide binding sites of proteins
that do not share any known motifs and are not evolutionarily related. Figure 6 presents two
examples of two consecutive dinucleotide binding sites of Hut operon regulatory proteins
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(HutP, PDBs: 1wpu, 2gzt). The first binding site, formed with the pairs G3-A4 (1wpu) and
U10-A11 (2gzt) was aligned to a binding site of the Ribosomal protein S8 (2j02). The second
binding site of the pairs A4-G5 (1wpu) and A11-G12 (2gzt), was aligned to the UC binding
site of the anticodon loop of Glutamyl-tRNA synthetase (1n78). As can be seen, in spite of the
structural differences of the aligned proteins the surfaces of the binding sites are very similar
and they bind the RNA nucleotides in very similar conformations.

To summarize, similarities of this type are very interesting, unexpected and can not be
recognized by other methods. However, since many of the aligned proteins are functionally
unrelated we can not assess the biological meaning of these similarities. Currently, we can only
speculate that certain binding patterns that are favorable for RNA recognition are reused in
different protein regions. Consequently, the main contribution of this type of clusters is in their
application for the prediction of RNA binding sites which we show below.

2.2 Prediction of RNA binding sites and structure
Given a target protein structure, we aim to recognize the binding sites of the extruded
nucleotides and to construct the RNA fragments that can bind to them, predicting the structure
of the RNA strand and of the protein-RNA complex. Figure 2 illustrates the flow of our
classification and prediction processes. Specifically, given the clusters of binding sites
described in the previous section, we define the 3D consensus binding patterns by the physico-
chemical properties shared by all cluster members (see Methods). Given a target protein
structure not used in the classification we search its surface for the presence of any of these
3D consensus patterns, predicting its dinucleotide binding sites. Using the nucleotide
orientations observed in the consensus patterns allows us to predict the structure of RNA
strands and protein-RNA complexes.

2.2.1 Prediction of RNA binding sites—Here, we use the created clusters to predict RNA
binding sites that accommodate unpaired extruded nucleotides. Specifically, given a target
protein structure not used for the classification, we search its surface for regions similar to the
created 3D consensus binding patterns. These regions are predicted to serve as binding sites.
Since the created 3D patterns provide a non-redundant description of the main types of
interaction, the prediction procedure is extremely efficient and takes only several minutes on
a standard PC. It must be noted, that currently, we do not aim to predict whether a protein can
bind RNA, rather given an unbound RNA binding protein our goal is to predict its binding sites
and their modes of interaction. Due to a low number of single nucleotide clusters, we evaluate
our predictions of dinucleotide binding sites. We perform leave-one-out tests on all the
structures that participated in the above described clusters with more than one member. For
each left out complex, we repeat the classification procedure without its structure, and use the
obtained clusters to define a new set of 3D consensus binding patterns. Then, we search the
surface of the left out protein for a presence of the constructed 3D patterns. All of these are
searched by a single algorithm (RnaPred, see Methods) which recognizes the top ranking
patterns that are similar to some protein regions. For each dinucleotide binding site of each left
out protein we check whether it was correctly predicted by this procedure.

Since most of the proteins have several dinucleotide binding sites, the output of the RnaPred
method describes a set of different protein regions that resemble some of the constructed 3D
patterns. Many of these are correct predictions of different dinucleotide binding sites of the
same protein. The ranking of these solutions is not straightforward45. For example, if a certain
protein has 10 dinucleotide binding sites, our goal is to have all of them listed as different
solutions in the output of our method. In our current implementation, binding sites aligned to
larger patterns will usually be the top ranking and smaller alignments will receive a lower rank.
Consequently, to calculate the rate of the correct predictions we need to consider a certain
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number of top ranking solutions. Figure 3(b) presents our prediction success rates as the
function of the number of considered top ranking solutions. Only binding sites that are correctly
predicted within the given number of top ranking solutions are considered to be a success (see
Methods). The percentage of binding sites that were successfully predicted in all the leave-
one-out tests is the success rate of our methodology. As can be seen, when we consider 100
top ranking solutions, the success rates achieved with the AND-set and OR-set classifications
are 91% and 86% respectively. These rates are significant since the top one hundred solutions
represent approximately 0.01% percent of all potential alignments. However, the manual
investigation of such a large number of solutions is not feasible. On the other hand, since some
proteins have 10 dinucleotide binding sites, we can not consider less than 10 solution.
Consequently, we suggest that 20 top ranking solutions provide a reasonable cut o_ to measure
the prediction quality. Using this threshold, the success rates of the predictions obtained with
our AND-set and OR-set classifications are 75% and 70% respectively. Thirty two percent of
the correct predictions made with the AND-set classification were based on proteins with
different sequences (less than 25% identity and no common Pfam domain). Notice, that our
results, in addition to pointing to the specific amino acids involved in the interactions, predict
the spatial orientation of the RNA nucleotides in the protein binding site. Consequently, we
expect that the combination of such predictions will allow the reconstruction of protein-RNA
complexes with an unknown structure. Below, we detail our preliminary attempts in achieving
this goal.

2.2.2 Prediction of RNA strands structure—Given a protein structure, we would like
to be able to predict which RNA fragments it can bind and what is the structure of the resulting
protein-RNA complex. This is a very ambitious goal and currently we only show some initial
steps in achieving it.

Existing tools are unable to provide a good solution to this problem for several reasons. First,
we aim to solve this problem without any assumption or knowledge of the structure of the RNA
molecule. Due to the limited number of existing RNA structures, this is an important
requirement. Unfortunately, it prevents using standard methods like docking for its solution.
Currently, the most applicable approach is the superimposition of the given protein upon the
protein-RNA complex of its closest homologue. This provides the prediction of the complex
between the input protein and the RNA molecule bound to the homologue. However, this
approach has several limitations. First, similar overall sequences and folds do not always lead
to similar nucleotide binding modes. Second, the superimposition of proteins done by their
backbone atoms often misaligns the RNA molecules and the specific nucleotide binding sites
of interest. Our methodology improves these points in the following ways. First, we do not
require the existence of a homologous protein-RNA complex. Second, by looking for the
similarity of the physico-chemical patterns in the binding sites, we focus on the protein
information which indeed leads to the similarity in binding. Moreover, we superimpose the
proteins according to the transformations calculated for their binding sites which usually
optimize the similarity of the RNA nucleotide orientations.

Here, we extend the RnaPred algorithm to the following scheme. Given a protein structure, we
first recognize all regions that are similar to the above described 3D consensus patterns. Then,
we superimpose the matched 3D patterns upon our target structure and consider the RNA
dinucleotides that are bound to these patterns. We consider all the solutions and check whether
the nucleotides superimposed on neighboring regions can be combined to form a continuous
RNA fragment. The longest RNA fragment with the highest similarity score of the alignment
between the protein binding sites and the selected 3D patterns is the top ranking solution. Since
the constructed RNA fragment is comprised of dinucleotides taken from 3D consensus patterns
based on binding sites of totally different proteins, it can be different from any RNA fragment
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of known sequence and structure. This allows us to make unique predictions that can not be
achieved by other methods.

To evaluate the performance of this method, we have performed leave-one-out tests similar to
those described in the previous section. As before, each time we have left out one protein
structure, re-clustered and created a new set of 3D consensus patterns that do not assume any
knowledge of the left out structure. Then, this structure was searched for the highest scoring
set of regions similar to the constructed 3D consensus patterns that allow us to create the longest
continuous RNA fragment. The average length of the predicted fragment was 5 and the average
running time on a standard PC was 3.5 minutes (AMD Opteron 242, 1593MHz). When we
calculated the RMSD between the predicted RNA fragments and the real fragments bound to
the left out structures, in 23% of the cases it was less than 5Å, and in 13% of the cases it was
even less than 1 Å. In most of the remaining cases, although we have reconstructed some sub-
fragments, we have added false positive predictions which pointed to regions that are not in
interaction in the given complex.

Figure 7 presents two examples which illustrate our success and limitations. In the first
example, we reconstruct part of the RNA hairpin which interacts with the Nova-1 KH domain
(PDB: 2anr). The protein-RNA interaction of this complex involves 5 consecutive RNA
nucleotides, 4 of which were described above in the clusters 41–42, and 164 and were presented
in Figure 6(a). Since these binding sites were recognized to contain patterns similar to other
proteins, we had enough information for the prediction. Specifically, when the structure of
Nova-1 was left out, both the AND-set and the OR-set contained three clusters formed by the
binding sites of Nova-2 and Poly(rC)-binding protein 2. The 3D patterns that represent these
clusters were correctly mapped to the structure of Nova-1 and the nucleotides bound to these
patterns allowed predicting the structures of the interacting RNA fragment consisting of 4
nucleotides. The fifth nucleotide was not predicted because its binding pattern was unique to
Nova-1 and had no similar binding sites.

Figure 7(b) presents another example in which we reconstruct part of the HutP antitermination
complex (PDB: 1wpu). The total length of the RNA strand in this complex is 7 nucleotides
and it interacts with the protein through 4 dinucleotide binding sites. When we applied our
prediction method and searched the surface of the Hut protein with the patterns of the AND-
set classification, we have correctly predicted 3 of these dinucleotide binding sites. Only one
binding site was predicted based on a pattern from another Hut protein (PDB: 2gzt) and two
other were predicted based on patterns from Aspartyl-tRNA synthetases (PDBs: 1il2, 1c0a).
Interestingly, the RNA nucleotides bound to these patterns provided a better backbone
connectivity than those bound to the above described Glutamyl-tRNA synthetase and
Ribosomal protein S8. In spite of the fact that the prediction was based on totally unrelated
proteins, the patterns were correctly mapped to the query protein and the structure of the RNA
fragment was correctly predicted with an overall RMSD of 0.9Å from the native. However,
the structure of two 5′UU nucleotides was not predicted by our method. The first 5′U was
ignored due to some missing atoms in its structure. Since the second U nucleotide has no
interaction with the protein, its binding site and ring orientation could not be predicted by our
method (see Figure 7(a) top). Interestingly, this nucleotide is also more flexible than the rest
and its prediction is more difficult. Since our OR-dataset did not contain the additional structure
of the Hut protein as well as the structures of both Aspartyl-tRNA synthetases, the prediction
based on this classification consisted of only one correctly predicted dinucleotide pair with an
RMSD 1.9Å from the native. This was predicted based on the pattern from Glutamyl-tRNA
synthetase, which could not be connected to the pattern from the Ribosomal protein S8 due to
backbone connectivity constraints violation. This example shows that due to the sensitivity of
our method to local nucleotide flexibilities, we need a variety of structures to obtain a diversity
of 3D patterns required for the prediction.
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2.3 Drug design applications
There are two main types of drugs that can be developed to prevent the formation of protein-
RNA interactions. The first type are the most common small molecule drugs, which are
bioavailable when administered orally. The second type are drugs based on short strands of
RNA oligonucleotides. These ligands, known as aptamers are selected for their ability to bind
proteins with both high affinity and high specificity46. Below we present drug discovery
applications and show how our methodology can contribute to the development of both type
of drugs.

2.3.1 Discovery of small molecule drugs—We have observed that the average surface
area of protein binding sites that accommodate dinucleotide pairs is 145 Å 2 if the pairs are π-
stacked and 210 Å 2 otherwise. Since optimal drug molecules were proposed to have a surface
area smaller than 140 Å 2 due to bioavailability reasons47, the dinucleotide binding sites have
a high potential to accommodate drugs and serve as drug targets. To provide suggestions of
potential ligands and ligand fragments that can target dinucleotide binding sites, we have
searched the constructed 3D consensus patterns against a database of all known small molecule
binding sites (see Methods). The top ranking solutions of this search application are the binding
sites with properties similar to dinucleotide binding sites. The drug leads and the substrates
that are bound to them provide ideas for small molecules that can bind to the dinucleotide
binding sites. Figure 8(a) presents one example obtained in these searches. In this solution the
binding pattern defined by cluster 81 in Table 3 was aligned to the binding site of Thrombin
bound to an inhibitor (PDB: 1nzq, rank 9). The 3D binding pattern was represented by the
pseudocenters from the G14–U15 binding site on the repeats 2–3 of the Pumilio protein (PDB:
1m8x). As can be seen, the inhibitor molecule has a volume similar to the GU nucleotide pair.
Moreover, both the inhibitor and the G nucleotide form π-stacking interactions with the Tyr
side-chain (Tyr-60, 1nzq and Tyr-1123, 1m8x), which has the same spatial arrangement in both
binding sites.

2.3.2 Aptamer design and optimization—Given a protein structure, our RnaPred method
makes knowledged-based predictions and can suggest previously unknown RNA sequences
and structures that can bind to it. Consequently, it may be used to suggest and optimize the
RNA sequences in the aptamer design process. For example, one way to improve the binding
affinity and/or selectivity of aptamers is to optimize the single extruded nucleotides, which are
unpaired and are not part of a protein interacting dinucleotide pair. To obtain ideas for the
chemical groups and scaffolds that can be used for such modification, we have searched the
above described database of drug-like binding sites for those that are similar to the nucleotide
binding sites. Figure 8(b) presents one example of the similarity between the 3D patten of an
adenine nucleotide (A37) binding site of Cysteinyl-tRNA synthetase (PDB: 1u0b) to the
binding site of Human macrophage elastase (MMP-12, PDB: 1ros) bound to its inhibitor. Since
the binding regions of two proteins have similar physico-chemical properties and secondary
structure elements (helix and 2 strands), the inhibitors developed for the MMP-12 can provide
useful ideas for the chemical groups that can be used to substitute and optimize the adenine
nucleotide which binds to Cysteinyl-tRNA synthetase. The predictions by a computational
method provide a set of suggestions, which require further validation and optimization.

3 Summary and conclusions
Motivated by the important role of extruded non-paired RNA nucleotides in protein-RNA
recognition, we have investigated their local geometries and interactions. We have observed
that in most cases of protein-nucleotide interactions, there are several consecutive RNA
nucleotides that are not involved in RNA base pairing. Since the nucleotide identities are not
indicative of their spatial geometry, we consider the protein pockets that accommodate them.
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We observed that many of the consecutive nucleotide pairs share the same binding cavity and
interact with each other. Consequently, we suggest that the protein binding patterns of such
nucleotide pairs provide a more correct representation of their interactions.

We proposed a novel algorithmic framework which starts with the classification of all known
nucleotide and dinucleotide binding sites according to their spatial physico-chemical patterns.
These clusters, define a set of 3D consensus patterns, which provide a non-redundant
representation of the main types of extruded nucleotide interactions. We show that these
patterns can be efficiently used for the prediction of binding sites and RNA fragments.
Obviously, the proposed framework is just a starting point and each of its stages can be further
enhanced and improved. The classification methodology, which has the advantage of the spatial
validation of the created patterns, shares the disadvantages of the regular center star clustering
and is sensitive to the selected star centers and the order of traversal. The created 3D consensus
patterns, which were shown to be extremely useful, do not contain the information about the
variation of the spatial patterns of the cluster members, whose description is not
straightforward. Selection of the shared pattern coordinates from a single structure could
further influence the results. Currently, we do not predict the interactions formed with the RNA
backbone, which are often represented by smaller and more flexible physico-chemical binding
patterns. Nonetheless, the results of this paper indicate that it is possible to predict the
interactions and the structure of fragments of single-stranded RNA bases. We intend to use the
methodology presented here as the first part in a two stage scheme for the prediction of complete
protein-interacting RNA strands. The results of this paper allow the prediction of binding sites
and interactions formed with the nucleotide bases. Modeling the short RNA sub-fragments
between the predicted regions is expected to allow the challenging reconstruction of complete
RNA fragments.

In addition to being an important milestone towards achieving the ultimate RNA-protein
structure prediction goal, our results provided several important insights. First, the presented
classification reveals novel and surprising similarities between dinucleotide binding sites
formed by proteins with different overall sequences, folds and functions. Our results suggest
that certain physico-chemical patterns may be reused during the evolution in different protein
regions that are important for RNA recognition. Second, we have presented a framework which
allows a successful prediction of dinucleotide binding sites as well as recognition of ligands
and ligand fragments that can target them. We hope that this will be useful in the design of
aptamer and small molecule drugs that interfere with protein-RNA interactions.

4 Methods
Dataset construction and analysis

The structures of RNA and protein-RNA complexes were retrieved from the NDB
database48, December 2007, and contained 1031 and 322 structures respectively. The dataset
of protein-RNA complexes contained only structures with resolution 3Å and better, while the
dataset of all RNA structures contained NMR structures as well. Sequence redundancy was
removed using the ClustalW software49. Only the standard, unmodified, RNA nucleotides
A,G,C,U, I were considered. Their local base pairing was recognized using the 3DNA software
51. We define a pair of consecutive extruded nucleotides as π-stacking, if the corresponding
nucleotides’ planes are either parallel or perpendicular and have an angle of 180 ± 20° or 90
± 20° respectively. In addition, we require that the distance between nucleotide ring centroids
is less than 7Å52. In order to prevent the influence of missing strands which are part of a double
helix, sequences of more than 5 consecutive π-stacked nucleotides were not considered in the
statistics.
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Alignment of nucleotide and dinucleotide binding sites
As described above, we consider the protein binding sites represented by their surfaces and
surface exposed pseudocenters. Figure 9(a), provides an example of pseudocenters extracted
from the protein amino acids. Each pseudocenter is assigned such attributes as charge, normal
vectors of the surface direction, ring plane orientation as well as surface patch size and
curvature53, 54. Since it was shown that single nucleotides can bind in alternative modes even
to the same protein binding site55, the alignment of their binding sites was performed, using
our previously developed, MultiBind method53. This method allows the recognition of the
maximal physico-chemical pattern common to the input set of binding sites, without using any
information regarding the corresponding binding partners.

The dinucleotide binding sites extracted from protein-RNA complexes contain additional
information about the spatial orientation of its two nucleotides, which we aim to predict.
Consequently, it is essential that the alignment method requires the similarity of the nucleotide
geometries in the aligned binding sites. To fulfil this requirement, we have developed a new
method, RnaBind, which aligns between dinucleotide binding sites and utilizes the nucleotide
orientation for the construction of 3D transformations that superimpose the input binding sites.
Specifically, each dinucleotide pair is represented by the two centroids of the corresponding
nucleotide rings and the phosphate atom between them (see Figure 9(a)). Then we apply the
Least-Squares Fitting method56 to calculate the transformation that provides the best alignment
of such representative triplets extracted from the input binding sites. Once the binding sites are
superimposed in 3D space we apply maximum weight match in a weighted bipartite
graph57 to determine the 1:1 correspondences between the matched pseudocenters of the input
binding sites. The score of the alignment is the sum of similarity scores of the matched
pseudocenters. These are measured by a scoring function that compares properties like spatial
proximity (after the superimposition), charge and surface curvature. In addition, we score the
overlap of the corresponding superimposed physico-chemical surfaces (surface points within
the distance of 1Å) as well as the similarity of the corresponding aromatic ring plane
orientations53, 54.

Multiple center star clustering
The standard clustering methods such as UPGMA or k-means 58 provide a general
methodology to group any elements based on their pair-wise relations. Obviously, some
complex elements that may be similar between pairs, may not be similar as a whole group. For
the clustering of dinucleotide binding sites we are interested in computing clusters of binding
sites that are similar as a whole group, i.e. finding a group of binding sites that share a significant
3D consensus pattern. Therefore, we developed the following new clustering procedure.

Similar to most existing methods, we start with performing all-against all pairwise alignments
between objects of interest, which in our case are nucleotide and dinucleotide binding sites.
Then, we use the calculated pairwise scores to create a graph in which the binding sites are the
nodes. Edges are created only between nodes, which have more than 30% similarity. This is
measured relative to the score of a binding site aligned to itself. Then, for each node, we
consider the “star” that is created by its edges and determine the star weight by the sum of
scores of these edges. We sort all the nodes which represent our binding sites, in the decreasing
order of the weight of the stars that they create. In addition, we sort the edges of each star in
the decreasing order of their score. Then, we traverse all the stars and all their edges in this
order and check which members of a star can be classified together in the same cluster. Here,
we impose a strict requirement of the similarity of the spatial patterns of the cluster members.
This is measured by the score of the multiple spatial alignment which is performed between
the binding sites of each star. Specifically, we start with a node that creates the highest scoring
star and go over its edges in the decreasing order of their score. We start with the highest scoring
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edge and perform the alignment between its two nodes. Then, we add the second edge and
perform a multiple alignment between three nodes: the star center and the two nodes of its two
highest scoring edges. If the score of the core of this multiple alignment is above 30% of the
score of each node, this triplet is defined as a cluster. Otherwise, the last node that was just
added in this iteration is removed from the cluster. It will be considered later according to its
other edges. As to the current star, we proceed going over the rest of its edges and add to the
cluster only those nodes whose multiple alignment with the current cluster members receives
a high enough score (more than 30% similarity in our example). Once we have tested all the
nodes of a given star, we proceed to the next star and in the same manner try to create a new
cluster according to its edges. Figure 9(a) illustrates the process of creation of three clusters.
The procedure terminates when all the nodes have been assigned to a cluster. Each cluster
defines a consensus 3D pattern, which are the 3D points shared by all of its members. The
coordinates that describe this pattern are taken from the node that has originated the cluster.

Prediction of dinucleotide binding sites
We have developed a method, RnaPred, which searches a complete protein for regions similar
to the created 3D consensus patterns. The input protein and the patterns are represented by the
set of their corresponding pseudocenter points (see Section 2). The RnaPred algorithm consists
of the following 3 stages: (1) Generation of a set of candidate transformations; (2) Defining
the 1:1 correspondence between the matched points and scoring; (3) Clustering the solutions
of each 3D pattern as well as of different patterns mapped to the same protein region. Finally,
we describe the selection of top ranking solutions and the evaluation of prediction success.

Superimposition—The generation of all candidate transformations is done with the
Geometric Hashing method59 which consists of two stages, preprocessing and recognition.
At the preprocessing, each triplet of pseudocenters from the complete molecule is considered
as a local reference frame. Then, the coordinates of the other pseudocenters, calculated with
respect to this coordinate system, are stored in a Geometric Hash Table. The key to the hash
table consists of the point coordinates and physico-chemical property. In the recognition stage
the same process is repeated for each 3D consensus pattern. For each pair of reference frames,
one from a 3D pattern and one from the query protein, we count the number of matched points.
For each pattern, we consider the reference frames with a significant number of matched points
and construct a set of candidate transformations that can superimpose the given pattern upon
the entire query protein. This procedure has several advantages for our goal. First, all the
information of the complete molecule is stored only once for all the 3D patterns. Second, we
avoid the processing of points that cannot be matched under any transformation. This is
especially important for our application since the complete molecule is significantly larger than
the 3D consensus patterns.

Correspondence and Scoring—The 1:1 correspondence and the scoring are implemented
in the same manner as in the RnaBind method. We ignore solutions that are too small and
insignificant and align less than 30% of a 3D consensus pattern (i.e. the score of the alignment
is less than 30% of the score of the pattern aligned to itself).

Clustering—First, for each 3D pattern we cluster similar solutions that superimpose it on
similar spatial locations. This is achieved by applying efficient RMSD clustering, described
by Rarey et al60, with a default threshold of 3Å. Since our goal is to retain only a small set of
top ranking solutions, we need to cluster the solutions that align different 3D consensus patterns
to similar protein regions. We define two mappings of different 3D consensus patterns to be
similar if their corresponding match lists (defined by the 1:1 correspondence) are based on at
least 70% of identical pseudocenters of the complete query molecule. When similar alignments
are detected, we retain only a single solution with the highest score.
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Top ranking solutions and the evaluation of success—The list of top ranking
solutions contains a set of different proteins regions that are recognized to resemble some of
the constructed 3D patterns. The solutions are ranked in decreasing order of their score. A
dinucleotide binding site is considered to be correctly predicted if one of the top ranking
solutions fulfils at least one of the following requirements: (1) the RMSD distance between
the dinucleotides of the real complex and those predicted by the alignment is ≤ 3 Å; (2) There
are at least four (or 30%) physico-chemical properties (pseudocenters) involved in protein-
dinucleotide interactions of the specific site that were correctly predicted. The percentage of
successfully predicted dinucleotide binding sites is the success rate of the method.

Since the algorithm performs simultaneous alignment against all the constructed patterns, it is
extremely fast. Its average running time for searching a complete protein surface for the
presence of all the dinucleotide consensus binding patterns measured during all the leave-one-
out tests (see Results) is 3 minutes on a standard PC (AMD Opteron 242, 1593MHz).

Reconstruction of protein-RNA complexes: Here, we extend the RnaPred algorithm
described in the previous section to the recognition of the longest consecutive set of alignments
of 3D patterns to neighboring protein regions. Using the binding modes of the dinucleotides
bound to these patterns allows us to predict the structure of the protein interacting RNA
fragment. Specifically, given all possible alignments of all the created 3D consensus patterns
to the query protein, we construct a graph in the following manner. Each alignment solution
is a graph node. It is represented by the superimposed pattern and the corresponding 3D
transformation. We connect two nodes by an edge only if these represent alignments of 3D
patterns to two neighboring regions so that their bound dinucleotides can be combined to form
a continuous RNA fragment. Specifically, let (a1, a2) and (b1, b2) represent the RNA nucleotide
pairs bound to two nodes, which represent two aligned 3D patterns. An edge between two
nodes is created if the following requirements are satisfied after the application of the
corresponding 3D transformations: (1) They have a pair of overlapping nucleotide rings: dist
(a2, b1) ≤ ε1; (2) They have a pair of distant rings: dist(a1, b2) > ε1 (i.e. the 3D patterns are
aligned to different protein regions); (3) The planes of the overlapping rings are parallel to each
other: angle(a2, b1) ≤ ε2. Using ε1 = 2.0 and ε2 = 20°, we ensure that the dinucleotide pairs
from two 3D patterns can be combined to a consecutive RNA fragment. Given the constructed
graph, we search for the longest and highest scoring path in it. The score of a path is defined
in the following way. The score of each node is the score of the alignment of the 3D physico-
chemical pattern to a protein region. The score of a path is the sum of scores of its nodes. The
length of a path is the number of nodes in it. One path is considered to be better than the other
if it has at least the same length and its score is higher. The longest and the highest scoring
path represents the alignment of the largest number of 3D patterns to neighboring protein
regions that can allow the construction of an RNA fragment. Figure 9(b) provides a schematic
representation of the main idea of this method.

Database of small molecule binding sites: The dataset of PDB structures complexed with
small molecules was retrieved from the PDBsum database61, May 2007. We retained only the
binding sites of compounds with more than 7 non-hydrogen atoms that are not covalently linked
to the protein. In addition, to remove the binding sites complexed with natural substrates, such
as ATP or GTP, we computed the frequency of occurrence of each ligand in the PDB. Small
molecules that appeared in more than 10 complexes were assumed to be natural, frequently
occurring substrates which can not make a significant contribution in our searches for drugs
and drug fragments. As a result we constructed a dataset of 3999 binding sites which were
screened for their similarity to nucleotide and dinucleotide binding patterns.
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Figure 1. Di-nucleotide binding sites
(a) Parallel π-stacking interactions, as observed in the U1A spliceosomal protein (PDB: 1m5o,
A6-C7 of U1 snRNA39). The surface of the protein binding site is represented as green dots.
(b) The physico-chemical properties, termed pseudocenters, of the binding site in (a).
Hydrogen bond donors are blue, acceptors - red, donors/acceptors - green, aliphatic - orange
and aromatic - gray. (c) Non π-stacking dinucleotides of methyltransferase RumA (PDB: 2bh2,
G1954-U1955). Although the rings participate in aromatic interactions, they are π-stacked with
the protein and not with each other63.
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Figure 2. The algorithmic framework
The framework consists of two main stages. First, we classify all known nucleotide and
dinucleotide binding sites and recognize the common types of the physico-chemical binding
patterns (left flowchart). Then, we use these patterns for the prediction of dinucleotide binding
sites and for the reconstruction of RNA fragments and protein-RNA complexes (right
flowchart).
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Figure 3.
(a) Clusters of dinucleotide binding sites. A histogram of the cluster sizes of the AND-set and
OR-set classifications. The X-axis denotes the number of cluster members and the Y-axis is
the number of clusters of this size. The top right pie chart shows the distribution of the cluster
sizes of the AND-set. The distribution of clusters in the OR-set was very similar. (b) Success
rates of the predictions of dinucleotide binding sites, measured by the leave-one-out tests. The
X-axis denotes the number of the top ranking solutions considered in each prediction. The Y-
axis is the overall success rate measured by the percentage of binding sites correctly predicted
in all the leave-one-out tests performed with the AND-set and OR-set classifications.
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Figure 4. Dinucleotide binding sites of RNA-binding domains
(a) Alignment between the six structures of cluster 94 in Table 2 according to the transformation
calculated for the dinucleotide binding sites. The structures of RRMs are in variations of blue
and the Rho termination factors are light and dark pink. The similar binding sites surfaces are
green dots and the dinu-cleotides are magenta. The bottom figure details the common Tyr-Phe
aromatic binding platform. The conserved Tyr and Phe amino acids (Y13-F56 of U1A/U2B
and Y80-F64 of Rho) are represented as sticks and colored purple. The protein pseudocenters
are as in Figure 1. (b) Alignment between the HuD protein (PDB:1fxl, pink) and the Rho
termination factor (1pvo, monochrome) of cluster 23. The bottom figure presents the Tyr-Phe
binding platform shared by the proteins. The conserved Tyr and Phe amino acids (Y128-F170
of HuD and Y80-F64 of Rho) are pink and green respectively. (c) Top: Alignment of the first
four RRM members of cluster 124 (see Table 2), colored as in (a). Middle, the alignment of
all the five cluster members, including the Aminoacyl-tRNA synthetase (PDB:1u0b, green).
Bottom: Alignment of the binding sites of Poly(A)-binding protein (PDB:1cvj, green) and
NSP3 homodimer (PDB:1knz, pink).
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Figure 5. Dinucleotide binding sites of proteins with similar structures
(a) Alignment between 6 dinucleotide binding sites of MS2 RNA hairpin coat-proteins (cluster
159, Table 3). The left binding site can tolerate any nucleotide sequence, due to the conservation
of its Tyr residue, represented by two pseudocenters: donor/acceptor (green) and aromatic
(black). The pseudocenters which describe the adenine pattern are colored as in Figure 1. (b)
Alignment between three repetitive binding sites of Pumilio proteins (see cluster 81–82, Table
3). The proteins of the repeats R2–4, R4–6 and R6–8 are cyan, purple and light blue. The
surfaces of the binding sites are represented by dots, colored by the proteins.
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Figure 6.
(a) Alignment of 3 binding sites of proteins with KH-motifs, detailed in clusters 164, 41, 42.
The nucleotides, UCAC (2anr,1ec6) and CCCU (2py9) are represented as sticks, colored cpk.
Surface patches with exactly the same properties and shapes (up to 1Å distance deviation) are
represented as dots colored as in Figure 1. (b) Alignment between the 3 binding sites of cluster
12: Hut operon regulatory proteins (PDB: 2gzt, 1wpu, blue) and Ribosomal protein S8 (PDB:
2j02H, pink). The corresponding nucleotides GA, UA and GA are green, yellow and orange.
(c) Alignment of the AG dinucleotide binding sites of the Hut proteins (blue and green) to the
UC binding site of the anticodon loop of Glutamyl-tRNA synthetases (PDB:1n78, pink).
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Figure 7. Structure prediction of RNA fragments
(a) Reconstruction of part of the RNA hairpin which interacts with Nova-1 KH domain (PDB:
2anr). The predicted nucleotides are red and the native are orange. (b) Reconstruction of the
RNA fragment of HutP antitermination complex (PDB:1wpu). The predicted and the native
nucleotide fragments are red and orange sticks respectively. The opposite view in the upper
figure shows the non interacting U nucleotide, not predicted by our method.
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Figure 8. Searching the database of drug-like binding sites
(a) Alignment of the dinucleotide binding pattern of cluster 81, which was found to be similar
to the binding site of Thrombin in complex with an inhibitor (PDB:1nzq, rank 9) (b) An adenine
binding site (A37, yellow) of Cysteinyl-tRNA synthetase (1u0b, light blue), whose 3D pattern
was found to be similar to the binding site of Human macrophage elastase (1ros, pink) bound
to its inhibitor (green). The aligned proteins have similar binding sites and similar secondary
structure elements (helix and 2 strands), which suggest the potential similarity in ligand
binding.
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Figure 9.
(a) Representation of the protein and RNA molecules. Top: An example of pseudocenters
extracted from the side chains and the backbone of Lysine and Tyrosine amino acids. The
pseudocenters are represented as balls colored as in Figure 1. Bottom: Representation of a
dinucleotide pair by three points: two nucleotide rings centroids (P1 and P3) and the backbone
phosphate atom between them (P2). (b) Center star classification algorithm. The nodes s1–s4
are enumerated in the order of their start weights and traversal. The edges of s1 to s2–s4 nodes
failed to fulfill the multiple alignment requirements and were not added to the cluster of s1.
The algorithm proceeded to check the star of s2, where s4 fulfilled the multiple alignment
requirement and was added to the cluster. (c) The RnaPred algorithms aligns the 3D consensus
patterns to some regions (represented by curves) of the complete query protein. We select the
highest scoring set of alignments of 3D patterns to neighboring regions so that their bound
dinucleotides (pairs of connected balls) can be combined to form the longest continuous RNA
fragment (of 4 nucleotides in this example).
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