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Abstract
In most analytic studies of social networks carried out to date, networks have links which remain
unchanged at all times. Hence, individuals have no control over the number, frequency or duration
of their interactions with others. Here we introduce a model in which individuals differ in the rate at
which they seek new interactions with others, making rational decisions modeled as general
symmetric two-player games. Once a link between two individuals has formed, the productivity of
this link is evaluated. Links can be broken off at different rates. We provide analytic results for the
limiting cases where linking dynamics is much faster than evolutionary dynamics and vice-versa,
and show how the individual capacity of forming new links or severing inconvenient ones maps into
the problem of strategy evolution in a well-mixed population under a different game. For intermediate
ranges, we investigate numerically the detailed interplay determined by these two time-scales and
show that the scope of validity of the analytical results extends to a much wider ratio of time scales
than expected.

Networks pervade all sciences [1–5]. During recent years, researchers have developed methods
to characterize such networks, providing novel insights into the properties accruing to those
networked systems and organizations. The classical social network metaphor [6] places
individuals at the nodes of a network, the network links representing interactions or connections
between those individuals. Citation networks, collaboration networks, co-authorship and
movie co-acting networks, as well as the networks of sexual relations, all fall into this
metaphoric representation [1–5]. Most analytical studies on this type of networks carried out
to date have aimed to explain the emergence of the observed topological properties, as deduced
from the empirical data. Networks, however, are dynamical entities, and in this sense the
empirical information often only provides a fixed-time snapshot of networks which are
continuously evolving. Furthermore, dynamical features of networks have been studied in
connection with their growth, modeled in terms of the preferential attachment (or cumulative
advantage) mechanism [1,6,7], via random addition and removal of nodes [2] or by imposing
different forms of connectivity saturation [4,8–10]. Moreover, individual decisions to establish
or remove/rewire a given link have been studied by numerical simulations [4,8–15]. Here we
develop a new model which incorporates decisions of individuals when establishing new links
or giving up existing links. Individuals are capable of making rational choices, modeled in
terms of a game, associated with well defined strategies. We use evolutionary game theory
[16–21] and study the dynamical co-evolution of individual strategies and network structure.
We restrict our analysis to symmetric two-player games, although the model can be easily
extended to games with an arbitrary number of strategies. We obtain analytical results which
are formally valid in the extreme limits when one of the dynamics (strategy or structure)
dominates the other, although our numerical simulations show that the range of validity of the
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analytical results is much wider. The present model leads to single-scale networks as defined
in [4], with associated cumulative degree distributions exhibiting fast decaying tails [4], as
shown in Fig. 1. Such tails which decay exponentially or faster than exponential, leading to
what are known as “broad-scale” and “single-scale” networks, respectively [4], are features
which, together with a large variability in the average connectivity [1,2,5], characterize most
real-world social networks [3,4]. We start by characterizing the networks emerging from our
model. Subsequently, we introduce individuals who adopt definite strategies and make rational
decisions by engaging in a game with others, studying how strategy and structure co-evolve.
Finally, we strenghten the coupling between strategy and structure by letting individuals
evaluate the productivity of links in which they participate.

Let us first consider the structural evolution in a population of two types of individuals
(players), A and B, occupying the nodes of a network. The total population size is constant N
= NA + NB. Links define interactions between individuals, being formed at certain rates and
having specific lifetimes. The maximum possible number of AA, AB and BB links is
respectively given by Nij = Ni(Nj − δij)/(1 + δij) (i, j = {A, B}). Suppose A and B players have
a propensity to form new links denoted by αA and αB, such that ij links are formed at rates

αiαj. The death rates are given by γij (with associated lifetimes ). With these definitions
the mean field equations governing what we call the Active Linking (AL) dynamics of this
network are

(1)

These differential equations lead to an equilibrium distribution of links given by ,
where ϕij = αiαj(αiαj + γij)−1 denotes the fraction of active links. In Fig. 1 we show how this
model leads to stationary regimes of complex networks which can exhibit different degrees of
heterogeneity. Note, in particular, the dependence of the stationary networks on the frequency
of individuals of a given type will automatically couple network dynamics with the frequency-
dependent evolutionary dynamics we introduce in the following.

Let us now introduce a game between A and B leading to frequency-dependent evolution of
strategies. The game is given by the payoff-matrix Mij

In the stationary regime of Active Linking (AL) dynamics, the average fitness of A and B
individuals is given by fi = Σj Mij ϕij (Nj−δij). It is noteworthy that these expressions are
equivalent to the average payoffs of NA and NB players who play a game specified by the
(rescaled) payoff-matrix  on a complete graph.

So far we have dealt with AL-dynamics. Let us now study how the frequencies of strategies
A and B change under evolutionary game dynamics. We assume that the characteristic time-
scale associated with AL-dynamics is Ta, whereas that associated with strategy updating is
Ts.

Reproduction can be genetic or cultural. We adopt the pair-wise comparison rule, which
provides a convenient framework of game dynamics at all intensities of selection [22]. Two
individuals from the population, A and B are randomly chosen for update. The strategy of A
will replace that of B with a probability given by the Fermi function . The
reverse will happen with probability 1−p. The quantity β controls the intensity of selection.
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For β → ∞ the individual with the lower payoff deterministically adopts the strategy of the
other individual. For β ≪ 1, we recover the weak selection limit of the frequency dependent
Moran process [23].

When Ta ≪ Ts, AL proceeds much faster than strategy update on each node. Hence, the
stationary regime of AL-dynamics determines the average payoff and fitness of individuals.
This means that strategy evolution proceeds as in a well-mixed population of A and B players
(complete graph) engaged in a game specified by the payoff-matrix . Since AL-
dynamics is fast, the dynamics of the system does not depend on the starting condition, and
we can compute analytically the fixation probabilities of strategies A and B. The probability
ρA(k) that k A-players introduced into a population of B-players will take over the entire
population is given by [22]

(2)

where erf(x) is the error function and . We have 2u = a′ − b′ − c′ + d′ and
2v = −a′ + b′N − c′N + c′. For u = 0, Eq. 2 simplifies to ρA(k) = (e−2βvk − 1)/(e−2βvN − 1).

On the other hand, in the opposite limit where Ta ≫ Ts, evolution will proceed according to
the usual game dynamics [24–37] on a static network reflecting the initial configuration. If we
start from a complete graph then Eq. (2) remains valid, except that u and v must be calculated
employing the original payoff-matrix Mij. If we start from another graph topology, analytical
and numerical results for static networks apply instead [38–40]. Whenever Ta ∼ Ts, one expects
a detailed interplay between these two processes to drive co-evolution. This regime can be
explored by computer simulations of AL-dynamics. As an example, we investigate the
interaction between cooperators and defectors in the Prisoner's Dilemma (PD). A cooperator,
C, pays a cost c for every link, and the partner of this link receives a benefit b > c. Defectors,
D, pay no cost and distribute no benefits. The payoff-matrix becomes

On complete graphs, cooperators are never advantageous compared to defectors. This means
if Ta ≫ Ts cooperators are never favored by selection. On the other hand, if Ta ≪ Ts, the
effective payoff-matrix is different, and may not correspond anymore to a PD, that is, when
AL dominates, the problem becomes equivalent to the evolutionary dynamics of a different
game in a complete graph. The advantage of cooperators from AL can be captured by the
parameter r = (ϕCC − ϕCD)/ϕCC which provides a measure of the advantage of assortative
interactions (CC-links) with respect to disassortative ones (CD-links). In terms of r, the PD is
transformed into a coordination game whenever r > c/b, which is formally equivalent to
Hamilton's rule of kin selection [41]. In strategy phase space, an unstable interior fixed point
develops at a frequency of cooperators given by NC/N ≈ (1 − r)c/[r(b − c)]. In other words, for
Ta ≪ Ts fixation of cooperators is almost certain if the initial fraction of cooperators in the
population exceeds this ratio. In Fig. 2 we provide numerical examples of this scenario, whereas
in Fig. 3 we investigate the behavior of our co-evolutionary model as Ts/Ta increases. The
results of Fig. 3 show how the ratio of time scales affects co-evolution of strategy and structure.
In all cases we start from well-mixed populations (complete graphs). Clearly, not only the
asymptotic behavior coincides with the analytic prediction but, perhaps more importantly, Fig.
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3 shows that only for 0.01 ≤ Ts/Ta ≤ 0.1 does the interplay between the two time scales deviate
significantly from the analytic predictions.

Finally, let us further couple the dynamics of links and the dynamics of strategies by introducing
payoff dependent AL-dynamics. An interesting coupling arises when we associate the
propensity to form new links and the lifetime of different types of links with the productivity
of those links assessed in terms of payoffs. Many possibilities can be readily envisaged, which
will lead to different context-based justifications for the choices of parameters αi and γij. Here
we explore the case in which cooperators and defectors share the same propensity to form new
links αC = αD, whereas the lifetimes of ij-links are proportional to the average profit expected
from that link. Other linear as well as non-linear alternatives are possible. A simple average
relation, based on the expected outcome from different types of interactions leads to τij = κ
(Mij + Mji)/2 which yields τCD = τCC/2, whereas τDD = 0. More generally, we may assume that
τCD = τCC/p with p > 1, maintaining τDD = 0 (this results from the zero-entry in the payoff-

matrix). We may now express r in terms of the constant , obtaining , an
increasing function of p. The intuition behind this result is clear: The larger the value of p, that
is, the smaller the lifetime of CD-links compared to CC-links, the smaller the value of b/c above
which cooperation will thrive. Moreover, the larger the value of p the smaller the fraction of
cooperators that is necessary to be initially present in the population for cooperation to dominate
over defection in the resulting coordination game.

The transformation between a PD and a coordination game is not the only possible one:
Inspection of ϕij shows that other transformations are feasible. The Snowdrift Game (SG) has
recently attracted a lot of attention, due to its potential biological relevance [31]. In the SG, a
cooperator pays a cost c, but two cooperators share this cost. Whenever one player cooperates,
both receive a benefit b > c, leading to the payoff matrix

For strong selection on complete graphs, the SG leads to a stable coexistence between
cooperators and defectors, corresponding to a stable interior fixed point in strategy phase space
at NC/N ≈ (2b − 2c)/(2b − c), which may become especially small whenever c ≈ b. Nonetheless,
for large Ts/Ta the SG is effectively transformed into the Harmony game, for which 1 cooperator
is enough to invade the entire population. For the payoff matrix above, the SG is effectively
converted into a Harmony game whenever r > c/(2b), where r = (ϕCC − ϕCD)/ϕCC as above. If
costs and benefits are the same, the assortment of interactions r has to be only half as high as
for the transformation of the PD into a coordination game in order to transform the SG into a
Harmony game.

To sum up, by equipping individuals with the capacity to control the number, nature and
duration of their interactions with others, we introduce an active linking dynamics which leads
to networks exhibiting different degrees of heterogeneity. In the limit when active linking
dynamics is much faster than strategy dynamics, we obtain a simple rescaling of the payoff-
matrix. Such rescaling can lead to a transformation of the type of game, effectively taking place
in a finite, well-mixed population. As the ratio between the time scales associated with linking
dynamics and strategy dynamics increases, the interplay between these two dynamical
processes leads to a progressive crossover between the analytic results discussed here and the
evolutionary dynamics of strategies taking place on static graphs. Unlike previous numerical
explorations [11–14], the present model provides a simple analytical pathway towards
understanding of how self-interested individuals may actually end up cooperating, showing
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how selective choice of new links (favouring assortative mixing between cooperators)
associated with fast rewiring dynamics may provide the means to achieve long term
cooperation.
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FIG. 1.
(color online) Cumulative degree distributions for networks generated with the present model,
for populations of size N = 103 and two different types of individuals. The fast decaying tails
correlate well with the observed tails of real social networks [1–5]. On the other hand, the
dependence of the final network on the frequency of each type of individuals leads to a natural
coupling between network dynamics and frequency-dependent strategy evolution.
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FIG. 2.
(color online) Fast active linking (AL) changes the dynamics of the social network and the
payoff matrix. a) AL transforms a Prisoner's Dilemma with c = 0.5 and b = 1.0 into a
coordination game. While fixation of cooperators is negligible in the Prisoner's Dilemma (solid
line), cooperators can take over with AL (dashed line) b) A snowdrift game with c = 0.8 and
b = 1.0 in which fixation of defectors is certain is transformed into a harmony game in which
cooperators prevail. The vertical arrows show how AL affects the fixation probability when
initially 50% cooperators are present: while they have no chances on a complete graph despite
their high abundance, AL makes fixation of cooperation almost certain in both systems (β =
0.1, N = 100, αC = αD = 0.4, γCC = 0.1, γCD = 0.8, γDD = 0.32).
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FIG. 3.
(color online). Co-evolutionary dynamics of strategy and structure. The curves drawn
correspond to the results of computer simulations carried out for networks of size N = 100.
Parameters and payoff matrices are the same as in Fig. 2. The rescaled payoff-matrix leads to
a fixed point at a fraction of cooperators NC/N ≈ 35%. For each value of the ratio Ts/Ta, we ran
100 simulations, starting from 50% cooperators and a complete graph. The values plotted
correspond to the fraction of runs which ended with 100% cooperators. We fix Ts = 1 and vary
Ta. In each time step, synchronous updating of strategies is carried out with probability Ta/
(Ts + Ta) using Fermi-update, AL beeing carried out otherwise. For the extreme limits we obtain
perfect agreement with the analytic predictions. However, the analytic results remain valid for
a much larger range of values 0.01 ≤ Ta/Ts ≤ 0.1 than one would expect from pure theoretical
considerations. Indeed, only between these two limits a crossover takes place, which depends
on the intensity of selection β as illustrated.
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