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Abstract
The complexity of gonadal steroid hormone actions is reflected in their broad and diverse effects on
a host of integrated systems including reproductive physiology, sexual behavior, stress responses,
immune function, cognition, and neural protection. Understanding the specific contributions of
androgens and estrogens in neurons that mediate these important biological processes is central to
the study of neuroendocrinology. Of particular interest in recent years has been the biological role
of androgen metabolites. The goal of this review is to highlight recent data delineating the specific
brain targets for the dihydrotestosterone metabolite, 5α-androstane, 3β, 17β-diol (3β-Diol). Studies
using both in vitro and in vivo approaches provide compelling evidence that 3β-Diol is an important
modulator of the stress response mediated by the hypothalmo-pituitary-adrenal axis. Further, the
actions of 3β-Diol are mediated by estrogen receptors, and not androgen receptors, often through a
canonical estrogen response element in the promoter of a given target gene. These novel findings
compel us to re-evaluate the interpretation of past studies and the design of future experiments aimed
at elucidating the specific effects of androgen receptor signaling pathways.
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INTRODUCTION
A recurring theme in the behavioral neuroendocrinology literature is the close relationship and
overlapping function between what is classically considered a predominantly “male hormone”,
testosterone, and the “female hormone” estradiol. This relationship is based on numerous
observations made over the years that testosterone can be converted to estradiol in a number
of tissues, including brain (Naftolin et al., 1975), by the P450 enzyme, aromatase. Further,
testosterone can also be converted to a more potent androgen, dihydrotestosterone, by the 5-
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alpha reductase enzyme (Selmanoff et al., 1977). Studies have shown that the metabolism of
testosterone to estradiol is often critical for its behavioral actions in males, thus dispensing
with the notion that estrogen is a “female hormone”. For example, when administered
separately to castrated adult male rats, neither testosterone's aromatized metabolite estradiol,
nor its reduced metabolite dihydrotestosterone, are able to restore the entire array of male sexual
behaviors (Davidson, 1969, McDonald et al., 1970) to the level of testosterone alone. However,
the ability of estrogens and androgens to work in tandem to regulate male behavior was
confirmed by investigators who demonstrated that co-treatment of castrated male animals with
estradiol and dihydrotestosterone restored all parameters of male sexual behavior comparable
to that of animals treated with testosterone alone (Baum and Vreeburg, 1973).

Several brain regions important for controlling male sexual behavior contain aromatase activity
(Naftolin, 1975, Selmanoff, 1977, Roselli et al., 1998) providing support for the concept that
testosterone can be converted locally to estradiol within selective brain sites. Recent studies
using the aromatase null mouse model (ArKO) underscore the importance of brain aromatase
and estrogen in male rodent sexual behavior. Gonadally intact male ArKO mice fail to display
copulatory behaviors in the presence of an estrous female (Matsumoto et al., 2003), whereas
subcutaneous treatment with estradiol restored the display of sexual behaviors to that of wild
type mice (Bakker et al., 2004). Such studies implicate estrogen receptors, activated by the
estradiol formed from local testosterone aromatization, as important in male behaviors. This
does not minimize the importance of androgen in male behaviors, and in most cases, the
physiological contribution of androgen receptors (ARs) is examined by administering
dihydrotestosterone. This 5α-reduced form of testosterone has been classically considered a
prototypical AR agonist with no ability to be aromatized to estrogen-like metabolites. In this
review, we will consider recent data that indicates that dihydrotestosterone, in a fashion similar
to testosterone, may be converted to products with estrogen-like activity, but by enzymes other
than aromatase (Figure 1). These products may subsequently play an important role in
regulating non-reproductive functions such as stress reactivity of the male rodent. Such a
paradigm shift in our thinking could have important ramifications regarding how we interpret
previous studies and design future studies concerning the actions of gonadal steroid hormones
and brain function.

THE HYPOTHALAMO-PITUITARY ADRENAL AXIS
In rodents, adrenal corticosterone secretion is controlled by the activity of a neuroendocrine
axis that involves the hypothalamus, the anterior pituitary and the adrenal gland. This
hypothalamo-pituitary-adrenal (HPA) axis represents a cascade of neural and humoral signals
driven by both the circadian pacemaker as well as the environment. Changing environmental
conditions or perceived threats to homeostasis activate the HPA by funneling information
through neurons located in the paraventricular n. of the hypothalamus (PVN), a critical brain
region that integrates positive and negative inputs. Central to HPA axis regulation are selective
neurons in the parvicellular part of the PVN that contain corticotropin-releasing hormone
(CRH). The release of CRH to the hypophyseal portal system enhances synthesis and release
of adrenocorticotrophic hormone (ACTH) from the anterior pituitary. In turn, ACTH acts on
the adrenal cortex to stimulate secretion and cause a rise in plasma corticosterone. Circulating
corticosterone subsequently acts at the level of the pituitary, hypothalamus and higher brain
areas to limit further hormone secretion (for review, see DeKloet, 1991; Holsboer and Barden,
1996). Other neuropeptides also play neuromodulatory roles in regulating HPA axis function.
Of particular importance, vasopressin, another neuropeptide found in PVN neurons, is also an
ACTH secretogogue alone (Gillies et al, 1982) and it amplifies the actions of CRH at the level
of the anterior pituitary corticotroph (Rivier and Vale, 1983, Schloser et al, 1994).
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SEX DIFFERENCES ARE FOUND IN THE HPA AXIS RESPONSE TO STRESS
Sex differences in the ACTH and corticosterone response to a stressor have been consistently
reported in the literature (Gaskin and Kitay, 1970; Handa et al., 1994b). However, the
mechanisms underlying these differences have only recently begun to be explored in detail. In
general, the neuroendocrine response of female rodents to acute stress is greater than that of
males. This hyperreactivity of the female stress response is characterized by a greater and
prolonged secretion of ACTH and corticosterone suggesting enhanced stimulus as well as a
reduced negative feedback (Burgess and Handa, 1992). Consistent with these findings, females
also have higher levels of corticosteroid binding globulin (CBG), a liver-derived plasma protein
that binds and sequesters corticosterone from its receptor (McCormick et al. 2002). Moreover,
evidence that sex steroid hormones can interact with the regulatory elements of the HPA axis
comes from studies showing that gonadectomy of both males and females reduces the sex
difference and hormone replacement to gonadectomized animals can reinstate the sex
difference (Handa et al, 1994a,b). Whereas estradiol treatment appears to enhance, and
testosterone treatment inhibits HPA reactivity, the mechanisms by which testosterone and
estradiol act to influence HPA function have not been completely resolved. Evidence of
estradiol and testosterone acting at the adrenal gland (Kitay 1965), anterior pituitary (Coyne
and Kitay, 1969, 1971, Viau and Meaney, 2004) and hypothalamus (Viau and Meaney,
1996; Viau et al., 2003, Handa et al., 1994a) has been reported. Although contributions of each
level of the axis likely mediate the sex differences in HPA function, in this review we will
focus our attention on the hypothalamic effects of the androgenic component of this regulation.

ANDROGEN REGULATION OF THE NEUROENDOCRINE RESPONSE TO STRESS
Testosterone appears to have an action opposite that of estradiol in regulating the HPA axis
(Gaskin and Kitay, 1970; Coyne and Kitay, 1971). Gonadectomy of male rats increases
corticosterone and ACTH responses to stress, and correspondingly, c-fos mRNA expression
in the PVN is elevated (Handa et al, 1994a, Viau et al., 2003, Lund et al., 2004a). Hormone
replacement of gonadectomized rats with either testosterone or the non-aromatizable androgen,
dihydrotestosterone returns stress-responsive plasma corticosterone and ACTH levels back to
that of the intact male (Lund et al. 2004a). Treatment of gonadectomized animals with
dihydrotestosterone also inhibits the stress-induction of cfos mRNA in the PVN (Kerr et al.
1996, Viau et al. 2003; Lund et al., 2004a, Lund et al. 2006.) demonstrating that testosterone's
effects are likely not due to the aromatization of testosterone to estradiol. Further evidence that
androgen can regulate the HPA axis comes from studies examining the hormonal stress
response of male rats before and after puberty. Prior to puberty, when testosterone levels are
low, the corticosterone response to acute and chronic stress is high relative to the response seen
after puberty (Viau et al. 2005, Romeo et al. 2006) which corresponds to elevations in
testosterone that occur during the pubertal transition of males. However, the involvement of
testosterone in this mechanism is not absolute since Romeo et al, (2004) have demonstrated
that testosterone alone cannot shift the pattern of HPA regulation in pre-pubertal males to that
of post-pubertal males.

Although androgens can inhibit HPA axis function (Handa et al., 1994a) and reduce CRH
immunoreactivity in the PVN (Bingaman et al., 1994b), androgen receptors are not localized
in CRH or AVP neurons within the PVN (Bingaman et al. 1994a). Androgen receptor
immunoreactivity (AR-ir) has been found in some PVN neurons, but these AR-ir neurons are
in the dorsal cap and the ventral medial parvocellular parts of the PVN, which are non-
neuroendocrine neurons that project to spinal cord and brainstem autonomic nuclei (Bingham
et al. 2006). Consequently, it has been hypothesized that androgens regulate PVN neuropeptide
expression and secretion transsynaptically. Data supporting this hypothesis comes from studies
showing that the implantation of testosterone into the medial preoptic area (MPOA) and bed
nucleus of the stria terminalis (BnST), brain regions that provide afferent input to the PVN,
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can reduce the corticosterone response to acute stress (Viau and Meaney, 1996). Further,
retrograde tracing studies have shown that AR-ir can be found in neurons of the BnST, but not
the septum, that project to the PVN (Suzuki et al, 2001). However, the BnST does not appear
to be the only brain site mediating androgen's inhibitory effect on HPA reactivity since
stereotaxic application of dihydrotestosterone to a region just above the PVN (to prevent
mechanical disruption of the PVN) is as effective as peripherally administered
dihydrotestosterone in inhibiting HPA function (Lund et al, 2006). Such data acan be
interpreted as indicating that dihydrotestosterone can have a direct action on PVN neurons.
However, given that AR are not found in neuroendocrine neurons of the rodent PVN, several
other possibilities as to how this might occur must be explored.

In regard to the local action of dihydrotestosterone on PVN neurons to reduce the HPA
reactivity to stress; one could argue, based on AR distribution, that the inhibitory effect
observed occurs through a multisynaptic pathway that involves activation/inhibition of
pathways controlling the autonomic nervous system and the resulting feedback loops that
inhibit activity of neurosecretory PVN neurons. An alternative hypothesis is that
dihydrotestosterone does not act through the androgen receptors found in PVN neurons, but
rather, is activating another type of receptor found in or near the PVN. Although
dihydrotestosterone has been historically viewed as a pure AR agonist, recent studies suggest
that, like testosterone, dihydrotestosterone can be metabolized to compounds that can bind
estrogen receptors, particularly estrogen receptor beta (ERbeta). This possibility is considered
in more detail in the ensuing sections of this review.

NEURAL ANDROGEN RECEPTOR and ESTROGEN RECEPTOR DISTRIBUTION RELATIVE
TO HPA AXIS FUNCTION

Androgen receptors and estrogen receptors (ER) belong to a superfamily of ligand activated
transcription factors that are characterized by their ability to directly alter gene transcription
by binding to cognate DNA response elements (Beato, 1989). The classical DNA target for
ER is the estrogen response element (ERE) and for AR, is the androgen response element
(ARE), however, many hormone responsive genes lack these elements (Massie et al, 2007).
Alternate sites in some gene promoters, such as activator protein-1 (AP-1) and SP-1 could
serve as targets through which some of these hormone receptors can modify transcription
through protein:protein interactions (Webb et al., 1995; Price et al, 2001; Kim et al., 2005).

Using in vivo autoradiographic techniques (Sar and Stumpf, 1977. Stumpf and Sar, 1980;
Stumpf, 1971), it has been shown that 3H-estradiol and 3H-dihydrotestosterone are selectively
taken up by a number of brain areas including neurons in the PVN. In the PVN there was
some 3H-estradioluptake into magnocellular regions, although the amounts were small
compared to periventricular and preoptic areas. 3H-estradiol-uptake was also demonstrated in
arginine vasopressin (AVP) containing magnocellular neurons (Rhodes et al., 1982). Although
for years sensitivity (and in retrospect, specificity) was the limiting factor with such
approaches, the recent development of high specific activity ligands demonstrated robust
estradiol-uptake by PVN neurons (Shughrue et al., 2000).

Following early reports describing a novel ER, termed ERbeta (Kuiper et al., 1996), ERbeta
mRNA was shown to be expressed at high levels by neurons within the PVN (Shugrue et al.,
1997) and this localization corresponded with ERbeta-immunoreactivity (-ir; Shughrue and
Merchenthaler, 2001; LaFlamme et al, 1998; Suzuki and Handa, 2004). A large percent of
ERbeta-ir cells in PVN are AVP positive, but ERbeta is also found in many oxytocin, prolactin
(Somponun and Sladek, 2004a, Hrabovsky et al, 1998; Alves et al., 1998; Suzuki and Handa,
2005) and some CRH containing neurons of the PVN (LaFlamme et al., 1998; Miller et al.,
2004, Suzuki and Handa, 2005). This suggests that by binding to ERbeta, estradiol could
directly alter the function of PVN neuropeptide neurons. In contrast, ERalpha is found at low
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levels and only in the periventricular PVN and never in CRH, AVP or OXY neurons (Simerly
et al, 1991; Estacio et al, 1996; Suzuki and Handa, 2005) thereby ruling out a direct estradiol
action mediated through ERalpha, on PVN responses to stress.

Similarly, a number of approaches have been taken to localize AR in neural tissues, including
in vivo autoradiography (Sar and Stumpf, 1980), in vitro binding in microdissected brain tissues
(Handa et al. 1987), immunohistochemistry (Bingaman et al. 1994a, b; Wood and Newman,
1993 and Zhou et al., 1994), and in situ hybridization (Kerr et al. 1995, Simerly et al., 1991).
These studies have all shown that the AR is expressed in brain areas now known to mediate
reproductive functions. Moreover, AR has been reported in non-reproductive brain areas such
as the hippocampal CA1 region and the parvicellular region of the PVN. AR has also been
found in areas that project to the PVN, most notably the BnST and MPOA, two areas providing
inhibitory signals to PVN function (Viau and Meaney, 1996). Interestingly, the distribution of
AR overlaps considerably with glutamic acid decarboxylase (GAD) in the MPOA and BnST.
Since GAD is an enzyme necessary for production of the inhibitory neurotransmitter, gamma-
amino butyric acid (GABA), these data suggest this as a potential mechanism for androgenic
inhibition of PVN reactivity to stress.

Androgens may also regulate HPA reactivity by direct action at the level of the PVN. Zhou et
al (1994) have shown that AR-ir is present in neurons in the parvicellular part of the PVN and
that a small population of AR-ir neurons contain AVP, although another study failed to see
AR-ir in AVP and CRH neurons (Bingaman et al., 1994a). Alternatively, it is also possible
that androgens can work though non-genomic mechanisms to inhibit HPA reactivity. However,
few studies to date have explored such rapid membrane associated effects of androgens in any
neural function (for review, see Foradori et al., 2008). Nonetheless, the possibility that
androgens can work at multiple levels to inhibit the neuroendocrine responses to stress must
be considered.

ANDROGEN METABOLISM
The metabolism of steroid hormones in both central and peripheral tissues has been studied
for many years. Figure 2 shows the pathway of androgen synthesis and some of the main
enzymes involved in the synthesis of testosterone and estradiol from the steroid precursor,
cholesterol. In both males and females, testosterone serves, not only as a ligand for AR, but as
a precursor for other steroids. It is well established that testosterone can be intracellularly
converted in brain tissue to estradiol by the aromatase enzyme (Roselli et al., 1985), or to
dihydrotestosterone by the 5-alpha-reductase enzyme (5αR; Lephart et al., 2001).
Dihydrotestosterone has historically been used as a potent and selective agonist for androgen
receptors since it is not a substrate for aromatization to estradiol. Further, whereas estradiol
binds both ERalpha and ERbeta with an affinity in the sub-nanomolar range (Kuiper et al,
1998), it does not bind well to AR (Handa et al 1986). Correspondingly, dihydrotestosterone
binds with high affinity to AR but does not bind ER (Handa et al. 1986,Kuiper et al. 1997).

The selectivity of the steroid metabolizing enzymes is not absolute. For example,
dihydrotestostoerne can be further metabolized to 5α -androstane-3α, 17β-diol (3α- Diol) or
5α- androstane-3β, 17β-diol (3β- Diol) by the actions of a number of p450 enzymes including
3α hydroxysteroid dehydrogenase (3α-HSD) , 3β hydroxysteroid dehydrogenase (3β-HSD),
and 17β-hydroxysteroid dehydrogenase (Jin and Penning, 2001; Weihua et al., 2002; Gangloff
et al. 2003, Torn et al. 2003, Steckelbroeck et al., 2004). Of these enzymes, 5 alpha reductase
and 3β-HSD are also involved in the pathways for synthesis and metabolism of other steroids
(see figure 2).

Whereas the androgen metabolites, 3α-Diol and 3β-Diol, possess only weak androgen receptor
binding activity, they may also initiate responses through other receptor types. For example,
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3α-Diol is a neuroactive steroid, and like other 3α tetrahydrosteroids, is a potent allosteric
modulator of GABAa receptors. As a result, 3α-Diol has been implicated in the regulation of
a number of different behaviors (Rupprecht and Holsboer, 1999, Rosellini et al., 2001,
Fernandez-Guasti and Martinez-Mota 2005, Reddy, 2004). In contrast, 3β-Diol cannot bind
the benzodiazepine receptor (unpublished) but, if its actions are similar to other 3β-
tetrahydrosteroids, it may be an antagonist of 3α-tetrahydrosteroids at the GABAa receptor
(Steckelbroeck et al. 2004). Importantly, 3β-Diol has been reported to preferentially bind
ERbeta, whereas 3α-Diol has little affinity for ERbeta or ERalpha (Kuiper et al., 1998).
Moreover, the conversion of DHT to 3α-Diol is reversible and therefore, 3α-Diol can serve as
a sink for subsequent DHT synthesis (Bauman et al. 2006). This is not the case for 3β-Diol
where conversion is unidirectional. Ultimately, 3β-Diol is converted to inactive 6α- or 7α-triols
by the actions of the enzyme CYP7B1, thereby providing another potential site of regulation
for this system (Sundin et al. 1989, Weihua et al. 2002).

The brain contains the necessary steroid metabolizing enzymes that can convert DHT to 3β-
Diol (Guennon et al. 1995) and we have hypothesized that in some brain areas the actions of
testosterone could be mediated by its 5-α reduction to dihydrotestosterone and its subsequent
conversion of dihydrotestosterone to 3β-Diol. The net result is a product that can bind to and
activate ERbeta and not AR. This endocrine pathway has been shown to exist in numerous
tissues, but its functional significance was first suggested for prostate (Weihua et al., 2002),
where it has been proposed that 3β-Diol is the predominant endogenous estrogen. Moreover,
our data indicate that the mRNAs for 5α reductase, 3α HSD, 17α HSD and CYP7B1 are present
in the PVN of male rats. (Lund et al. 2006). Curiously, 3β-HSD mRNA has not been found in
the microdissected PVN (Lund et al., 2006), however, enzyme activity assays indicate that
cells within the microdissected PVN are capable of making 3β-Diol from a 3H-DHT precursor
in vitro (unpublished data), perhaps implicating other members of the aldo-keto reductase
superfamily, such as 3α-HSD or 17β-HSD, as responsible for this conversion (Stoekelbroeck
et al., 2004).

3-β-DIOL REGULATION OF THE HPA AXIS
To address the hypothesis that the inhibitory effects of DHT on HPA axis reactivity to stress
might be mediated by 3β-Diol, Lund et al. (2004) examined the ability of peripherally
administered 3β-Diol to alter stress-responsive CORT and ACTH secretion in castrated adult
male mice. Peripheral 3β-Diol treatment was as effective as peripheral DHT administration in
reducing CORT and ACTH increases in response to restraint stress (Figure 3). These effects
of 3β-Diol could be blocked by co-administration of the ER antagonist, tamoxifen, but not by
the AR antagonist, flutamide. Furthermore, the ERbeta agonist, diarylpropionitrile (DPN), was
also capable of inhibiting HPA reactivity in a fashion similar to dihydrotestosterone and 3β-
Diol. Together, these results provide correlative evidence that 3β-Diol mediates the effects of
dihydrotestosterone on corticosterone and ACTH secretion by binding ERbeta.

Further evidence as to the site of 3β-Diol's HPA inhibiting activity was reported recently by
Lund et al (2006). By using small pellets of beeswax as a carrier for hormone, they discovered
that the stereotaxic application of 3β-Diol to the PVN of castrated male rats mimics the actions
of both central and peripherally administered dihydrotestosterone. Furthermore, local
application of an ERbeta selective agonist, DPN, could also mimic the actions of
dihydrotestosterone. These inhibitory actions of 3β-Diol and DPN can be blocked by the co-
administration of the ER antagonist, tamoxifen, whereas the AR antagonist, flutamide has little
effect. In contrast, both tamoxifen and flutamide could only partially block the inhibitory
actions of local dihydrotestosterone application. Such data suggest the possibility that local
synthesis of 3β-Diol by cells in or around the PVN could profoundly impact the function of
the HPA reactivity to stressors. Furthermore, these data indicate that compounds that bind
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ERbeta can act in an inhibitory fashion. This latter point appears to be counter-intuitive to
results demonstrating that estradiol treatment of female rats increases their corticosterone
response to stress. However it should be considered that estradiol appears to act through
ERalpha to augment HPA reactivity. Using the ERalpha selective agonist propylpyrazole triol
(PPT) it has been shown that binding to ERalpha has the opposite action of ERbeta agonists
and causes increases in HPA reactivity to restraint stress (Lund et al. 2006). The possibility
arises that estrogen acts to increase HPA reactivity by binding ERalpha in females and that
3β-Diol works to inhibit HPA reactivity by binding ERbeta in males.

How then, can the HPA axis distinguish the enhancing from inhibiting actions of compounds,
such as estradiol, that bind equivalently to both ERalpha and ERbeta? Since it appears that
aromatase is present in or near the PVN (Lund et al. 2006, Sanghera et al., 1991) this presents
a potential interpretive problem for the HPA of both males (as a result of testosterone
aromatization to estradiol) and females. One possibility lies in the ratio of ERalpha to ERbeta
that exists within neurons in and around of the PVN. One could argue that a greater ratio of
ERalpha to ERbeta could result in a shift towards greater estradiol-induced stimulation and the
opposite would be true under conditions where ERbeta was greater than ERalpha. Indeed, it
has been demonstrated that levels of receptor might change in response to circulating
concentrations of hormones. Although one study showed that stress and adrenalectomy can
increase ERbeta mRNA levels in the PVN (Somponpun et al. 2004b) and the effect of
adrenalectomy can be partially blocked by corticosterone, another related study has found that
adrenalectomy decreases ERbeta mRNA levels and corticosterone prevents this response
(Isgor et al., 2003). Furthermore, glucocorticoid receptor stimulation with dexamethasone
(DEX) causes increases in ERbeta mRNA and immunoreactive cell numbers without changing
ERalpha (Suzuki and Handa, 2004), thus shifting the balance toward inhibition. In contrast,
estradiol appears to reduce ERbeta immunoreactivity in neurons around the PVN (Suzuki and
Handa, 2004), thereby shifting the balance toward activation

An alternative possibility lies in the observation that transactivation of a gene promoter
sequence by ERbeta after binding estradiol, does not completely mimic the activation of the
same promoter by 3β-Diol (Pak et al. 2007, see discussion below). Hence, there is the potential
for ligand identity in controlling ERbeta's inhibitory actions, and this may be a unique feature
for 3β-Diol gene activation which is different from that seen following estradiol binding.

ERbeta protein may be expressed as a number of different splice variants in brain tissues
(Petersen et al. 1998; Price et al., 2000), raising the distinct possibility that differential
responses to estrogen may be mediated by differing splice variants of ERbeta (for review see
Weiser et al., 2007). The originally described estrogen receptor beta is now more appropriately
termed ERbeta1 and at least 5 different splice variants of ERbeta have been described. These
include a beta2 variant which contains an 18 amino acid insert in the ligand binding domain,
a delta3 variant where transcription of exon three is skipped resulting in a protein that does not
bind DNA and a delta 4 variant where the fourth exon is skipped resulting in a protein that is
largely cytoplasmic in localization (Petersen et al., 1998, Price et al, 2000, 2001). Different
combinations of these splice variations can exist within a given receptor protein and differing
combinations of receptor variants can exist within a cell thereby altering the way in which an
estrogenic signal might be transduced (Weiser et al., 2007). Unfortunately, at present, little is
known regarding their interactions with androgen metabolites such as 3β-Diol.

3-β-DIOL REGULATION OF GENE PROMOTERS
To test the hypothesis that 3β-Diol can have direct biological effects in neuronal function, we
have used reporter gene assays in neuronal cell lines (Pak et al., 2007; Pak et al., 2005). Initially,
we examined whether the signaling pathway of the ligand:receptor complex 3β-Diol:ERbeta
was mediated by an ERE or the upstream promoter enhancer element, AP-1. For these studies,
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the hippocampal-derived neuronal cell line, HT-22, was co-transfected with an expression
vector containing ERbeta and a firefly luciferase reporter construct containing an ERE or an
AP-1 enhancer site coupled to a minimal promoter. The results showed that 3β-Diol
significantly increased ERE-mediated promoter activity to levels greater than that of estradiol
(Pak et al., 2005), a surprising result given the significantly lower binding affinity of 3β-Diol
for ERbeta compared with estradiol (Ki = 0.1 nM for estradiol and 1.7 nM for 3β-Diol; Pak et
al., 2005). Moreover, there was no effect when the reporter was coupled to a promoter
containing an AP-1 site, suggesting that 3β-Diol activates a classical, genomic pathway when
mediated by ERbeta. Importantly, 3β-Diol had no effect at an AP-1 or ERE site when mediated
by ERalpha, or by the ERbeta splice variant, ERbeta2. These responses differ from those
elicited by estradiol, whose responses vary depending on the nature of the promoter element
placed upstream of the reporter gene. These data also demonstrate a high degree of receptor
specificity for 3β-Diol which might be indicative of a highly conserved mechanism for steroid
hormone signaling. Further, these results provide support for the concept that
dihydrotestosterone could have direct effects on neuronal cell populations that do not express
AR provided that the appropriate steroid metabolizing enzymes and ERbeta are present in the
target cell.

One potential gene target for ERbeta regulation is arginine vasopressin (Shapiro et al. 2000),
an important hormone required for osmoregulation, social, paternal, and aggressive behaviors
(Blanchard et al., 2005; Scordalakes and Rissman, 2004; Wang and Aragona, 2004), as well
as for the modulation of stress responses through its synergistic action with CRH (Rivier and
Vale, 1983, Schloser et al, 1994). Vasopressin containing cells in the PVN and SON contain
ERbeta (Suzuki and Handa, 2005; LaFlamme et al, 1998) suggesting a direct regulation of
AVP gene expression by ERbeta. To test whether 3β-Diol can have direct effects on the AVP
promoter, reporter gene assays were employed. Using the human neuroblastoma-derived cell
line SK-N-SH, expression vectors containing full length ERbeta1, or the splice variants
ERbeta2 and ERbeta1, delta3, were co-transfected with a firefly luciferase reporter construct
containing the full length AVP promoter. The results showed that 3β-Diol increased AVP
promoter activity when mediated by ERbeta1 and ERbeta2, but not by ERbeta1,delta3 (Figure
4, Pak et al., 2007). Since it had been previously shown that ERbeta1,delta3 is lacking exon 3
which encodes for the second finger of the DNA binding domain (Petersen et al., 1998), this
alteration precludes ERbeta1,delta3 from binding DNA. Such results suggest that
receptor:DNA binding is required for 3β-Diol to achieve its effects. Using site-directed
mutagenesis we showed that ERbeta1 and ERbeta2 were not binding to a known ERE and were
acting at different locations on the AVP promoter (Pak et al., 2007).

Ligand-bound nuclear receptors interact with a variety of co-regulatory proteins that facilitate
gene transcription. Of these, glucocorticoid receptor interacting protein 1 (GRIP1; also called
SRC-2, TIF2, and NCoA2) has been shown to be an important regulator of ER signaling (Hong
et al., 1996; Norris et al., 1998). Moreover, ERbeta differentially recruits coactivators in
response to different ligands (Kraichely et al., 2000). To begin to elucidate some of the
downstream molecular participants involved in ERbeta-mediated regulation of the AVP
promoter, we used a dominant-negative GRIP1 expression vector (Chang et al., 1999) and
functionally depleted endogenous GRIP1 expression in the SK-N-SH cell line. Using this
strategy, 3ß-Diol-induced activation of the AVP promoter was completely abolished (Pak et
al., 2007). Together, these studies confirm that 3β-Diol utilizes similar signaling pathways as
estradiol and emphasizes the redundancy of the system by which gonadal steroid hormones
are able to achieve their effects. Nonetheless, the effects of 3β-Diol on gene expression can be
vastly different from that observed by estradiol alone.
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3β-DIOL REGULATION OF BEHAVIORS
Although 3α-Diol has well known effects on behavior, presumably through its ability to modify
GABA signaling (Frye, 2007; Rosellini et al. 2001), behavioral data regarding the
physiological effects of 3ß-Diol are limited. In rats, intromissive and ejaculatory behaviors can
be fully and partially recovered following exogenous administration of testosterone and its
metabolite dihydrotestosterone, respectively (Parrott, 1974, 1975). Although initial reports
indicated that mounting and ejaculatory behaviors were not recovered to any extent in castrated
rats following 3ß-Diol treatment (Parrott, 1974), it was later shown that 3ß-Diol administered
in conjunction with dihydrotestosterone (Baum and Vreeburg, 1976) could restore these
behaviors, but to a lesser extent than did testosterone. This may suggest that insufficient dosage
or sub-optimal timing of 3β-Diol administration occurred in the initial study. When male
copulatory behavior was assessed following castration, it was found that castrates treated with
testosterone propionate maintained their ejaculatory ability and that the refractory period
between ejaculations remained relatively constant (Parrott, 1975). However, only a small
portion of castrated males, treated with 3ß-Diol alone, showed ejaculatory behavior, and of
these, the refractory period between ejaculations was greatly increased (Parrott, 1975). It was
subsequently found that dihydrotestosterone treatment can, in fact, restore mounting and
ejaculatory behaviors in some animals (Paup et al., 1975; Baum and Vreeburg, 1976). These
findings were attributed, in part, to the conversion of dihydrotestostorone to 3ß-Diol.

Based on our recent data showing that 3β-Diol treatment can inhibit the hormonal response to
stress in rodent models (Lund et al., 2004a, 2006), we investigated the possibility that
administration of 3ß-Diol can also elicit a decrease in anxiety-related behaviors in a manner
similar to ERbeta agonists. Previous studies have shown that ERbeta agonists such as DPN
can prevent anxiety related behaviors in female and male rats (Lund et al., 2005). Because
3β-Diol can selectively bind ERbeta, these results predict that 3ß-Diol may similarly act to
decrease anxiety-related behaviors in rats. To test this hypothesis, gonadectomized female rats
were tested in the elevated plus maze (EPM) following treatment with DHT, DPN, 3ß-Diol or
VEH. The EPM is a standardized test for anxiolytic actions of pharmacological compounds.
Substances with anxiety-reducing activity will increase a number of parameters of the EPM
including time spent on the open arms of the maze, rearing and other exploratory activity.

Initial findings indicate that 3ß-Diol does indeed decrease anxiety-related behaviors in female
rats in a manner similar to DPN (Figure 5). Briefly, adult gonadectomized female rats were
treated once daily for 5 days with DHT, DPN, 3ß-Diol or vehicle and tested for anxiety-like
behavior using the EPM paradigm. We found that female rats treated with 3ß-Diol spent a
significantly greater percentage of time in the open arms and displayed more head dips while
on the open arm as compared to all other groups, with the exception of DPN treated females.
In addition, both 3ß-Diol- and DPN- treated females exhibited significantly more open arm
entries as compared to their dihydrotestosterone and vehicle treated counterparts. These data
argue that, similar to the actions of DPN, 3β-Diol can act as an agonist for ERbeta to reduce
anxiety related behaviors. Future studies targeted at the downstream mechanisms of ERbeta
and incorporating other behavioral endpoints are still required to completely interpret such
findings.

OTHER ROLES FOR 3BETA -DIOL IN BRAIN FUNCTION
Because of its ability to bind and activate ERbeta, 3β-Diol could also be involved in a number
of other neural functions. Mouse models where ERbeta has been knocked out have implicated
this receptor in controlling behaviors such as anxiety (Osterlund et al., 2005, Krezel et al.,
2001) and cognitive function (Fugger et al., 2000) as well as sexual differentiation of the brain
(Kudwa et al. 2006). Another interesting possibility is that 3β-Diol could mediate some of the
observed effects of androgens on the hypothalamo-pitutiary-gonadal (HPG) axis. Puberty is
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delayed and fertility is suboptimal in male ERbeta-null mice (Temple et al., 2003), providing
some evidence that ERbeta is a potential regulatory component of the reproductive axis. In the
brain, gonadotropin-releasing hormone (GnRH) is the primary upstream regulator of
reproductive function and it is well accepted that testosterone and estradiol exert tight control
over the negative feedback pathways that regulate GnRH synthesis and release. However, since
initial efforts aimed at detecting AR and ER in GnRH neurons failed (Huang and Harlan,
1993, Shivers et al., 1983),, many investigators concluded that the effects of steroid hormones
on GnRH were mediated indirectly (Herbison et al., 1995; Herbison and Theodosis, 1992;
Lehman and Karsch, 1993). However, the identification of ERbeta resurrected this long-
standing hypothesis, as several laboratories subsequently showed the co-expression of GnRH
and ERβ (Hrabovszky et al., 2000; Hrabovszky et al., 2001; Kallo et al., 2001; Skynner et al.,
1999). Nonetheless, evidence for a functional role for ERbeta in regulating GnRH neuronal
function in vivo is still forthcoming. Functionally, ERbeta increased GnRH promoter activity
in the GnRH-producing cell line, GT1−7 (Pak et al., 2006). Although the effects of ERbeta on
the GnRH promoter were largely ligand-independent, this does not preclude the possibility that
3β-Diol could further augment the ligand-independent increase, as this effect has been observed
to occur with the AVP promoter (Pak et al., 2007). Moreover, studies using the GT1 cell line
have demonstrated their ability to efficiently convert testosterone to dihydrotestosterone and
the metabolite 3α-Diol (Poletti et al., 1994) which suggests that GnRH neurons might also
express the functional enzymes necessary to convert dihydrotestosterone in situ.

HPA ALTERATIONS IN CLINICAL DISORDERS
Major Depressive Disorder, (MDD) is a major public health concern with substantial economic
and social burden (Murray, 1997; Ustun, 2004). During their lifetime, women are up to 2.5
times more likely than men to be diagnosed with MDD (Kessler, 2003; Fava & Kendler 2006).
Further, women have a significantly higher heritability of MDD than men and some genes and/
or environmental influences associated with MDD may be sex-specific (Kendler et al. 2006;
Kendler et al 2001). Clinical studies of depressed patients show gender differences that arise
at adolescence as reflected by an increased incidence of MDD in girls and decreased incidence
in boys. Studies of prepubertal children show no sex differences in frequency whereas by age
15 there is a female predominance (Angold and Worthman, 1993). Changes in the incidence
of depression coincide with the hormonal and physical changes occurring at puberty. However,
physical changes of puberty do not necessarily correlate with the onset of depressive state,
whereas hormonal changes may (Angold and Worthman, 1993; Brooks-Gunn and Warren,
1989). Thus, these data suggest that hormone sensitivity may be an etiological factor that
confers susceptibility to depression and anxiety.

Clinical and preclinical studies provide evidence showing a causal link between the
dysregulation of the HPA axis and pathology. Depressed patients have increased ACTH and
cortisol secretory responses (Rubin et al, 1987) and elevated cortisol and CRH in CSF
(Nemeroff et al. 1984). In addition, 20−50% of depressed patients are dexamethasone (DEX)
non-suppressors (e.g. DEX suppresses ACTH and cortisol to a much less extent than healthy
controls). Moreover, a combination of DEX suppression and CRH stimulation can distinguish
90% or greater of depressed patients from non-depressed controls (Heuser et al., 1994) as
depressed patients require a higher DEX dosage to suppress ACTH and cortisol following CRH
infusion. Furthermore, the administration of AVP and DEX to normal patients prior to CRH
administration results in a hormone response similar to those following CRH stimulation of
DEX-only pretreated depressives (von Bardeleben and Holsboer et al., 1985). Thus, it has been
proposed that AVP is elevated in portal blood of depressed patients and that AVP causes HPA
hyperactivity during depressive states (von Bardeleban and Holsboer, 1989). Clinical studies
have also addressed the hypothesis that AVP is associated with depressive state. Raadsheer et
al. (1994) showed that the PVN of depressed patients contains 4 times the number of CRH
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expressing cells and 3 times the number of CRH neurons that coexpressed AVP as compared
to normal controls. Similarly, the number of AVP-ir neurons is increased in the PVN of
depressed patients (Purba et al., 1996). Thus, a working model is that reduced glucocorticoid
feedback in depressed patients results in an escape of the vasopressinergic system from
inhibition and thereby augments HPA activity, particularly following a stressor. A role for
ERbeta and 3β-Diol in the regulation of HPA reactivity, may provide another level of
complexity to this system, but also provide a potential biological handle for studies examining
treatment of such disease states. Unfortunately, at present, no studies have examined a role for
3β-Diol in human affective disorders.

SUMMARY
Increasing data indicate that the potent androgen, dihydrotestosterone, can be metabolized to
3β-Diol, a steroid that can selectively bind ERbeta. Because of its ability to bind ERbeta, 3β-
Diol can act to inhibit hormonal responses to stress and stress related behaviors. It remains to
be determined whether androgen metabolites that selectively bind ERbeta, but with limited
androgenic properties, may be useful pharmacological tools in the treatment of behavioral
disorders that involve hyperreactivity of the HPA axis. Nonetheless, increasing data have now
demonstrated that dihydrotestosterone's activity may not occur solely through its activation of
androgen receptors. Further consideration of potential estrogenic actions of DHT metabolites
are likely important for interpretation of a growing literature regarding the non-reproductive
actions of sex steroid hormones.
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HPA, hypothalamo-pituitary-adrenal
-ir, immunoreactivity
MDD, major depressive disorder
MPOA, medial preoptic area
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OXY, oxytocin
PPT, propylpyrazoletriol
PVN, paraventricular nucleus
3α-Diol, 5alpha androstane 3alpha, 17beta diol
3α-HSD, 3alpha hydroxysteroid dehydrogenase
3β-Diol, 5alpha androstane-3beta, 17beta diol
3β-HSD, 3 beta hydroxysteroid dehydrogenase
17β-HSD, 17 beta hydroxysteroid dehydrogenase
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Figure 1.
Diagram depicting central dogma concerning the actions of testosterone through metabolism
by aromatase to estradiol or 5-alpha reductase to dihydrotestosterone. A novel mechanism of
action for dihydrotestosterone is outlined by dotted lines. According to this hypothesis,
dihydrotestosterone is converted to the estrogen receptor beta binding molecule, 3β-Diol (5α-
androstan-3β, 17β-diol) by the combined actions of the enzymes 3 alpha hydroxysteroid
dehydrogenase (3α-HSD), 3beta hydroxysteroid dehydrogenase (3β-HSD) or 17beta
hydroxysteroid dehydrogenase (17β-HSD). The actions of 3β-Diol can be reduced by their
further metabolism to the inactive compounds, 6-, or 7- triol by the enzyme cyp7b1. The
molecule, 3α-Diol undergoes a bidirectional conversion from DHT by 3α-HSD and as such
can act as a sink for further production of DHT.
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Figure 2.
Diagram depicting synthetic pathway for androgens from cholesterol precursor. Bold lettering
denotes the common or chemical name of the hormone, italics indicates enzyme required for
the conversion of precursor to product. Arrows indicate the direction in which the reaction
proceeds.
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Figure 3.
Plasma corticosterone levels in gonadectomized male mice following restraint stress. Animals
were treated subcutaneously with oil (veh), dihydrotestosterone propionate (DHT, 1 mg/kg
BW) 3β-Diol (1 mg/kg BW) or estradiol benzoate (25 ug/kg BW) daily for 4 days. On the
fourth day, animals were restrained for 30 min. All stress groups were significantly increased
versus non stressed controls. * indicates those groups with post stress corticosterone levels
significantly reduced versus vehicle controls (p<0.05). ** indicates group with post stress
corticosterone levels significantly elevated versus vehicle controls (p<0.05). Each bar
represents the mean +/− SEM of 8 animals. Figure adapted from Lund et al., 2004.
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Figure 4.
Effects of ERbeta splice variants on AVP promoter activity. Cotransfection of SK-N-SH cells
with the full-length AVP promoter (5.5 kb) – luciferase reporter construct and an expression
vector containing 1.0 ug/well of ERbeta1, ERbeta1,delta3, or ERbeta2. After transfection, cells
were treated with 0.009% ETOH (vehicle), 100 nM estradiol, 100 nM dihydrotestosterone, or
100 nM 3β-Diol for 15 hrs. Data are represented as percent change +/− SEM in relative light
units from vehicle treated empty vector controls (p<0.05). * indicates significant difference
from empty vector controls. # indicates significant difference among groups (p<0.05). Figure
adapted from Pak et al., 2007.
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Figure 5.
Mean percentage of time (± SEM) spent on the open arms of the elevated plus maze along with
the percentage of entries onto the open arm (B) during a 5 minute testing period. Panel C
represents the mean number (± SEM) of head dips displayed by animals within each treatment
group. One week following ovariectomy, all subjects (n=10/group) received 5 daily s.c.
injections of either 5a- androstan-3ß, 17ß-diol (3ß-Diol; 1mg/kg), diarylpropionitrile (DPN;
2mg/kg), dihydrotestosterone (DHT; 1mg/kg) or vehicle (VEH). Behavioral testing
commenced 4 hours after the fifth injection. * indicates significant difference from both VEH
and DHT groups (p<0.05)
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