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Abstract
Modeling the change in the electrostatics of organic molecules upon moving from vacuum into
solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values
for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy;
however, it has generally been difficult to determine these quantities for a polar molecule in water.
A theoretical approach introduced by Onsager used vacuum properties of small molecules, including
polarizability, dipole moment and size, to predict experimentally known permittivities of neat liquids
via the Poisson equation. Since this important advance in understanding the condensed phase, a large
number of computational methods have been developed to study solutes embedded in a continuum
via numerical solutions to the Poisson-Boltzmann equation (PBE). Only recently have the classical
force fields used for studying biomolecules begun to include explicit polarization in their functional
forms. Here we describe the theory underlying a newly developed Polarizable Multipole Poisson-
Boltzmann (PMPB) continuum electrostatics model, which builds on the Atomic Multipole
Optimized Energetics for Biomolecular Applications (AMOEBA) force field. As an application of
the PMPB methodology, results are presented for several small folded proteins studied by molecular
dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each
protein increased on average by a factor of 1.27 in explicit water and 1.26 in continuum solvent. The
essentially identical electrostatic response in both models suggests that PMPB electrostatics offers
an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications,
including binding energies, conformational analysis, and pKa prediction. Introduction of 150 mM
salt lowered the electrostatic solvation energy between 2–13 kcal/mole, depending on the formal
charge of the protein, but had only a small influence on dipole moments.

I. INTRODUCTION
Modeling the change in the electrostatic moments of organic molecules upon moving from
vacuum to solvent has a long history, with an important initial contribution from Onsager, who
in 1936 identified the difference between the cavity field and reaction field.1 The approach
used was to treat the solvent as a high dielectric continuum surrounding a spherical, low
dielectric solute with a dipole moment, which was considered to be a sum of permanent and
induced contributions. Using the vacuum dipole moment, molecular polarizability, and an
estimate of molecular size, a prediction of the experimentally observable liquid permittivity
was achieved for a range of molecules. Through the use of computers, this approach has been
extended in order to treat solutes with arbitrary geometry and charge distributions by
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numerically solving the Poisson-Boltzmann equation using finite-difference, finite element
and boundary element methods.2 An advantage of using a continuum solvent over explicit
representation of solvent molecules is alleviation of the need to sample over water degrees of
freedom in order to determine the mean solvent response. Applications that have benefited
from using continuum solvent approaches include predictions of pKas, redox potentials,
binding energies, molecular design, and conformational preferences.

An accurate implicit solvation model does not necessitate any loss of solute thermodynamic
information.3 For most implicit solvent models, the total solvation energy Δ Wsolvation as a
function of solute conformation is separated into contributions due to nonpolar Δ Wnp and
electrostatic Δ Welec effects

(1)

Here we concentrate on the electrostatic contribution, motivated by recent work on improving
the accuracy of force field electrostatic models through the incorporation of polarizable
multipoles.4–7 This requires revisiting the theory underlying the electrostatic component of
implicit solvent models, including those based on solving the linearized Poisson-Boltzmann
equation (LPBE)

(2)

where the coefficients are a function of position r, Φ(r) is the potential, ε(r) the permittivity,
κ̄2(r) the modified Debye-Hückel screening factor and ρ(r) is the solute charge density. For an
introduction to Poisson-Boltzmann based methodology and applications, see the review of
Honig and Nichols8 or those of Baker.2,9

In spite of the fact that the dipole moment of a polar solute can increase by 30% or more during
transfer from gas to aqueous phase, empirical potentials have typically neglected explicit
treatment of polarization for reasons of computational efficiency. However, ab initio implicit
solvent models, including the Polarizable Continuum Model (PCM) introduced in 1981 by
Miertus, Scrocco and Tomasi10,11, the Conductor-Like Screening Model (COSMO) of
Klamt12, the distributed multipole approach of Rinaldi et al.13 and the SMx series of models
introduced in the early 90s by Cramer and Truhlar14 have long incorporated self-consistent
reaction fields (SCRF).10,15 These models allow the solute, described using a range of ab
initio or semi-empirical levels of theory, and continuum solvent to relax self-consistently based
on their mutual interaction. The principle advantage of the present PMPB model over these
existing formulations is computational savings resulting from a purely classical representation
of the solute Hamiltonian, which facilitates the study of large systems. However, each of these
models demonstrates that there continues to be broad interest in coupling highly accurate solute
potentials with a continuum treatment of the environment.

For example, there is growing evidence that current goals of computational protein design,
including incorporation of catalytic activity and protein-protein recognition, may require a
more accurate description of electrostatics than has been achieved by fixed partial charge force
fields used in conjunction with implicit solvents.16 For example, it has been shown that both
Poisson-Boltzmann and generalized Born models used with the CHARMM2217 potential tend
to favor burial of polar residues over non-polar ones.18 It is important to note that this behavior
may not be directly due to the treatment of solvation electrostatics, but could result from
inaccuracies in the underlying protein force field or the nonpolar component of the solvation
model. However, the fixed charge nature of traditional protein potentials may also contribute
to such discrepancies. Polar residues elicit a solvent field that increases their dipole moment
via polarization relative to a nonpolar environment, which has a favorable energetic
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consequence that cannot be captured by a fixed charge force field even when using explicit
water.

Along with the AMOEBA force field, other efforts toward developing polarizable force fields
for biomolecular modeling are also under way, for example see the review of Ponder and Case.
7 Here we comment more thoroughly on the Polarizable Force Field (PFF) of Maple and
coworkers,19 since it has recently been incorporated into a continuum environment.
Specifically, there are a number of salient differences between AMOEBA and PFF, including
facets of the underlying polarization model and the use of permanent quadrupoles in
AMOEBA. Significantly, AMOEBA allows mutual polarization between atoms with 1–2, 1–
3 and 1–4 bonding arrangements, which is crucial for reproducing molecular polarizabilities.

The current work addresses a number of issues raised in the description of the PFF solvation
model. First, discretization procedures previously reported for mapping partial charges onto a
source grid are inadequate for higher order moments. Instead, we present a multipole
discretization procedure using B-splines that leads to essentially exact energy gradients.
Furthermore, we provide a rigorous demonstration of the numerical precision of our approach,
similar in spirit to the work of Im et al. with respect to partial charge models.20 We also show
that divergence of the polarization energy is not possible due to use in AMOEBA of Thole-
style damping at short range.21

Formulation of consistent energies and gradients based on the LPBE has been reported
previously for partial charge force fields.20,22–24 Gilson et al. pointed out limitations in
previous approaches using variational differentiation of an electrostatic free energy density
functional.23 Later Im et al. showed that it is possible to begin the derivation based upon the
underlying finite-difference calculation used to solve the LPBE.20 This approach leads to a
formulation with optimal numerical consistency and will be adopted here.

II. BACKGROUND
In order to describe the total electrostatic energy of the PMPB model, specifically of an
AMOEBA solute in a LPBE continuum solvent, it is first necessary to present the energy in
vacuum using a convenient notation. We will also summarize the previously developed
procedure for determining robust energies and gradients for fixed charge force fields in a LPBE
continuum.20,23 Given this background, the theoretical infrastructure required to implement
the PMPB model is motivated and presented in a self-contained fashion.

A. AMOEBA vacuum electrostatic energy
Following Ren and Ponder5, each permanent atomic multipole site can be considered as a
vector of coefficients including charge, dipole and quadrupole components

(3)

where the superscript t denotes the transpose. The interaction energy between two sites i and
j separated by distance sij can then be represented in tensor notation as
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(4)

Each site may also be polarizable, such that an induced dipole μi proportional to the strength
of the local field is present

(5)

Here αi is an isotropic atomic polarizability and Ei is the total field, which can be decomposed
into contributions from permanent multipole sites and induced dipoles, and the summations
are over Ns multipole sites. Later, this expression will be modified to include the solvent

reaction field. The interaction tensors  and  are, respectively,

(6)

and

(7)

where the subscript d in  indicates that masking rules for the AMOEBA group-based
polarization model are applied.4–7 This linear system of equations can be solved via a number
of approaches, including direct matrix inversion or iterative schemes such as successive over-
relaxation (SOR). Note at short range the field is damped via the Thole model, which is not
included above for clarity and is discussed elsewhere.5 The total vacuum electrostatic energy

 includes pairwise permanent multipole interactions and many-body polarization

(8)

where the factor of one-half avoids double-counting of permanent multipole interactions in the
first term and accounts for the cost of polarizing the system in the second term. Furthermore,
M is a column vector of 13Ns multipole components

(9)
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T is a Ns × Ns supermatrix with Tij as the off-diagonal elements

(10)

μv is a 3Ns column vector of converged induced dipole components in vacuum

(11)

and  is a 3Ns × 13Ns supermatrix with  as off-diagonal elements

(12)

The subscript p denotes a tensor matrix that operates on the permanent multipoles to produce
the electric field in which the polarization energy is evaluated, while the subscript d was used
above to specify an analogous tensor matrix that produces the field that induces dipoles. The
differences between the two are masking rules that scale short-range through-bond interactions
in the former case and use the AMOEBA group-based polarization scheme for the later.4

B. LPBE energies and gradients for fixed partial charge force fields
LPBE solvation energies and gradients have been determined previously by a number of groups
for fixed partial charge force fields.22,23 We will briefly restate the results of Im et al. to
introduce the approach extended here for use with the PMPB model.20 The solvation free
energy Δ G of a permanent charge distribution is

(13)

where q is a column vector of fractional charges,  is the transpose of a column vector
containing the electrostatic potential of the solvated system and  is the corresponding vacuum
potential. The number of components in each vector is equal to the number of grid points used
to represent the system. In the present work the grid will always be cubic, and as discussed in
the section on multipole discretization must use equal grid spacing in each dimension, although
the number of grid points along each axis can vary. The potential can be determined numerically
using a finite-difference representation of the LPBE20,25,26, which can be formally defined
as a linear system of equations

(14)

Schnieders et al. Page 5

J Chem Phys. Author manuscript; available in PMC 2008 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where A is a symmetric matrix that represents the linear operator (differential and linear term).
An equivalent, but more cumbersome representation that makes clear the underlying finite-
difference formalism is given in the Appendix. Solving Eq. (14) for the potential

(15)

highlights that A−1 is the Green’s function with dimensions Nr × Nr, where Nr is the number
of grid points. By defining the Green’s function for the solvated  and  homogeneous
cases, the electrostatic hydration free energy is

(16)

The derivative with respect to movement of the γ coordinate of atom j is

(17)

This expression can be simplified by noting that the derivative of the homogeneous Green’s
function is zero everywhere

(18)

and the derivative of the solvated Green’s function can be substituted for using a standard
relationship of matrix algebra.

(19)

Finally, due to the symmetry of the Green’s function, the first and third terms of Eq. (17) are
equivalent

(20)

Using the relationships in Eqs. (18 – 20), Eq. (17) becomes

(21)

Finally, the two products of Green’s functions with source charges in the second term on the
right-hand side can be replaced by the resulting potentials using Eq. (15) to give

(22)

In the limit of infinitesimal grid spacing and infinite grid size, it was shown that this solution
is equivalent to the forces derived by Gilson et al.20,23 To generalize this result for permanent
atomic multipoles, the derivative ∂q/∂sj,γ remains to be defined and is discussed below.
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Additionally, all moments except the monopole are subject to torques, which are equivalent to
forces on the local multipole frame defining sites.

III. METHODOLOGICAL DEVELOPMENTS
Based on the AMOEBA electrostatic energy in vacuum and previous work in obtaining the
energy and gradients for a solute represented by a fixed partial charge force field described
above20, we now derive the formulation needed to describe the electrostatic solvation energy
within the PMPB model. First, we consider the steps necessary to express the LPBE on a grid,
including discretization of the source multipoles or induced dipoles, assignment of the
permittivity, assignment of the modified Debye-Hückel screening factor and estimation of the
potential at the grid boundary. A variety of techniques are available to solve the algebraic
system of equations that result, although this work uses an efficient multigrid approach
implemented in PMG26 and used via the APBS software package.27 Second, given the
electrostatic potential solution to the LPBE, we describe how to determine the electrostatic
solvation energy and its gradient. In fact, at least four LPBE solutions are required to determine
the PMPB electrostatic solvation energy, and at least six to determine energy gradients. For
comparison, fixed charged models typically require at most two LPBE solutions, the vacuum
and solvated states, as outlined in the previous background section, although formulations that
eliminate the self-energy exist.28 The reasons and implications for the increased number of
solutions of the LPBE required for the PMPB model will be discussed below.

A. Atomic multipoles as the source charge density
An important first step to expressing the LPBE in finite-difference form is discretization of an
ideal point multipole onto the source charge grid. We begin by recalling that an ideal multipole
arises from a Taylor series expansion of the potential in vacuum at a location R due to n charges
near the origin, each with a magnitude and position denoted by ci and ri, respectively.29

(23)

In performing the expansion, the convention for repeated summation over subscripts is utilized
and we truncate after second order

(24)

where the α and β subscripts each denote an x-, y- or z-component of a position vector or
differentiation with respect to that coordinate. Based on this expansion, the monopole q, dipole
d, and traceless quadrupole Θ moments are defined as

(25)

There are various ways to define the quadrupole moment because only five quadrupole
components are independent. This particular formulation ensures that the diagonal components
are traceless, which simplifies many formulae because summations over the trace vanish.29
Substitution into the potential gives
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(26)

The reverse operation, representation of an ideal multipole by partial charges at grid sites (or
charge density over finite volumes), is degenerate. However, some necessary properties reduce
the space of practical solutions. These include local support (region of non-zero values on the
grid) and smooth derivatives for the change in charge magnitude due to movement of a
multipole site with respect to the grid. For fixed partial charges a normalized cubic basis spline,
or B-spline, has been used successfully for discretizing monopole charge distributions (delta
functions) on finite difference grids. For quadrupole moments at least 4th order continuity is
required such that a normalized 5th order B-spline N5 (x), which is a piecewise polynomial
(Fig. 1), is appropriate.30

(27)

The sum of this function evaluated at any five evenly spaced points between 0 and 5 is unity.
The second part of the Appendix gives a rigorous demonstration that B-splines satisfy the
properties of the delta functional and therefore can be used to implement a gradient operator.

To illustrate this approach, the fraction of charge that a grid point with coordinates ri will
receive from a charge site with coordinates sj will now be described. We use r to denote an
Nr × 3 matrix containing all grid coordinates, while s is an Ns × 3 matrix containing the
coordinates of multipole sites. Elements of both matrices will be specified using two subscripts,
the first is an index and the second is a dimension. We first consider the x-dimension, which
requires the relative distance of nearby y-z planes from the charge site in dimensionless grid
units (ri,x − sj,x)/h, where h is the grid spacing. The B-spline domain is centered over the charge
site by shifting its domain from [0,5] to [−2.5,2.5] by adding 2.5 to its argument. Therefore,
the weights of the 5 closest y-z planes to the charge site will be nonzero and sum to 1, where
each weight is given by

(28)

If the charge site is located on a y-z grid plane, then the maximum of the B-spline will be
assigned to that plane. Repeated partitioning in the y- and z-dimensions leads to a tensor product
description of the charge density

(29)

A further useful property of nth order B-splines is that their derivative can be formulated as a
linear combination of n-1 order B-splines.30

(30)

For example, the first derivative of the normalized 5th order B-spline can be constructed from
two of 4th order, suggesting a dipole basis (or gradient stencil) for determining the electric field
from the potential grid as shown in Fig. 2.
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(31)

Similarly, the 2nd derivative can be constructed from a linear combination of 3rd order B-
splines, suggesting an axial quadrupole basis as well as an axial 2nd potential gradient stencil
as in Fig. 3.

(32)

For notational convenience we define a matrix B with dimension Nr × Ns which is used to
convert a collection of Ns permanent atomic multipole sites into grid charge density over the
Nr grid points

(33)

Only 125 entries per column will have non-zero coefficients, due to each multipole being
partitioned locally among 53 grid points.

Given the matrix B, the charge density at all grid points due to the permanent multipoles of an
AMOEBA solute is

(34)

where q, dx, dy, dz, Θxx, Θxy, Θxz, …, Θzz are column vectors and h normalizes for grid size.
This is, in effect, the inverse operation to the original Taylor expansion by which the multipole
moments were defined from a collection of point charges. All atomic multipole moments are
exactly conserved to numerical precision as long as equal grid spacing is used in each
dimension. While most finite difference methods can be generalized to non-uniform Cartesian
meshes26, the nature of traceless multipoles requires uniform Cartesian mesh discretizations.
If unequal grid spacing is used, then the trace will be nonzero due to inconsistent coupling
between the axial quadrupole components.

The gradient of the charge density at grid sites with respect to an atomic coordinate can be
written

(35)

A more compact notation is needed for derivations presented below, and can be achieved by
defining a matrix TB of size Nr × 13Ns

(36)

The matrix product Φt TB, where Θ is a column vector of length Nr containing the potential
from a numerical solution to the LPBE, produces the same tensor components (i.e., the

Schnieders et al. Page 9

J Chem Phys. Author manuscript; available in PMC 2008 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



potential, field and field gradient) as Mt T in Eq. (8) for the AMOEBA vacuum electrostatic
energy. Using this notation allows manipulation of reaction potentials and intramolecular
potentials to be handled on equal footing. The same approach is appropriate for induced dipoles.

There is a trade-off between higher order B-splines and the goal of maintaining the smallest
possible support for the multipoles. As the support grow s, the charge density is less
representative of the ideal multipole limit. Additionally, placement of solute charge density
outside the low-dielectric cavity should be avoided. This restriction of charge density to the
solute interior places an upper bound on acceptable grid spacings for use with finite difference
discretizations of higher-order B-splines. If, for example, the solute cavity for a hydrogen atom
ends approximately 1.2 Å from its center, then the maximum recommended grid spacing when
using 5th order B-splines is 0.48 Å (1.2/2.5), whereas for third order B-splines a value of 0.80
Å is reasonable (1.2/1.5). Therefore, the use of quintic B-splines requires a smaller upper bound
on grid spacing than cubic B-splines.

B. Permittivity and modified Debye-Hückel screening factor
The permittivity ε(r) and modified Debye-Hückel screening factor κ̄2(r) functions are defined
through a characteristic function H(ri,s), where ri represents the coordinates of a grid point and
s the coordinates of all multipole sites. Inside the solute cavity the characteristic function is 0,
while in the solvent it is 1. For the homogeneous calculation the permittivity is set to unity
over all space, while for the solvated state it takes the value 1 inside the solute, εs in solvent,
and intermediate values over a transition region

(37)

The modified Debye-Hückel screening factor is zero everywhere for the vacuum calculation
and for the solvated calculation is defined by

(38)

where  is the modified bulk screening factor and is related to the ionic strength and

. Here qi ci are the charge and number concentration of mobile
ion species i, respectively, kB is the Boltzmann constant and T the absolute temperature. The
characteristic function itself can be formulated as the product of a radially symmetric function
applied to each solute atom

(39)

where Hj(r) must allow for a smooth transition across the solute-solvent boundary to achieve
stable Cartesian energy gradients.20,31 This is a result of terms that depend on the gradient of
the characteristic function with respect to an atomic displacement. A successful approach to
defining a differentiable boundary is the use of a polynomial switch Sn(r) of order n, although
other definitions have been suggested based on atom centered Gaussians.32 For any atom j,
Hj(r) takes the form

(40)
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where b is the beginning of the transition between solute and solvent and e the end of the
transition. For the permittivity, the switch begins and ends at

(41)

where σj is the radius of atom j and w indicates how far the smoothing window extends radially
inward and outward. For the modified Debye-Hückel screening factor the radius of the largest
ionic species σion is also taken into account

(42)

For fixed partial charge force fields, a cubic switch S3 has been used with success. However,
a characteristic function with higher order continuity has been found to improve energy
conservation at a given grid spacing. Table V reports representative examples of this effect.
By using a 7th order polynomial switch S7,

(43)

the first three derivatives of the characteristic function can be constrained to zero at the
beginning and end of the switching region. The cubic, quintic and heptic volume exclusions
functions are shown in Fig. 4.

C. Boundary conditions
Single Debye-Hückel (SDH) and multiple Debye-Hückel (MDH) boundary conditions for a
solute are two common approximations to the true potential used to specify Dirichlet boundary
conditions for non-spherical solutes described by a collection of atomic multipoles.2 SDH
assumes that all atomic multipole sites are collected into a single multipole at the center of the
solute, which is approximated by a sphere. MDH assumes the superposition of the contribution
of each atomic multipole considered in the absence of all other sites that displace solvent.
Therefore, to construct the Dirichlet problem for a solute described by an arbitrary number of
atomic multipole sites, the potential outside a solvated multipole located at the center of a
sphere is required.

For solvent described by the LPBE

(44)

a solution was first formulated by Kirkwood.33 This form of the LPBE is simplified relative
to Eq. (2) since there is no fixed charge distribution and no spatial variation in either the
permittivity or Debye-Hückel screening factor. Inside the cavity, the Poisson equation is
obeyed
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(45)

where the charge density ρ(r) may contain moments of arbitrary order. The boundary
conditions are enforced by requiring the potential and dielectric displacement to be continuous
across the interface between the solute and solvent via

(46)

(47)

respectively. Additional requirements on the solution are that it be bounded at the origin and
approach an arbitrary constant at infinity, usually chosen to be zero.

In presenting the solution, it is convenient for our purposes to continue using Cartesian
multipoles, rather than switching to spherical harmonics, although there is a well-known
equivalence between the two approaches.34 The potential at r due to a symmetric, traceless
multipole in a homogeneous dielectric ε is

(48)

where rij = ri − sj might be the difference between a grid location and a multipole site. The
potential inside the spherical cavity is the superposition of the homogeneous potential and the
reaction potential

(49)

where I is the identity matrix and Rin is a diagonal matrix with diagonal elements

(50)

that are based on coefficients for multipoles of order n to be determined by the boundary
conditions

(51)

Similarly, the potential outside the cavity is

(52)

where Rout is a diagonal matrix with diagonal elements

(53)
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based on a second set of coefficients for multipoles of order n also determined by the boundary
conditions

(54)

where kn(x) is the modified spherical Bessel function of the third kind

(55)

Kirkwood first solved Eqs. (44) and (45) subject to the boundary conditions in Eqs. (46) and
(47) to determine αn and βn as

(56)

and

(57)

where  is the derivative of kn(x) and ε ̂ is the ratio of the permittivity in solvent to that inside
the sphere εout/ε.33 We only require the potential outside the cavity to construct SDH and MDH
boundary conditions and therefore we provide specific values of αn and kn through quadrupole
order as shown in Table I. As the ionic strength goes to zero, the Laplace equation is obeyed
in solvent. For multipoles through quadrupole order, the difference between the LPBE and
Laplace potentials outside the cavity are summarized in Table II.

D. Permanent atomic multipole solvation energy and gradient
The PMPB permanent atomic multipole (PAM) solvation energy and gradient are very similar
to those for fixed partial charge force fields. Based on Eqs. (15) and (34) the PAM vacuum,
solvated and reaction potentials are, respectively,

(58)

The expression for the permanent electrostatic solvation energy is then identical to that for a
fixed partial charge force field given in Eqs. (13) and (16), except the source charge density is
based on PAM via qM

(59)

Derivation of the energy gradient is identical to Eqs. (17–22) and yields

(60)

There are, however, some important differences between achieving smooth gradients for a
fixed partial charge force field and one based on PAM. First, as discussed in the section on
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multipole discretization, quadrupoles require at least 5th order B-splines to guarantee
continuous derivatives of the source charge density with respect to movement of a multipole
site

(61)

Second, we have found that if a third order polynomial is used to define the transition between
solute and solvent for purposes of assigning the permittivity and the modified Debye-Hückel
screening factor, energy conservation is achieved only for very fine grid spacing. As discussed
earlier, use of a 7th order polynomial improves energy conservation for coarser grids. Details
of the numerical realization of Eq. (60), including torques, are presented in part 3 of the
Appendix.

E. Self-consistent reaction field
An SCRF protocol is used to achieve numerical convergence of the coupling between a
polarizable solute and continuum solvent. The starting point of the iterative convergence is the
total “direct” field Ed at each polarizable site. This is defined by the sum of the PAM
intramolecular field

(62)

where Td
(1) is analogous to the tensor matrix used in deriving the AMOEBA vacuum energy

in Eq. (12), and the PAM reaction field

(63)

where DB is a matrix of B-spline derivatives of size Nr by 3Ns

(64)

that produces the reaction field at induced dipoles sites given a potential grid. The induced
dipoles are determined as the product of the direct field Ed with a vector of isotropic atomic
polarizabilities α:

(65)

We define the direct model of polarization to consist of induced dipoles not acted upon by each
other or their own reaction field. Although this is a nontrivial approximation, the direct model
requires little more work to compute energies than a fixed partial charge force field since the
limiting factor in both cases is two numerical LPBE solutions. Energy gradients under the
direct model require three pairs of LPBE solutions and are therefore a factor of 3 more
expensive than for a fixed charge solute. The direct model is expected to be quite useful for
many applications. For example, a geometry optimization might utilize the direct polarization
model initially, then switch to the more expensive mutual polarization model described below
as the minimum is approached.
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In contrast to the direct model, the total solvated field E has two additional contributions due
to the induced dipoles and their reaction field,

(66)

for a sum of 4 contributions. The procedure for determining the vacuum, solvated and reaction
potential, respectively, due to the induced dipoles is identical to that of the PAM

(67)

except the source charge density is

(68)

The induced dipoles

(69)

can be determined in an iterative fashion using successive over-relaxation (SOR) to accelerate
convergence.35 The SCRF is usually deemed to have converged when the change in the
induced dipoles is less than 10−2 RMS debye between steps. This generally requires 4–5 cycles
and therefore the mutual polarization model necessitates 8–10 additional numerical solutions
of the LPBE to determine the PMPB solvation energy. Although calculation of the direct
polarization energy is no more expensive than that for fixed multipoles, mutual polarization
energies that depend on SCRF convergence are approximately a factor of 5 more costly.

F. PMPB electrostatic solvation energy
Having described the PAM solvation energy and gradients and our approach for determining
the induced dipoles, it is now possible to discuss the total solvated electrostatic energy for the
PMPB model,

(70)

where Φ is the LPBE reaction potential for the converged solute charge distribution

(71)

The total electrostatic energy in solvent is similar to the vacuum electrostatic energy of Eq.
(8), with an important difference. The vacuum induced dipoles μv change in the presence of a
continuum solvent by an amount represented by μΔ, such that the SCRF induced moments μ
can be decomposed into a sum

(72)

The change in the potential, field, etc. within the solute is not only a result of the solvent
response, but also due to changes in intramolecular polarization. By definition, the electrostatic
solvation energy ΔGelec is the change in total electrostatic energy due to moving from vacuum
to solvent
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(73)

In practice, it is convenient to compute the total solvated electrostatic energy Uelec and vacuum
electrostatic energy  using the SCRF μ and vacuum μv induced dipole moments,
respectively. The electrostatic solvation energy ΔGelec is then determined as the difference.

G. Polarization energy and gradient
As described previously, the induced dipoles are determined using an iterative SOR procedure
until a predetermined convergence criterion is achieved. Since this is a linear system, it is
possible to solve for the induced dipoles directly, which facilitates derivation of the polarization
energy gradient with respect to atomic displacements. Substitution of the reaction potential
due to the induced dipoles μν from Eq. (67) into the expression for the induced dipoles in Eq.
(69) makes clear all dependencies on μ.

(74)

Collecting all terms containing the induced dipoles on the left hand side gives

(75)

For convenience, a matrix C is defined as

(76)

which is substituted into Eq. (75) to show the induced dipoles are a linear function of the PAM
M

(77)

The first term results from the intramolecular interaction tensor  that implicitly contains
the AMOEBA group based polarization scheme, and the second term is the permanent reaction
field.

The polarization energy can now be described in terms of the permanent reaction field and
permanent intramolecular solute field Ep

(78)

To find the polarization energy gradient, we wish to avoid terms that rely on the change in
induced dipoles with respect to atomic displacement. Therefore, the induced dipoles in Eq.
(78) are replaced using Eq. (77) to yield

(79)

By the chain rule, the polarization energy gradient is
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(80)

For convenience a mathematical quantity _ is defined as

(81)

which is similar to μ. We can now greatly simplify Eq. (80) using Eqs. (77) and (81) along

with the identity  to give

(82)

G II. Direct polarization gradient—Under the direct polarization model, C is an identity
matrix whose derivative is zero, and therefore Eq. (82) simplifies to

(83)

The first two terms on the RHS appear in the polarization energy gradient even in the absence
of a continuum reaction field and are described elsewhere.4 The third and fourth terms are
specific to LPBE calculations and will now be discussed. The derivative of the LPBE reaction
field due to permanent multipoles with respect to movement of any atom has a similar form to
the analogous derivative of the potential. Substitution for the field using Eq. (63) into the third
term of Eq. (83) gives

(84)

Substitution of the permanent multipole potential from Eq. (58) into Eq. (84) yields

(85)

which is differentiated by applying the chain rule

(86)

The same simplifications described in Eqs. (18-22) are applied to Eq. (86), except that in this
case the first and third terms are not equivalent and cannot be combined

(87)
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The fourth term on the RHS of Eq. (83) leads to a result analogous to Eq. (87) using similar
arguments

(88)

G III. Mutual polarization gradient—In addition to the implicit difference due to the
induced dipoles being converged self-consistently, the full mutual polarization gradient
includes an additional contribution beyond the direct polarization gradient. Specifically, the
derivative of the matrix C leads to four terms

(89)

The first term on the RHS occurs in vacuum and is described elsewhere4, while the final three
terms are specific to LPBE calculations. Using the simplifications described in Eqs. (18–22)
results in

(90)

Substitution of Eqs. (87), (88) and (90) into Eq. (82) gives the total mutual polarization energy
gradient for an AMOEBA solute interacting self-consistently with the PMPB continuum.

(91)

The first two terms (where each set of square brackets will be considered a single term) are
evaluated even in the absence of continuum solvent, although in this case μ and ν have been
converged in a self-consistent field that includes continuum contributions. The remaining terms
are analogous to those found in Poisson-Boltzmann calculations involving only permanent
electrostatics. The number of LPBE calculations required for evaluation of the energy gradient
includes two for the permanent multipoles and two each for μ and ν at each SOR convergence
step. Further details on the numerical implementation of Eq. (91) can be found in the third
section of the Appendix.

IV. VALIDATION AND APPLICATION
This section presents useful benchmarks for demonstrating the expected numerical precision
of the present work. Our first goal is to compare against analytical results for a source charge
distribution described by a single charge, dipole, polarizable dipole or quadrupole located at
the center of a low dielectric sphere in high dielectric solvent. The transition between solute
and solvent is initially specified using a step function, and then subsequently using a smooth
transition described by a heptic polynomial. We then compare analytic gradients to those
determined using finite-differences of the energy for a variety of two sphere systems to isolate
the reaction field, dielectric boundary and ionic boundary gradients for the permanent multipole

Schnieders et al. Page 18

J Chem Phys. Author manuscript; available in PMC 2008 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



solvation energy, the direct polarization model and the mutual polarization model. Finally, the
method is applied to a series of proteins and comparisons are made to corresponding
simulations in explicit water.

A. Energy
The numerical accuracy of the multipole discretization procedure was studied by comparison
to analytical solutions of the Poisson equation for a monopole, dipole, polarizable dipole and
quadrupole located within a spherical cavity of radius 3.0 Å. The monopole case, or Born
ion36, has a well-known analytical solution

(92)

where q is the charge magnitude, a the cavity radius and ε is the solvent dielectric. For a
permanent dipole, the analogous solution was first determined by Onsager1,

(93)

where d is the dipole vector. For a polarizable dipole, the energy is the sum of two contributions,
the cost of polarization and the energy of the total dipole in the total reaction field37

(94)

where α is the polarizability, d is the permanent dipole and f is the reaction field factor

(95)

The analytic solution for the self-energy of a traceless Cartesian quadrupole can be derived
beginning from the energy of a quadrupole in an electric field gradient

(96)

where we are summing over the subscripts γ and δ, and the factor of 1/3 is due to use of traceless
quadrupoles.29 To determine the needed reaction field gradient, which for the moment will be
assumed to come from any quadrupole component and not necessarily be a self-interaction,
we begin from the reaction potential inside the cavity

(97)

and take the first derivative

(98)

followed by a second differentiation to achieve the reaction field gradient
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(99)

Substituting Eq. (98) into Eq. (95) and taking into account that half the energy is lost due to
polarizing the continuum gives the self-energy of a traceless quadrupole in its own reaction
field gradient

(100)

From Eq. (100), it is seen that all non-self interactions, for example Θxx with Θyy, are zero, and
the quadrupole self-energy is simply the sum of nine terms,

(101)

The first series of numerical tests used a step function at the dielectric boundary rather than
the smooth transition that is required for continuous energy gradients described previously.
This simplification is necessary in order to compare the known analytic results directly with
the numerical solver. In each case, the solution domain was a 10.0 Å cube with the low-
dielectric sphere located at the center. In Table III it is shown that each test case converges
toward the analytic result as grid spacing is decreased.

Our next goal was to determine the energy change due to introduction of a smooth dielectric
boundary with a window width of 0.6 Å. Using a grid spacing slightly less than 0.1 Å, it can
be seen in Table IV that the smooth dielectric boundary increases the solvation energy over
the analogous step function boundary. By increasing the radius of the low dielectric cavity by
approximately 0.2 Å, the energy of the charge, dipole, polarizable dipole and quadrupole can
be adjusted to simultaneously mimic the known analytic results.

B. Energy gradient
Our first goal is to show that the energy gradient is continuous for higher order moments as a
result of using 5th order B-splines. This is seen in Figs. (5) through (7) for a charge, dipole and
quadrupole interacting with a neutral cavity, respectively. It is also clear that the sum of the
forces between the neutral and charged site (and a third reference site that defines the local
multipole frame in the cases of the dipole and quadrupole) is zero, indicating conservation of
energy. Similarly, the reaction field and dielectric boundary gradients of the polarization energy
for both the direct and mutual models are smooth and demonstrate conservation of energy, as
shown in Figs. (8) and (9), respectively. Finally, it is clear that polarization catastrophes are
avoided even when a charged site is moved toward superimposition with a polarizable site,
due to use of a modified Thole model that damps mutual polarization at short range.21

C. The electrostatic response of solvated proteins
As described in the introduction, a motivation for the current work is study of polar
macromolecules by an improved electrostatic model within an empirical molecular mechanics
framework. From explicit water simulations it is possible to measure the total dipole moment
of a solvated protein in a fixed folded conformation by sampling over the water degrees of
freedom. The resulting ensemble average electrostatic response can then be directly compared
to the PMPB model.
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Simulations of five proteins taken from the Protein Databank38 (1CRN39, 1ENH40,
1FSV41, 1PGB42 and 1VII43) were equilibrated under NPT conditions (1 atm, 298 K) using
a standard protocol. Formal charge and system size are given in Table VI. A single snapshot
for each protein system was taken from equilibrated molecular dynamics simulations using the
AMOEBA force field. The protein coordinates were frozen, and sampling of the solvent
degrees of freedom continued for 150 ps under the same NPT conditions, with the first 50 ps
discarded prior to analysis. For all simulations the Berendsen weak coupling thermostat and
barostat were employed with time constants of 0.1 and 2.0 ps, respectively.44 Long range
electrostatics were treated using particle mesh Ewald (PME) summation with a cutoff for real
space interactions of 7.0 Å and an Ewald coefficient of 0.54 Å−1.45 The PME methodology
used tinfoil boundary conditions, a 54 × 54 × 54 charge grid and 6th order B-spline interpolation.
van der Waals interactions were smoothly truncated to zero at 12.0 Å using a switching window
of width 1.2 Å. Simulations were run using TINKER version 4.2.46

The same conformation of each protein studied in explicit water was examined using the LPBE
methodology developed in this work at a range of grid spacings using the direct and mutual
polarization models. In addition, 150 mM electrolyte was used in conjunction with the mutual
polarization model to determine the relative effect of salt on the electrostatic response. The
results are summarized in Table VII. Similar to the analytic test cases, as grid spacing is reduced
the total electrostatic energy rises monotonically toward the converged solution. The total
dipole moments are less sensitive to grid spacing than are the energies, with little change
observed in moving from 0.3 Å to 0.2 Å. Adding 150 mM salt lowers the electrostatic energy
by 1.7–12.5 kcal/mole at the smallest grid spacing studied, with CRN (neutral) and ENH (+7)
showing the smallest and largest response, respectively. The magnitude of the energetic change
indicates that salt concentration plays an important role in protein energetics, especially for
highly charged species. For these calculations we have chosen an ionic radius of 2.0 Å, however
smaller or larger values increase or decrease the energetic response, respectively.

Finally, we compare the increase in dipole moment between the explicit water simulations and
the continuum LPBE environment for each protein. As shown in Table VIII, both the direct
and mutual models lead to total moments that are in good agreement with those found by
molecular dynamics sampling of explicit water degrees of freedom. On average, the dipole
moment increased by a factor of 1.27 in explicit water and 1.26 using the mutual polarization
model. This result, which was achieved without detailed parameterization of atomic radii
(AMOEBA Buffered-14-7 Rmin values were used), indicates that at the length scale of whole
proteins the continuum assumption is justified. Timings and memory requirements for the
LPBE calculations as a function of grid size are shown in Table IX.

V. CONCLUSION
We have presented methodology required to determine the energy and gradient for the
AMOEBA force field in conjunction with numerical solutions to the LPBE, which captures
the electrostatic response of solvent by treating it as a dielectric continuum. The PMPB model
was then applied to a series of proteins that were also studied using explicit water simulations.
The resulting increases in dipole moment found using each approach were in excellent
agreement. This indicates that the continuum assumption is a reasonable approximation at the
length scale of the systems studied here.

Future work will include detailed parameterization of the solute cavity to reproduce small
molecule electrostatic solvation energies. All of the methodology described in this paper is
implemented in the TINKER molecular modeling package. This will facilitate use of the PMPB
model using a variety of algorithms including molecular dynamics, Monte Carlo and a range
of optimization methods. Additionally, parallelization of the LPBE calculations using existing
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approaches in APBS, which have been applied to fixed partial charge models, would be an
important improvement in terms of speed and increasing the size of systems that can be
routinely studied.

The methodology presented here is also expected to be useful for the development of continuum
electrostatics models for coarse grain potentials. For example, Golubkov and Ren have recently
described a generalized coarse grain model based on point multipoles and Gay-Berne
potentials, which saves several orders of magnitude over all atom models.47 We have also
begun to use the PMPB model as a standard of accuracy in the testing of a polarizable analytic
approximation similar in spirit to the generalized Born model, which was recently reviewed
by Feig and Brooks.48
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APPENDIX A: FINITE-DIFFERENCE REPRESENTATION OF THE LPBE
The finite-difference representation of the LPBE for uniform grid spacing is 20,25,26
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(A1)

where h is the grid spacing, Φ (i, j, k) is the electrostatic potential, κ̄2 (i, j, k) is the modified
Debye-Hückel screening factor and q (i, j, k) is the fractional charge. The permittivity is
specified by three separate arrays, εx, εy and εz, where each is shifted along its respective grid
branch such that εx(i, j, k) represents the location (xi + h/2, yi, zi) for the grid point ( xi, yi, zi).
Eq. (A1) is the basis for formulating the LPBE as a linear system of equations, which are
represented compactly by Eq. (14).

APPENDIX B: DEFINITION OF THE DELTA FUNCTIONAL USING B-SPLINES
The delta functional δ is defined by

(A2)

and δ(x − a) = 0 for x ≠ a. An approximate discrete 1-dimensional realization of this definition
(approximate because the width is not infinitesimally small) is

(A3)

where the function W has been defined in Eq. (28) via 5th order B-splines and {x1,…,x5} are
the 5 closest grid points to a. In the limit of infinitesimal grid spacing, the properties of the
Delta functional are met exactly by expressing Eq. (A3) above as a continuous integral

(A4)

where ε > 0. The value at a of any function known to be defined over the grid can then be
determined as

(A5)

and the negative of its gradient as

(A6)

Further differentiations can be found in an analogous fashion, limited only by the continuity
of the B-spline.
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APPENDIX C: IMPLEMENTATION OF THE PERMANENT, DIRECT
POLARIZATION AND MUTUAL POLARIZATION FORCES

After solving the linear system, the permanent electrostatic solvation forces are determined via
Eq. (60), which in the limit of infinitesimal grid spacing becomes 20

(A7)

where γ represents differentiation with respect to either the x-, y- or z-coordinate of atom i.
The three terms on the RHS of Eq. (A7) are usually referred to as the reaction field force,
dielectric boundary force and ionic boundary force, respectively. We briefly review the
implementation of these forces, in order to develop the foundation necessary to discuss
additional details of realizing the polarization forces.

C I. Permanent reaction field force and torque

The γ -component of the “Permanent Reaction Field Force”  for atom i is

(A8)

where Bi is a single column of the B-spline matrix in Eq. (33), di,α is the α -component of the
permanent dipole, Φi,αβ is the αβ component of the quadrupole and the convention for
summation over the α and β subscripts is implied. There is also an associated “Permanent
Reaction Field Torque” , whose x-component is

(A9)

where  is the α -component of the permanent multipole reaction field. The y- and z-
components are analogous, and we note that all torques are equivalent to forces on neighboring
atoms that define the local frame of the multipole.

C II. Direct polarization reaction field force and torque
Similarly, the third term of the polarization gradient given in Eq. (91) results in a “Direct
Polarization Reaction Field Force”

(A10)

while the fifth term we label the “Non-Local Direct Polarization Reaction Field Force”

(A11)

respectively. The label “non-local” is used to denote that the term σ results from omitting or
scaling the contribution to the intramolecular field of permanent multipoles that are in a 1-5
connected or closer, as opposed to the induced dipoles μ that result from the AMOEBA group
based polarization scheme. Additionally, the x-component of the torques,  and
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, on the permanent moments due to the continuum reaction field of μ and ν are,
respectively,

(A12)

and

(A13)

C III. Mutual polarization reaction field force
The last reaction field force results from the seventh term of Eq. (91) and is due to mutual
polarization

(A14)

C IV. Permanent dielectric boundary force
The second term in Eq. (A7), the “Permanent Dielectric Boundary Force”, is determined from
Eq. (A1) as

(A15)

where the partial derivatives of the permittivity depend on Eqs. (37), (39) and the heptic
characteristic function presented in Eqs. (40–43).

(A16)

where Hx and Hxi are the characteristic function of the solute and atom i for the x-branch of
the cubic grid at (xi + h/2, yj, zk), respectively, and the vector ri is the distance from the atomic
center to the grid point.

C V. Direct and mutual polarization dielectric boundary forces
The fourth, sixth and eighth terms in Eq. (91) result in dielectric boundary force components.
For example, the “Direct Polarization Dielectric Boundary Force” is

Schnieders et al. Page 26

J Chem Phys. Author manuscript; available in PMC 2008 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A17)

or

(A18)

where the superscript on the solvated potentials have been exchanged between Eq. (A17) and
Eq. (A18). In other words, both Eqs. (A17) and (A18) are equivalent to numerical precision
and either may be implemented. Analogous expressions for the sixth and eighth terms in Eq.
(91) are referred to as the “Non-Local Direct Polarization Dielectric Boundary Force” and the
“Mutual Polarization Dielectric Boundary Force”, respectively.

C VI. Permanent ionic boundary force
The last term in Eq. (A7), the “Permanent Ionic Boundary Force”, is determined from Eq. (A1)
as

(A19)

using

(A20)

where H and Hi are the characteristic function of the solute and atom i, respectively, and the
vector ri is the distance from the atomic center to the grid point.

C VII. Direct and mutual polarization ionic boundary force
The fourth, sixth and eighth terms in Eq. (91) result in ionic boundary force components. For
example, the “Direct Polarization Ionic Boundary Force” is
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(A21)

Analogous expressions for the sixth and eighth terms in Eq. (91) are termed the “Non-Local
Direct Polarization Ionic Boundary Force” and the “Mutual Polarization Ionic Boundary
Force”, respectively. Note the difference between Eqs. (A19) and (A21); specifically the
potential is squared in Eq. (A19), but is asymmetric in Eq. (A21).
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Figure 1.
Normalized 5th order B-spline on the interval [0, 5].
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Figure 2.
The sum of two 4th order B-splines (dashed) equal the first derivative of a normalized 5th order
B-spline (solid).
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Figure 3.
The sum of three 3rd order B-splines (dashed) equal the second derivative of a normalized 5th
order B-spline (solid).
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Figure 4.
Comparison of cubic, quintic and heptic characteristic functions for an atom with radius 3 Å
using a total window width of 0.6 Å.
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Figure 5.
Analytic and finite-difference gradients for a neutral cavity fixed at the origin and a sphere
with unit positive charge vs. separation. Both spheres have a radius of 3.0 Å and the solvent
dielectric is 78.3. The gradient of the neutral cavity is due entirely to the dielectric boundary
force and cancels exactly the force on the charged sphere.
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Figure 6.
Analytic and finite-difference gradients for a neutral cavity fixed at the origin and a sphere
with dipole moment components of (2.54, 2.54, 2.54) debye vs. separation. Both spheres have
a radius of 3.0 Å and movement of the dipole is along the x-axis. The gradient of the neutral
cavity is due entirely to the dielectric boundary force and cancels exactly the sum of the forces
on the dipole and a third site (that has no charge density or dielectric properties) that defines
the local coordinate system of the dipole.
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Figure 7.
Analytic and finite-difference gradients for a neutral cavity fixed at the origin and a sphere
with quadrupole moment components of (5.38, 2.69, 2.69, 2.69, −2.69, 2.69, 2.69, 2.69, −2.69)
Buckinghams vs. separation. Both spheres have a radius of 3.0 Å and movement of the
quadrupole is along the x-axis. The gradient of the neutral cavity cancels exactly the sum of
the forces on the quadrupole and a third site (that has no charge density or dielectric properties)
that defines the local coordinate system of the quadrupole.
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Figure 8.
Analytic and finite-difference gradients for a neutral, polarizable cavity fixed at the origin and
a sphere with unit positive charge vs. separation using the direct polarization model. Both
spheres have a radius of 3.0 Å. The gradient can be seen to approach zero at a number of points,
notably when the spheres are separated by approximately 1.5 Å leading to a maximum in the
reaction field produced by the charge at the polarizable site, and again when the spheres are
superimposed and the reaction field is zero at the polarizable site.
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Figure 9.
Analytic and finite-difference gradients for a neutral, polarizable cavity fixed at the origin and
a polarizable sphere with unit positive charge vs. separation using the mutual polarization
model. Both spheres have a radius of 3.0 Å and a polarizability of 1.0 Å −3. Note that the mutual
polarization gradients are smaller than those of Figure 8 for the otherwise equivalent direct
polarization model.
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Figure 10.
The dielectric of the solvent and test spheres are both set to 1 in this case, while a salt
concentration of 150 mM is used to isolate the ionic boundary gradients. Analytic and finite-
difference gradients for a neutral, polarizable cavity fixed at the origin (3.0 Å radius) and a
polarizable sphere with a unit positive charge (1.0 Å radius) vs. separation using the mutual
polarization model. Both spheres have a polarizability of 1.0 Å −3, and the ionic radius is set
to zero Å.
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TABLE I
Explicit values for the functions αn(x)and kn(x) up to quadrupole order.

n

0

1

2
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TABLE II
Explicit values of the coefficients used to calculate the potential at the grid boundary of LPBE and PE calculations,
respectively, under the SDH or MDH approximation. The LPBE coefficients reduce to the PE coefficients as salt
concentration goes to zero.

n

0 1

1

2
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TABLE IV
The tests from Table III are repeated using 129 grid points (0.078 Å spacing), however, the transition between solute
and solvent is defined by a 7th order polynomial, which acts over a total window width of 0.6 Å. Increasing the radius
of the low dielectric sphere by approximately 0.2 Å raises the energies to mimic the step function transition results
(kcal/mole).

Radius Increase Charge Dipole Polarizable Dipole Quadrupole

0.0 −58.4926 −6.2126 −6.8202 −2.3555
0.1 −56.4762 −5.5922 −6.0798 −1.9767
0.2 −54.5941 −5.0518 −5.4463 −1.6687
Step Function −54.8024 −5.1134 −5.5180 −1.7038
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TABLE VI
Synopsis of the protein systems studied in explicit and continuum solvent.

Number of Atoms

Protein Formal Charge Protein Protein +Water

CRN 0 642 4980
ENH +7 947 5039
FSV +5 504 6435
PGB −4 855 6143
VII +2 596 4271
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