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BACKGROUND: Although the U.S. Environmental Protection Agency has a long history of using
risk-based approaches for regulatory purposes, pollutant limits for pathogens in biosolids are not
currently based on quantitative risk assessments.

OBJECTIVES: We developed and demonstrated a risk-based methodology for assessing the risk to
human health from exposure to pathogens via biosolids.

MATERIALS: Four models were developed, incorporating direct ingestion, groundwater, and aerosol
exposure pathways. Three sources of environmental data were used to estimate risk: pathogen mon-
itoring of sludge, efficacy of sludge treatment, and pathogen monitoring of biosolids.

RESULTS: Risk estimates were obtainable even for Class A biosolids, where posttreatment monitor-
ing data are below detectable levels, demonstrating that risk assessments for biosolids exposure are
practical. Model analyses suggest that: ) a two-digester design decreases the probability of risks
> 104 compared with one-digester designs, &) risks associated with exposures to groundwater and
aerosol pathways were, in general, lower than exposures to the direct ingestion pathway, and ¢) sec-
ondary transmission can be an important factor in risk estimation.

CONCLUSIONS: The risk-based approach presented here provides a tool to ) help biosolids produc-
ers interpret the results of biosolids monitoring data in terms of its health implications, &) help
treatment plant engineers evaluate the risk-based benefits of operational changes to existing or pro-
jected treatment processes, and ¢) help environmental managers evaluate potential capital improve-
ments and/or land application site placement issues. Regulation of pathogens can now be based on

human health risk in a manner parallel to other water-related risks.
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Treated sewage sludge, referred to as
biosolids, has been used as a soil amendment
for agricultural purposes since the onset of
municipal wastewater treatment, and its use
has intensified over the past 20 years. In
1993, the U.S. Environmental Protection
Agency (U.S. EPA 1993) published the Part
503 rule, which is designed to protect the
public’s health and the environment from
adverse effects of pollutants that may be pre-
sent in biosolids (U.S. EPA 1995). In the
Part 503 rule, pollutant limits for chemical
constituents in biosolids were based on the
results of risk assessments that were con-
ducted to identify what, if any, risks were
associated with the use or disposal of
biosolids. Pollutant limits for pathogens,
however, were not based on risk assessments;
rather, they were based on performance, tech-
nology-based standards, or management and
record-keeping practices intended to protect
human health and the environment. At the
time, the U.S. EPA thought that methodolo-
gies had not been developed sufficiently to
make risk-based calculations, especially given
the lack of exposure data and limitations in
analytical methods (U.S. EPA 1989, 1992,
1995). Here we present an approach to con-
ducting risk assessments associated with
biosolids exposures, given the improved but
still minimal availability of exposure data.

The model as demonstrated herein provides
the necessary framework for microbial risk
assessment, both providing risk estimates and
identifying data gaps that, when filled, will
provide more robust estimates.

The U.S. EPA has a long history of using
risk assessment to inform its regulatory deci-
sion making, specifically to address their
mandate to protect the public from environ-
mental exposures to waterborne enteric
pathogens. The use of risk assessment to
address concerns about water-related risks has
originated partly from well-documented out-
breaks associated with drinking water and
recreational water exposures. Additional con-
cern has been the result of studies of risks in
non-outbreak conditions. For example,
numerous prospective studies have shown a
link between fresh and marine water exposure
through swimming and gastrointestinal ill-
ness. Although no documented scientific evi-
dence indicates that the current Part 503 has
failed to protect the public’s health, polariza-
tion among advocates and critics of the use of
biosolids has increased in recent years, and
this has raised questions about the effective-
ness of the current pathogen standards for
protecting the public. In response to this
polarization, the U.S. EPA requested the for-
mation of a National Research Council
(NRC) committee to review the adequacy of
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the regulations, including the technical basis
of the pathogen requirements for biosolids
and the feasibility of using microbial risk
assessment. The conclusions reached by the
committee were that
there is no documented scientific evidence that
the Part 503 rule has failed to protect public
health. However, additional scientific work is
needed to reduce persistent uncertainty about the

potential for adverse human health effects from
exposure to biosolids. (NRC 2002)

In this article we extend previously published
risk assessment models, using scenario-
specific information from Brooks et al.
(2005) and Eisenberg et al. (2004), to the
analysis of pathogen data from biosolids. The
current model extends these studies in a num-
ber of ways. First, it couples together three
data sources: pathogen data from raw sludge,
treatment process efficacy data, and post
treatment pathogen monitoring data. The use
of all three data sources provides a more
robust approach to risk estimation, in that it
allows for the estimation of risk even when
posttreatment pathogen data are all below the
detectable level. The incorporation of raw
sludge data also provides a way to examine
the effects of variation in influent concentra-
tion on the risk estimate. Explicit modeling
of the treatment process allows for the evalua-
tion of the health impact due to environmen-
tal changes in the context of an existing
treatment process or due to design improve-
ments to the treatment process. Furthermore,

Address correspondence to J.N.S. Eisenberg,
University of Michigan, School of Public Health,
Department of Epidemiology, 109 Observatory,
Ann Arbor, MI 48109 USA. Telephone: (734) 615-
1625. Fax: (734) 998-6837. Email: jnse@umich.edu

Supplemental Material is available online at http://
www.chponline.org/members/2008/10994/suppl.pdf

We thank the members of the project’s Health
Advisory Committee, P. Berger, W. Jakubowski,
G. Kester, S. Pillai, and R. Spear, as well as the mem-
bers of the Project Subcommittee, C. Lue-Hing,
S. Munger, T. Murphy, S. Sedita, J.E. Smith, and
G. Tchobanoglous, for their insightful comments
throughout this project. In particular, we thank
G. Kester and B. Percha for their extensive editorial
comments.

The research on which this manuscript is based was
funded, in part, by the U.S. Environmental Protection
Agency (Cooperative Agreement No. CR-825237)
through the Water Environment Research Foundation
(WERF) (Fund No. 98-REM-01).

The authors declare they have no competing
financial interests.

Received 18 October 2007; accepted 13 March 2008.

727




Eisenberg et al.

even if the posttreatment monitoring data are
below detectable levels, modeling ensures that
risk estimates are consistent with these nonde-
tectable pathogen data. Second, the current
model examines three exposure pathways
(direct, groundwater, and aerosolized) as well
as two population groups (residential and
occupational). Models for transport through
groundwater and air are provided. And
finally, our model provides risk estimates
incorporating both a more streamlined indi-
vidual-level risk model, akin to chemical risk
models, and a dynamic population-level
model that accounts for secondary transmis-
sion and immunity.

Raw sludge data
Data: virus concentration in raw sludge
Estimate u,0?% assume that the data are
described by a lognormal distribution
(estimate nondetects)

|

Treatment process
One or two digesters, with or without
lime treatment. Retention time in
digester is either a first- or second-order
process, with a log removal that is
linear in time. Lime treatment is a fixed
log-removal process.

!

Posttreatment data
Pathogen concentration estimates are
accepted only if they are consistent with
posttreatment data

)

Biosolids formation
Create a 1,000-kg biosolid pile
(1-kg boluses)

!

Biosolids application
Surface application twice/year
Each application is applied for 3 days

!

Exposure pathways
Residential (children)—direct
Occupational (adults)-direct

Residential-groundwater

Residential-aerosol

!

Risk characterization
Assume 100-mg ingestion
Estimate either individual or population-
level risk

Figure 1. General model flow diagram that includes
exposure assessment and risk characterization.

728

Methods

For this analysis, the risk assessment model
can be thought of as a two-step process. First,
an exposure model estimates the exposure
dose for humans; then a health effects model
is used to estimate risk.

Exposure model. The exposure model
can be broken down into five components
(Figure 1).

Modeling enteric virus concentrations in
raw sludge. Data are fit to a lognormal distribu-
tion, using a regression on order statistics
(ROS) technique to impute nondetectable val-
ues (Shumway et al. 2002) [See Supplemental
Material: Appendix 1 for details (online at
heep://www.ehponline.org/members/
2008/10994/suppl.pdf)].

Modeling the treatment process. The
model used in this analysis includes a combi-
nation of either one or two mesophilic, anaer-
obic digesters with or without lime treatment.
By assuming that the sludge in the digester is
well mixed, the retention time in the treat-
ment digester can be modeled as a first-order
process: It follows an exponential distribu-
tion. The mean log removal of the whole
biosolids train is therefore constant, but the
specific log removal for a given bolus will vary
depending on its retention time. The log-
removal is assumed to be linearly related to
retention time. When using two digesters in
series, the overall time becomes a gamma dis-
tribution; that is, it is the sum of two expo-
nentials, B,e; + Pre2- Lime treatment is
assumed to be a fixed log-removal process.

Modeling pathogen concentrations in
biosolids (posttreatment). Posttreatment
monitoring data are used to constrain expo-
sure estimates; predicted pathogen concentra-
tions from the treatment process model
should be consistent with these monitoring
data. Monitoring data from Class A biosolids,
which by definition must all be below the
detectable limit of 1 plaque-forming unit
(PFU) per 4 g, necessarily contain posttreat-
ment concentrations below the detectable
limit. For Class B biosolids, the condition is
not as strong, and there may be detectable
concentrations even after treatment. This is
reflected by a less stringent boundary condi-
tion. In all cases, the boundary condition used
is based on the measured posttreatment con-
centrations. To demonstrate the model, we
assume a Class A process so that the measured
output is always assumed to be below
detectable levels. Monitoring, however, is lim-
ited in both space and time. The boundary
condition applied here, therefore, requires
that concentration levels are below detectable
levels 99% of the time. The value of 99%
simply reflects the fact that if 1% of the sam-
ples are above the detection limit, detecting
viruses in a standard monthly, single grab
sample will be rare. Analytical limitations,

including the ability to detect only a subset of
all pathogenic viruses, may argue for a less
stringent boundary condition, but for this
demonstration of a risk assessment and the
limited data to inform this condition, we use
99% in these analyses.

Modeling the biosolids pile. For each
simulation, a biosolids pile is created 1 kg at a
time. The viral concentration in each 1-kg
bolus will depend on the retention time,
which is a stochastic process, and will there-
fore vary from bolus to bolus. In this manner,
the variability of the digester process will
determine the spatial distribution of the viral
concentrations in the biosolids pile.

Modeling exposure pathways. In the sce-
nario used for this risk assessment, the
biosolids are assumed to be applied to the sur-
face of agricultural land twice per year, where
each application lasts for a period of 3 days.
We can define a few possible routes of expo-
sure. First, two groups may be exposed via
direct ingestion. Children in residences near
the application site are exposed during the
application period, and workers involved in the
treatment process or application are exposed 5
days a week. Second, nearby residences are
exposed when their inhabitants drink ground-
water contaminated with pathogens from the
biosolids. Residences nearby may also be
exposed through aerosol transport.

Exposure data. Monitoring data for raw
sludge was collected from a variety of utilities.
In general, these data sets consist of a full year
of monthly enteric virus data, with a
1 PFU/4 g dry weight detection limit. For
most utility monitoring sites, the analysis of
samples in the treated sludge resulted in
enteric virus levels below the detection limit,
primarily because most utilities that have
enteric virus data are producing Class A
biosolids. For the risk assessment presented
here, we assumed that all treated sludge data
are nondetects, thus providing a model for
Class A biosolids. Table 1 provides the moni-
toring data used in this analysis, 1 year of
monthly samples from an anonymous utility.

Table 2 provides a brief summary of the
treatment data available in the literature to
estimate the log removal for anaerobic diges-
tion. The first five estimates of the total log10
reduction for mesophilic digestion range from
0.5 to 2. The table provides one reference for
the log10 reduction per day at three plants,
which range from 0.003 to 0.03. The only
thermophilic digestion data source provides
an estimated log10 reduction of 3. The final
reference provides an equation of inactivation
per day and inactivation of viruses based on
temperature. Based on these data sources, an
estimate of 2-log is used in the model as the
mean attenuation of viruses during 15 days of
anaerobic digestion in each of the risk assess-
ment models.
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The data collected from the literature for
soil ingestion ranged from 26 to 480 mg/day
[see Eisenberg et al. (2006) for a more
detailed summary of these studies]. The high-
end estimate of 480 mg/day corresponds to
an adult performing 8 hr yard work twice per
week. Based on these data, the direct inges-
tion rate used in each of the risk models was
100 mg/day.

Definitions of risk. Three types of risks were
estimated from the models: individual-level sin-
gle-event risk, individual-level annual risk, and
population-level attributable risk. All three risk
measures are based on the beta-Poisson
dose-response function that estimates the prob-
ability of infection given a specified dose:

1+4\°
P=1- , |
( B ) I

where P represents the probability that an
exposed individual will become infected, 4
represents the dose, and [} and o are parame-
ters for a specific virus. The dose is equal to
the product of the 4) concentration at the
exposure site (pathogens/volume), 4) rate of
ingestion (volume/time), and ¢) time of expo-
sure (time). Here, volume is represented as
grams dry weight. The virus used in all risk
models is rotavirus with f = 0.42 PFU and
o = 0.26 (unitless) (Regli et al. 1991).

The individual-level single event risk is
defined as the risk associated with an individ-
ual’s one-time exposure to biosolids (equal to
P in Equation 1). The exposure or dose is
estimated using one of the models described
in the following sections and an ingestion rate
for the given exposure pathway. For example,
an individual-level risk of 3 x 1073 means that
for every 1,000 times an individual is exposed
to this dose, he or she will likely become
infected or sick three times.

An annual individual-level risk is defined
as the risk associated with an individual’s
exposure to biosolids over a year-long period.
It is calculated from the individual-level risk as

Annualrisk=1- (1 = P)?, [2]

Table 1. Raw sludge and treated biosolids monitor-
ing data.

Raw sludge Treated biosolids
enteric virus enteric virus

Sample month (PFU/4 g) (PFU/4 g)

1 <1 <1

2 <1 <1

3 <1 <1

4 <1 <1

5 <1 <1

6 5 <1

7 2 <1

8 1 <1

9 1 <1

10 7 <1

" 6 1

12 31 <1

where Pis the individual-level risk and #is the

time exposed in days. Based on the previous

example and assuming an occupational expo-
sure with a 5-day work week, and thus

260 days of exposure per year, the annual

individual-level risk is 0.54. This means that a

worker exposed to these conditions every day

of his work year can expect to become
infected or sick approximately 0.54 times in
any given year.

Population-level annual attributable risk is
based on a standard population-level measure
used in epidemiology, the cumulative inci-
dence (CI), which is defined as the number of
new cases of disease during a 1-year period
divided by the total population at risk. To
obtain a measure of population risk, simula-
tions are run twice—once with biosolids
exposure present and once with biosolids
exposure absent—to obtain Clj, and Cly. The
attributable risk (AR) due to biosolids is then
calculated as the difference between CIy and
Cly. For example, let’s say that when
biosolids are present, the model produces CIy,
= 1.56 cases per person per year, and when
biosolids are absent, the model produces Cl,
= 1.44 cases per person per year. The attribut-
able risk due to biosolids would be AR = 0.12
cases per person per year. In this example, the
number of cases due to biosolids is a small
percentage of the total cases.

We used the dose-response function to
estimate the risk of a given dose of viruses.
However, the risk in the population model is
also based on risk from person-to-person
transmission in addition to the risk associated
with ingestion of viruses.

Risk assessment models. We developed
four models to examine the issues associated
with risks. See the Supplemental Material
[Appendix 2 (online at http://www.chponline.
org/members/2008/10994/suppl.pdf)] for
details on the simulation approach of these
models and Table A-2 for a summary of the
major assumptions of our model.

e The first model estimates individual-level
risk for direct ingestion. The exposure
model uses one anaerobic digester with a
mean retention time of 15 days, and is oth-
erwise structured as described in the previ-
ous exposure model subsection.

Table 2. Treatment data summary.

Microbial risk assessment

* The second model is identical to the first
except for the addition of a second digester
placed in series, where each digester now has
a mean retention time of 7.5 days. The total
mean retention time over the two digesters
is 15 days. Figure 2 provides a summary of
parameter values for risk models 1 and 2.
The third model is identical to the first
model with the addition of either a ground-
water [Supplemental Material: Appendix 3
(online at http://www.ehponline.org/mem-
bers/2008/10994/suppl.pdf)] or acrosol
[Supplemental Material: Appendix 4 (online
at http://www.ehponline.org/members/
2008/10994/suppl.pdf)] pathway. The
groundwater model allows for the calcula-
tion of risks based on exposure to contami-
nated groundwater for a number of different
soil depths and types. Specifically, we mod-
eled three soil types: nonporous, saturated,
and unsaturated. Using these three soil
types, we ran risk assessments for 10 scenar-
ios: nonporous soil, nonporous soil followed
by 5, 15, or 30 m of saturated soil, and 0.25
or 0.5 m of unsaturated soil followed by 5,
15, or 30 m of saturated soil. The aerosol
model likewise addresses the issue of expo-
sure to biosolids pathogens that have been
transported by wind. Specifically, it includes
wind speeds of 2, 5, and 10 m/sec at down-
wind distances from the biosolids applica-
tion site of 30, 100, and 250 m.

The fourth model extends the first model to
estimate population-level risks. Specifically,
this model examines the role of both direct
exposure to environmental contamination
and indirect exposure due to secondary
transmission. We used a previously devel-
oped dynamic model to estimate popula-
tion-level risks (Eisenberg et al. 2004). See
Supplemental Material: Appendix 5 (online
at htep://www.ehponline.org/members/
2008/10994/suppl.pdf) for the simulation
details of model 4.

Risk estimates for models 1 and 2 were all
single-event risks. Single-event risks provide
information on the probability of infection or
disease of an individual that is exposed to
biosolids. For both the groundwater and
aerosol models, we estimated annual risks for
residential exposure along with single-event

Type of anaerobic digestion

Logg reduction

Reference

Mesophilic 0.5-2 Sorber and Moore 1986
Mesophilic 1 Gerba et al. 2002
Mesophilic 1 U.S. EPA 1991
Mesophilic 1.36 U.S. EPA 1991
Mesophilic 1.05 U.S. EPA 1991
Mesophilic (3 plants) 0.03, 0.01, 0.003 (all per day) Goddard et al. 1981
Thermophilic log reduction 3 U.S. EPA 1991
Equation for inactivation based 0.4207-13.623 Hurst 1989
on temperature

T, incubation temperature.
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risks, based on a 3-day exposure per applica-
tion for biosolids applied two times per year.
The annual risk estimates take into account
the amount of biosolids exposure during a
given year as well as the target population that
is exposed. Therefore, the annual risks can
provide information on the health cost to the
population. Although the annual risks were
only calculated for model 3, they can be used
as the risk measure for models 1 and 2.

The annual risk estimates assume that the
disease outcome of one individual is indepen-
dent of the disease outcome of other individ-
uals (Eisenberg et al. 2006). Therefore, it is

Estimated viral concentrations in raw sludge

still an individual-level analysis that is scaled
up to provide population estimates. When
accounting for secondary transmission, a full-
fledged population analysis is required; this is
the focus of model 4. Using model 4 requires
a population measure of risk; therefore, sin-
gle-event risk estimates are not appropriate.
Rather, annual risks are estimated using an
attributable risk metric: the number of cases
of infection or disease that are attributable to
biosolids exposure. For these simulations,
therefore, the residential scenario assumes a
3-day exposure per application for biosolids
applied two times per year. Occupational

Concentrations are distributed, LN(uy,oi), where the mean value, w, is normally distributed, N(uy,ééy).
Data come from Table 1, and estimation methods are described in Supplemental Material: Appendix 1.

Parameter value

u, (PFU/4g) | & ol

y ny

45

75.5 6.3

Attenuation of virus concentration due to anaerobic digestion
Retention times are distributed, exp(u,). The fraction surviving is linear in time and is reported in units of
log removal. For both the single and double digester, 2 log removal is assumed for a bolus of material

digested for 15 days.

Parameter value

Log
removal

Single digester
Double digester

115
1715

Attenuation of virus concentration due to lime treatment

Constant log removal is assumed.

Parameter value

Log
removal

Single digester

1.1

Dose response

Assume a beta-Poisson of the following form based on data from rotavirus-dosing trials:

Parameter value

a p

0.026 0.4

Figure 2. Summary of parameter values for risk models 1 and 2.
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Figure 3. Distribution of risk with additional lime treatment. (A) Model 1 with 1.1 log removal from lime
treatment; mean = 1 x 1073, 6 = 3 x 1073, (B) Model 2 with 0.5 log removal from lime treatment; mean = 2 x

104 0=1x10"%
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exposures assume workers are exposed 5 days
per week, 52 weeks per year. Comparing the
residential and occupational exposures, resi-
dential exposures dominated the overall risk
estimate because the target population was so
much larger, even though the yearly exposure
in the occupational setting was larger. Given
the scope of this work, the comparison of
these two exposure scenarios was not meant
to imply the importance of one exposure over
the other; rather, it was meant to demonstrate
that the role of a risk assessment is to provide
estimates for a variety of scenarios so that
those involved in risk management can use
this information for decision making,.

Results

Table 2 summarizes the parameters used in
models 1 and 2. The resulting risk estimates
from model 1 (single digester) and model 2
(double digester) are shown in Figure 3, and a
comparison of these two models is shown in
Table 3. Compared with one digester, the
mean risk is lower for the two digesters
(2 x 1074 vs. 1 x 1073). Retention times are
also shorter compared with the one-digester
model, and the variability, as measured by the
standard deviation, in the risk estimates for
the two-digester model is lower than that of
the one-digester model (1 x 1073 vs.
3 x 1073). The probability of a risk > 1074 is
almost three times as high for the one-digester
model (0.46) as compared with the two-
digester model (0.16).

In model 3, the groundwater exposure
simulations were run for every combination
of the 10 groundwater scenarios with the one
digester treatment model. The additional 1.1
log removal corresponding to lime treatment
was also included.

The worst-case groundwater scenario is
the nonporous media (fractured bedrock or
karst) scenario. This scenario is essentially a
direct conduit to the well, and therefore pro-
vides little attenuation relative to other media.
Under this exposure scenario, the mean risk
was 2 x 1072, This risk is higher than that
resulting from direct ingestion with lime
treatment, which had a mean risk of 1 x 1072,
A reason for this difference is that the direct
ingestion is based on a 100-mg sample of the
1,000-kg biosolids pile. Thus, only a small
number of viruses are actually ingested.
However, with the nonporous groundwater

Table 3. Comparison of risk for one- and two-
digester treatments.

Model 1 Model 2
(1 digester) (2 digesters)
Mean 1x1073 2% 107
Median 6x 107 8x 1077
75th percentile 6x 107 3x 107
Pr(Risk >107%) 0.46 0.16

Pr, probability of risk.
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scenario, even though there is additional
attenuation, leaching, and dilution, well water
contains an aggregate of contamination from
the biosolids applied to the land. Thus the
number of viruses ingested is actually higher
than in the direct ingestion scenario. When
the nonporous medium was followed by satu-
rated soil, the attenuation increased. The
mean risk for this scenario was reduced to
2x 1073, 2 x 107, and 5 x 1078, for 5, 15,
and 30 m of saturated soil, respectively.

For the scenarios that include unsaturated
soil followed by saturated soil, as the barrier
depths increase, the mean risk decreased to as
low as 6 x 107 for the scenario of 0.5 m of
unsaturated soil followed by 30 m of satu-
rated soil.

A summary of the risks associated with
these various models as a function of the satu-
rated zone barrier depths is provided in
Figure 4. Figure 4A provides the mean risk
against the saturated barrier depth, which is
preceded by nonporous media. The pattern is
nonlinear: The decrease in mean risk is larger
for small barrier depths compared with large
barrier depths. Figures 4B and 4C provide the
mean risk as a function of saturated barrier
depth when preceded by unsaturated soil of
depths 0.25 and 0.5 m, respectively. A similar
nonlinear pattern in mean risk is observed for
both of these scenarios. Thus, for the ground-
water exposure, the mean risks range from
2 x 102 to 6 x 107 for the worst- and best-
case scenarios, respectively. This corresponds
to a single-event risk. The corresponding esti-
mated annual risks based on 3 days exposure
for biosolids applied two times in the year
range from 1 x 107! to 4 x 1078,

We ran the aerosol exposure simulations
for a variety of aerosol scenarios for different
wind speeds and downwind distances with
the first-order digester treatment model and
additional lime treatment. The results for the
30-m and 250-m downwind distances are
summarized in Figure 5. In general, as the
downwind distance from the source increases,
the attenuation increases and thus the mean
risk decreases. Similarly, as the wind speed
increases, the attenuation decreases and there-
fore the mean risk increases. For a downwind
distance from the source of 30 m, the wind

0.025 EI
0.020 €
0.015

0.010

Mean risk (annual)

0.005

0 T T e T T v
0 5 0 15 20 25 30
Saturated barrier length (m)

speed does not have any effect on the mean
risk (Figure 5A). After rounding the risk esti-
mates, there is no observable difference for
the three wind speeds. This occurs because
the exposure site is quite close to the source
and thus the effect of wind speed is small
compared with larger downwind distances.

Increasing the distance from 30 m to
250 m has a more noticeable impact on the
mean risk as it ranges from 6 x 107 at a wind
speed of 2 m/sec to as high as 5 x 107 at
10 m/sec. Figure 5B shows that the increase in
mean risk with wind speed is nearly linear.
Thus, at longer downwind distances, the wind
speed has a larger effect on attenuation and
thus risk. Based on an individual mean risk of
7 x 1075, assuming that biosolids are applied
twice per year with a 3-day 8-hr exposure each
time, the corresponding mean annual risk is
7 x 1074, Similarly, the lowest risk scenario at
250 m downwind at 2 m/sec wind speed cor-
responds to a mean annual risk of 3 x 107

The parameter estimates for background
levels of pathogens and the secondary trans-
mission parameter were estimated using the
method outlined in Supplemental Material:
Appendix 5 (online at http://www.chponline.
org/members/2008/10994/suppl.pdf) to
achieve a background incidence level of
40 cases per 100,000 people per year.

Each of the three scenarios was simulated
with 10,000 iterations each. For the first sce-
nario with occupational exposure only, the
simulation was run with and without
biosolids present to estimate the attributable
risk for biosolids. Figure 6 provides the attrib-
utable risk distribution for this scenario. The
mean annual artributable risk was 8 x 107>,
For comparison, using model 1 with lime
treatment, the individual-level single-event
risk was 1 x 1072, which corresponds to an
annual risk of 2 x 1074, assuming that the
occupational risk applies to 0.1% of the pop-
ulation with 260 days of exposure per year.
The main difference between the annual risk
using model 1 and the annual attributable
risk using model 4 is that model 4 includes
secondary transmission. This comparison,
therefore, suggests that secondary transmis-
sion attenuated the risk from 2 x 107 to
8 x 107°, a reduction of 60%. In general,
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when simulations are run for increasing values
of secondary transmission, the mean annual
attributable risk due to biosolids decreases
(Figure 7). That is, secondary transmission
becomes protective, because increases in sec-
ondary transmission result in increases in
infection rates due to the other environmental
pathways: More people are sick in general,
so less overall illness can be attributed to
biosolids exposure.

We ran the second scenario again with
residential exposure with and without
biosolids present to estimate the attributable
risk for biosolids. The residential scenario
applies to children only. In this scenario, the
proportion of children was set to 50% of the
population. Figure 6B provides the attribut-
able risk distribution, which has a mean
annual attributable risk of 3 x 1072

The third population-level scenario com-
bines both the residential exposure from sce-
nario 1 and the occupational exposure from
scenario 2. Figure 6C provides the attribut-
able risk distribution, which has a mean
annual attributable risk of 3 x 1073, Most of
the attributable risk for biosolids, therefore,
arises from the residential population
(3 x 1072 vs. 8 x 107), because the occupa-
tional population is a very small percentage of
the whole population [see Supplemental
Material: Appendix 5 (online at htep://
www.ehponline.org/members/2008/
10994/suppl.pdf)]. With secondary transmis-
sion set to zero, the attributable risk is
2 x 1073 (vs. 3 x 1073, a reduction of 66%).
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Figure 5. Mean risk against wind speed (aerosol
scenario). Downwind distance = 30 m. Downwind
distance = 250 m.
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Figure 4. Mean risk against barrier depth (groundwater scenario). (A) Nonporous media followed by saturated soil. (B) Unsaturated soil (0.25 m) followed by
saturated soil. (C) Unsaturated soil (0.5 m) followed by saturated soil.
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Discussion

Microbial risk assessment is a structured
approach to estimating risks associated with
environmental exposure to pathogens by using
available environmental data and practical
assumptions. In this study we used three
sources of environmental data to estimate risk:
pathogen monitoring of raw sludge, efficacy of
treatment processes, and pathogen monitoring
of posttreatment biosolids. We demonstrated
that this risk assessment approach is able to
estimate risks even for Class A biosolids where
posttreatment monitoring data are all below
the detectable level. Even though analytical
data are limited, the methodology described
herein provides a reliable model for perform-
ing risk assessment, demonstrating that com-
prehensive risk assessments for biosolids
exposure are practical. As more data become
available, the model outputs will likewise
become more robust.

The first two models focus on how vari-
ability and uncertainty affect risk estimates.
Presenting risk estimates as distributions rather
than point estimates provides a way to evaluate
how various sources of variability and uncer-
tainty impact risk. There are many sources of
variability. For example, the lognormal distrib-
ution describing the concentration of
pathogens in the raw sludge represents the vari-
ability in concentration levels due to a variety
of environmental and wastewater treatment
process factors. The uncertainty stemming
from the sample size of the monitoring data is
represented by the truncated normal distribu-
tion of the mean pathogen concentration.

Models 1 and 2 account for this variabil-
ity by explicitly modeling the treatment
process. We assume that the digesters are well
mixed, and therefore are modeled as first-
order processes: At any given time, any bolus
within the digester is equally likely to leave as
biosolids, independent of its residence time.
Compared with model 1, by adding a second
digester in model 2 we observe both a lower-
ing of the mean risk by 80% (1 x 1073 vs. 2 x
10~4) and a decrease in the probability of
there being a risk > 10 (0.46 vs. 0.16). This
comparison demonstrates how the design of
treatment processes can lower the risk by

10 EI

0.8

0.6

Frequency

0.4

0.2

(0,107%) (104,1079) (10,1072

Attributable risk (annual)

decreasing the variability in the treatment
process.

Model 3 focused on risk estimates associ-
ated with two exposure pathways: groundwa-
ter and aerosol. The risks associated with the
groundwater pathways were in general lower
than the direct ingestion scenarios, except for
the nonporous model that predicted a mean
risk of 2 x 1072 compared with 2 x 10~ for
the analogous direct ingestion estimate.
Adding saturated barriers lowered the risk
from 2 x 107 to 2 x 107 depending on the
barrier depth. Unsaturated barriers added even
more attenuation, resulting in a risk as low as
6 x107 depending on the barrier depth.

The risk from aerosol exposure is a func-
tion of the downwind distance from the expo-
sure site to the source and of the wind speed,
and was also lower than that from the direct
ingestion pathway. Risks ranged from 7 x
10~>, when the source was 30 m from the
exposure site, to 5 X 107>, when the source
was 250 m away with a wind speed of 10
m/sec, to 6 x 107%, when the source was
250 m away with a wind speed of 2 m/sec.
The addition of secondary transmission in
model 4 resulted in an attenuation of risk.
This attenuation is a known feature for
pathogens with multiple transmission path-
ways. The relative importance of a population
perspective that incorporates secondary trans-
mission depends on several factors including
pathogen infectivity and the magnitude of
pathogen concentrations at the exposure site
(Soller and Eisenberg 2008).

A transparent risk assessment process is
essential. That being said, although trans-
parency is difficult to provide, we have
attempted to articulate all of our assumptions
[see Table A-2 in the Supplemental Material
(online at http://www.chponline.org/members/
2008/10994/suppl.pdf)]. The balance between
providing increased realism and providing a
tractable model is difficult in any risk assess-
ment. We hope that the framework we suggest
is a substantial improvement over current
methods. Testing this hope will require the
application of our framework to a variety of
situations requiring risk assessment. Under-
standing the assumptions used in a risk
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assessment provides a way to interpret the risk
estimates. Assumptions can be divided into
those that come from the model structure and
those that come from the parameter estimates.
Model descriptions must provide explicit infor-
mation on the assumptions used when con-
structing the model. For example, the standard
methods for analyzing biosolids-monitoring
data can generally identify some viruses (such
as rotavirus, enterovirus, and reovirus) and not
other viruses (such as norovirus, hepatitis, and
adenoviruses). This, coupled with a recovery
rate < 100%, suggests that these data are an
underestimate of the actual pathogen levels in
biosolids. Monitoring data, however, contain
useful information provided that their limita-
tions are understood and the data are used in
an appropriate manner. These limitations are
not unique to biosolids risk assessment, as all
microbial risk assessments are pathogen specific
and rely on occurrence data. Furthermore, if
we use these data in a risk analysis, comparing
the risk of one scenario with another, the fact
that the resultant risk estimate is an underesti-
mate of the true cumulative risk is less of a
concern. Another assumption is associated
with the fact that there is a limited amount of
peer-reviewed dose—response data. However,
when the available dose-response data are
used in an appropriate manner, there is the
potential for substantial inference. For exam-
ple, one conservative approach that we
employed in this work is the use of the
rotavirus dose—response function for all moni-
tored viruses, because rotavirus is the most
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Figure 7. Annual attributable risk from biosolids as
a function of secondary transmission.
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Figure 6. Population model attributable risk from biosolids. (A) Occupational only exposure, mean = 8 x 107, o =2 x 1075, (B) Residential only exposure, mean =
3x 1073, 0=4x 1073, (C) Occupational and residential exposure, mean =3 x 1073, 6 =4 x 1073,
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infectious virus for which dose response data
are available.

In the exposure component of our risk
model, we assumed that digesters were well-
mixed, first-order processes. Additionally, we
made explicit assumptions about the ground-
water and aerosol transport, as well as how the
biosolids were applied. Parameter estimates,
such as the ingestion rate and treatment effi-
cacy, relied on data from the literature, each
with its own set of assumptions. In general,
the assumptions made in these risk assess-
ments were meant to balance realism with
simplicity for the purpose of demonstrating
the utility of this biosolids risk framework. A
site-specific risk assessment would need to col-
lect as much site-specific information as possi-
ble to conduct a realistic risk assessment. To
relax many of these model assumptions listed
in Table A-2 [Supplemental Material (online
at htep://www.ehponline.org/members/2008/
10994/suppl.pdf)] will require target data col-
lection through either monitoring or experi-
mental design. We hope that our work helps
to motivate the collection of such necessary,
targeted data in the future.

The analysis presented here provides an
approach to conducting risk assessments that
takes advantage of pathogen data from raw
sludge and data on treatment process efficacy
as additional data sources to the posttreatment
data. In this context, the raw sludge and treat-
ment data are considered prior information
that can inform the risk estimate, and the post-
treatment data are used to inform the likeli-
hood. A Bayesian structure like this one can be
used to take full advantage of the available data

to obtain the best risk estimate. As with any
Bayesian analysis, if the data informing the
likelihood are sparse, the posterior (or risk esti-
mate) is strongly influenced by the prior. As
the variance of the data decreases, the posterior
(or risk estimate) is influenced less by the prior.

In this study, we provided risk estimates
to illustrate how this risk-modeling approach
can be used both in a regulatory context to
make risk-based rules and in an operational
context to examine the benefits of changing
treatment processes in the context of current
application practices or proposed new prac-
tices. Specifically, this microbial-risk frame-
work presented here provides a tool for
a) biosolids producers to interpret biosolids
monitoring data in the context of risk,
b) treatment plant engineers to evaluate the
potential risk-based benefits of making opera-
tional changes to existing treatment and/or
adding additional treatment processes,
¢) environmental managers to evaluate poten-
tial capital improvements and/or land applica-
tion site placement issues from a health-based
perspective, and ) regulators at the U.S. EPA
to develop risk-based regulations parallel to
the chemical contaminant rules.
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