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BACKGROUND: Recent studies indicate that the composition of fine particulate matter [PM =< 2.5 pm
in aerodynamic diameter (PM, 5)] is associated with increased hospitalizations for cardiovascular
and respiratory diseases. The metal composition of PM, 5 influences allergic and/or inflammatory
reactions, and ambient zinc contributes to worsening pulmonary function in susceptible adults.
However, information is limited concerning associations between ambient air zinc levels and health
care utilization for asthma, especially among children.

OBJECTIVE: We aimed to investigate the relationship between outdoor ambient air PM, 5 zinc levels
and urgent health care utilization for children living in an urban area.

METHODS: We used a time-series study to estimate the association of ambient air PM, 5 zinc levels
with hospital admissions and emergency department (ED) utilization by children in Baltimore,
Maryland, controlling for time trends. We used data from daily discharge administrative claims of
ED and hospital utilization for asthma in children, 0-17 years of age for Greater Baltimore from
June 2002 through November 2002. We collected ambient air PM, 5 metal concentration data,
determined by X-ray fluorescence spectroscopy, during the U.S. Environmental Protection
Agency—sponsored Baltimore Supersite project.

RESULTS: Previous-day medium levels of zinc (8.63-20.76 ng/m?) are associated with risks of pedi-
atric asthma exacerbations that are 1.23 (95% confidence interval, 1.07-1.41) times higher than
those with previous-day low levels of zinc (< 8.63 ng/m?) after accounting for time-varying poten-
tial confounders.

CONCLUSION: Results suggest that high ambient air PM, 5 zinc levels are associated with an
increase in ED visits/hospital admissions for asthma on the following day among children living in

an urban area.
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Since the creation of the U.S. Environmental
Protection Agency (EPA) with the Clean Air
Act of 1970 (Clean Air Act Amendments
1970), understanding of the composition,
sources, and effects of air pollution has greatly
expanded. The 1990 Clean Air Act (Clean
Air Act Amendments 1990) listed 189 haz-
ardous air pollutants that the U.S. EPA now
must evaluate to determine what regulatory
action, if any, is needed. Among these many
pollutants, there is increasing recognition that
fine particles [particulate matter < 2.5 pm in
aerodynamic diameter (PM, 5)] are associated
with cardiopulmonary health effects and
excess morbidity and mortality (Coyle et al.
2006; Dominici et al. 2006; Miller et al.
2007). PM; 5 is derived from both natural
and anthropogenic sources. Atmospheric
zinc, for example, comes from incinerators,
motor vehicles, and industry (Suarez and
Ondov 2002). However, the health effects on
humans of many of these airborne metals are
poorly understood, and there is limited
knowledge concerning the specific role that
individual metal pollutants play.

Asthma causes significant morbidity,
especially in children. Many studies have
sought to determine environmental exposures
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that exacerbate asthma. The first evidence for
a potential role of zinc in asthma exacerba-
tions came from reports of zinc oxide expo-
sure as a cause of occupational asthma in
individuals working with heated zinc
(Gordon and Fine 1993; Malo et al. 1993;
Weir et al. 1989). In addition, animal studies
indicated that metals such as zinc in ambient
air PM, 5 samples cause acute pulmonary tox-
icity and increase the severity of allergic respi-
ratory disease in rodents (Dye et al. 2001;
Gavett et al. 2003). In humans, ambient air
zinc and iron have been associated with wors-
ening pulmonary function tests in susceptible
individuals (Lagorio et al. 2006). In addition,
some literature indicates that pulmonary toxi-
city from atmospheric dust samples can be
attributed to zinc and copper (Adamson et al.
2000; Prieditis and Adamson 2002).

The use of emergency departments (EDs)
and the need for hospitalization for asthma
can be viewed as health outcome proxies for
severity of respiratory disease. Claiborn et al.
(2002) reported from Spokane, Washington,
evidence of a relationship between ambient
PM, 5 and health outcomes such as ED uti-
lization. In particular, their findings suggest
an association between ED visits for asthma

and increased combustion products, air stag-
nation (which was associated with incomplete
combustion products), and fine-particle zinc.
To better understand the effect of ambient
zinc on asthmatic children, we analyzed air
pollution data from the Baltimore, Maryland,
metropolitan area with ED utilization and
hospitalization data for asthmatic children, to
determine the relationship between ambient
air zinc concentrations and asthma outcomes.

Materials and Methods

Data sources. Health services utilization data.
This is a time-series study of ED and hospital
utilization for asthma by children living in the
Greater Baltimore area. This area has a popula-
tion of approximately 2,655,700, with 631,366
in Baltimore City in 2006. As previously
described (Hirshon et al. 2006), the Health
Care Services Cost Review Commission
(HSCRC) of the Maryland Department of
Health and Mental Hygiene collects service
data from all Maryland, nonfederal hospitals.
The HSCRC has two databases, one for ED
visits resulting in discharges, and one for all
hospitalized patients regardless of source of
admission. Use of these databases primarily
identifies individuals with significant asthma
exacerbations. We obtained daily nonconfiden-
tial ED utilization and admission records for
children, 0-17 years of age, for services ren-
dered from June 2002 through November
2002. Utilization data for children who resided
in the Greater Baltimore area (ZIP codes
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21056 through 21251 and 21401) were
included in the study, as shown in Figure 1.
Asthma ED visits and hospitalizations were
defined as any discharge with an ICD-9CM
[International Classification of Diseases, th
Revision: Clinical Modification, Gth edition
(ICD-9CM 2001)] code with the first three
digits of 493. The University of Maryland,
Baltimore, Institutional Review Board
approved this study.

Ambient air PM, 5 metal concentration
and atmospheric data. PM, 5 were collected at
the Baltimore “Supersite” at Ponca Street in
East Baltimore (latitude 39.29°N, longitude
76.55°W) using a Speciation Trends Network
sampler, as previously described (Ondov et al.
2006). The PM data represent 24-hr averages.
The metals data used in the study were those
determined by the U.S. EPA’s Speciation
Trends Network program (U.S. EPA 2006),
which normally reports results for samples col-
lected every 6th day. In the Baltimore
Supersite Study, the collection of samples was
operated on the standard schedule except for
two approximately 1-month periods (3 July
2002-15 August 2002 and 1 November
2002-30 November 2002) when daily sample
collections and analyses were made. The sam-
ples were analyzed for elemental constituents
by X-ray fluorescence by the U.S. EPA’s
Speciation Trends Network contract labora-
tory (RTT International, Research Triangle
Park, NC). Weather data were purchased
from the National Oceanic and Atmospheric
Administration.

Data analysis. We combined deidentified
data from the outpatient (ED) and inpatient
HSCRC databases into a single database,
matching entries on four independent vari-
ables to eliminate duplicates. The final data
set represented a daily time series, by ZIP
code, of number of pediatric ED visits or hos-
pitalizations for asthma. This database was
then merged with the air pollution data and
analyzed using R software, version 2.4.0
(www.r-project.org).

Overdispersed Poisson mixed-effects
regression models with a log link were used to
estimate the association between zinc and
daily counts of urgent health care utilization.
Zinc levels were divided into categories
defined by tertiles (low: < 8.63 ng/m3;
medium: 8.63-20.76 ng/m?; high: > 20.76
ng/m?), because exploratory analysis revealed
a nonlinear association between zinc levels
and log-number of visits, a marked outlier
(174 ng/m3), and no consensus exists in the
literature for differentiating zinc values into
low- or high-risk levels. Tertiles were used for
parsimony of statistical modeling and inter-
pretability. We included random effects for
the intercept and zinc slopes to account for
heterogeneity among ZIP codes, including
spatial distance from the pollution monitor

Ambient zinc increases pediatric asthma morbidity

and demographic variation. Long-term,
seasonal, and daily trends (i.e., weekend/
weekday), weather (temperature, barometric
pressure, and precipitation), and other pollu-
tants (nickel, chromium, iron, sulfate, ozone,
carbon monoxide, elemental carbon, nitrogen
dioxide, iron, and PM, s) were explored as
potential confounders using natural cubic
splines. Degrees of freedom (df) of the splines
for each covariate were chosen by comparing
an adaptation of Akaike’s Information
Criterion (AIC) between competing models,
accounting for estimation of the overdisper-
sion parameter, as in Kelsall et al. (1997). We
estimated the autocorrelation function (ACF)
of model residuals to assess whether observa-
tions were independent, given the model,
because independence between ZIP codes
over time is a key assumption of the model.
We used this approach for inference, instead
of generalized additive models (GAM)
(Hastie and Tibshirani 1990), because multi-
ple covariates were included in the model and
small effects were expected—a scenario in
which GAM may overestimate measures of
association and underestimate standard errors
(Dominici et al. 2002).

Three models were fit: one associating
same-day zinc with ED/hospital visits, a 1-day
lag model, and a 2-day lag model. The func-
tional form of time trend was chosen based on
AIC to control for unmeasured time-varying
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potential confounders. Given time trends, the
best-fit function of weather and pollutants
was chosen, again based on AIC. The same
confounder model was used for all three lags
of zinc.

We explored goodness of model fit by esti-
mating the ACF of each model’s deviance
residuals. We assessed the sensitivity of results
to choice of potential confounders by compar-
ing results to those from models including
potential confounders that have an association
with zinc, conditional on confounders
included in the best-fit models. Last, we refit
the models to include interaction terms
between zinc and copollutants controlled for
in the best-fit model. The copollutants were
dichotomized at their median values, and asso-
ciations of zinc with ED visits were estimated
separately for days with high and low levels of
copollutants, while controlling for continuous
copollutants included in the best-fit model.

Results

Using the outlined model-building strategy,
the best-fit candidate model included natural
cubic splines with degrees of freedom (df) = 3
for month and df = 4 for number of days since
1 June 2002. After controlling for time trends,
ACF between consecutive days was reasonably
low (no-lag, 0.17; 1-day lag, 0.17; 2-day lag,
0.17). Linear functions of elemental carbon,
carbon monoxide, nitrogen dioxide, and iron
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Figure 1. Baltimore Supersite location and Baltimore metropolitan-area ZIP codes used in analysis, 2005.
Of note, because of changes in ZIP codes over time, this map represents approximate geographic cover-

age during the study period.
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Table 1. Summary statistics for zinc and ED visits/hospital admissions for children, Baltimore, Maryland,
1 June 2002-30 November 2002.

Parameter Zinc {ng/md) Asthma ED visits/hospital admissions
No. of days 93 183
Mean 22.42 21
SD 25.14 12
Lower quartile 7.53 "
Median 1471 16
Upper quartile 25.30 30

Table 2. Characteristics of children hospitalized or who visited the emergency department for asthma,

Baltimore, Maryland, 1 June 2002-30 November 2002 [no. (%)].

Characteristic

Days with
zinc collected

One day after those
with zinc collected

Two days after those

with zinc collected

Sex
Male 1,093 (60) 1,120 (62) 1,094 (67)
Female 720 (40) 699 (38) 690 (39)
Race/ethnicity
Caucasian 353(19) 357 (20) 355 (20)
African American 1,430 (79) 1,433 (79) 1,398 (78)
Other 30(2) 29(1) 31(2)
Age (years)
Infant (0-< 1) 104 (6) 101 (6) 106 (6)
Toddler (1-<3) 352(19) 367 (20) 363 (20)
Preschooler (3—< 6) 391(22) 402 (22) 373 (21)
School-age (6— < 13) 659 (36) 653 (36) 641 (36)
Adolescent (13—< 18) 307 (17) 296 (16) 301(17)

Table 3. RR (95% Cl) and p-values for zinc, Baltimore, Maryland, 1 June 2002-30 November 2002.

Best-fit model?

No lag 1-day lag 2-day lag
Zinc level (ng/m?3) RR (95% Cl) p-Value RR (95% Cl) p-Value RR(95% Cl)  p-Value
Low (< 8.63) (referent) — (referent) — (referent) —
Medium (8.63-20.76) 1.12(0.98-1.28)  0.09  1.23(1.07-1.41) 0005 1.11(0.94-1.30) 0.21
High (> 20.76) 1.09(0.91-1.30) 032 1.16(0.97-1.39) 0.10 1.15(0.96-1.38)  0.13

a0verdispersed poisson mixed-effects regression controlling for natural cubic spline terms for month (df = 3) and number of
days since 1 June 2002 (df = 4) and the pollutants elemental carbon, carbon monoxide, nitrogen dioxide, and iron fixed
effects and a random intercept and zinc effects. PM,5 and temperature were excluded because inclusion resulted in non-
convergence owing to multicollinearity. Chromium and nickel did not contribute to model fit as measured by an adaptation
of the AIC.

were included in the model because they
improved model fit, quantified by AIC.
Summary statistics for zinc and asthma ED vis-
its and hospitalizations (health care visits) are
found in Table 1. Overall, there were 3,786
pediatric asthma ED visits and hospitalizations
in Maryland during the 183-day study period
by children residing in the Greater Baltimore
area. During the 183-day period, the median
number of daily urgent health care visits was
16 [interquartile range (IQR), 11-30].

Zinc was measured on 93 of the 183 days
from 1 June 2002 to 30 November 2002, with
a median (IQR) of 14.71 (7.53-25.30) ng/m?>.
The characteristics of children included in the
models who visited EDs or were hospitalized
are shown in Table 2. The number of visits
included in the models were 1,813 (no-lag
model), 1,819 (1-day lag model) and 1,784
(2-day lag model). The sex, race, and age distri-
bution of the patients included in analyses did
not vary by lag of zinc and did not vary over
time (data not shown). Approximately 60% of
visits included in analyses were made by males,
79% of visits were made by African Americans,
and the most common age group presenting
were school-age children (36% of visits). The
random intercept accounted for 30% of the
variation of health care utilizations after con-
trolling for the variables included in the best-fit
model. The random slopes for the effects of
zinc accounted for < 1% of the variation of
health care utilization.

Table 3 shows that, adjusted for time
trends, same-day medium concentrations of
ambient air PM, 5 zinc are associated with an
increased risk of urgent health care utilization
of 1.12 [95% confidence interval (CI),
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Figure 2. Asthma health care visits/admissions by lag and level of zinc,
Baltimore, Maryland, 1 June 2002-30 November 2002. The number of ED visits
and admissions are shown using all three lag models, with each line represent-
ing the estimates from the different models. 0, data point used in no-lag model;
1, data point used in 1-day lag model; 2, data point used in 2-day lag model.
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Figure 3. Zinc levels over time with LOESS smoother, Baltimore, Maryland,
1 June 2002-30 November 2002. The levels of zinc suggest peaks in August and
November and troughs in June and October.
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0.98-1.28] times that on days with low levels
of zinc (p = 0.09). Risk for asthma ED visits
and hospitalizations for previous-day medium
levels of zinc was 23% higher [relative risk
(RR) = 1.23; 95% CI, 1.07-1.41] than for
previous days with low levels of ambient zinc
(p = 0.005). Same-day high levels of zinc have
risks for asthma ED visits and hospitalizations
that are 9% higher (RR = 1.09; 95% CI,
0.91-1.30) than same-day low levels of zinc.
Previous-day high levels of zinc are associated
with a risk for urgent health care that is 1.16
(95% CI, 0.97-1.39) times higher than that
with previous-day low levels of zinc (p = 0.10).
Risks of asthma health care utilization are 1.15
(95% CI, 0.96-1.38) times higher when 2-day
lag zinc is high compared with when 2-day lag
zinc is low. Last, the risk of asthma health care
utilization is also elevated when 2-day lag zinc
is at medium levels, compared with low levels
(RR = 1.11; 95% CI, 0.94-1.30).

The number of ED visits and admissions
over time on days included in the analyses
and their estimated trend using all three lag
models are displayed in Figure 2, showing
lower numbers of visits, on average, in the
summer than in the fall; the models fit the
data well. Each line in Figure 2 represents the
estimates from the different models. The lev-
els of zinc and their estimated time trend fit
with a LOESS smoother are shown in
Figure 3, suggesting peaks in August and
November and troughs in June and October;
however, this is partially attributable to large
outliers in August and November.

Ambient zinc increases pediatric asthma morbidity

Air pollution is composed of many con-
stituents. During the period of study, we
found relatively strong correlations between
zinc and other pollutants including nickel,
chromium, iron, carbon monoxide, elemental
carbon, and nitrogen dioxide, but relatively
weak correlation between zinc and sulfate and
ozone (Table 4), even after accounting for
time trends. Also, a moderate correlation
between zinc and temperature was found.
After accounting for elemental carbon, carbon
monoxide, iron, and nitrogen dioxide (the
pollutants included in the best-fit Poisson
regression model), the correlations between
zinc and the remaining pollutants are attenu-
ated. A sensitivity analysis was conducted that
involved refitting each lag model excluding
copollutants (including time trends only) and
including nickel and chromium in addition to
time trends, nitrogen dioxide, elemental car-
bon, carbon monoxide, and iron (Table 5).
Except for same-day and 1-day lag models
comparing high to low levels of zinc, the
results show little sensitivity to choice of
copollutants included in the models.

Results assessing interactions of copollu-
tants elemental carbon, carbon monoxide,
nitrogen dioxide, and iron with zinc are
shown in Figure 4. The data showed little evi-
dence that the RRs of asthma ED visits and
hospitalizations comparing high and medium
levels of same-day zinc to low levels of same-
day zinc depend on values of copollutants
(p for interaction > 0.20). However, the 1-day
and 2-day lag models showed evidence of

Table 4. Pearson’s correlation coefficient between zinc and other candidate pollutants and weather vari-
ables, Baltimore, Maryland, 1 June 2002-30 November 2002.

Correlation Adjusted correlation Adjusted correlation
Potential confounder with zinc with zinc (model 1)2 with zinc (model 2)2
Nickel? 0.4 0.39 0.09
Chromium? 0.17 0.24 0.12
Iron? 0.54 0.52 —
Sulfate 0.01 —0.01 —0.04
Carbon monoxide? 0.40 0.47 —
PM, 5 0.39 047 0.24
Ozone 0.01 0.12 0.20
Nitrogen dioxide? 0.66 0.63 —
Elemental carbon? 0.48 0.53 —
Barometric pressure (mmHg) 0.07 0.1 -0.02
Temperature? (°F) 0.03 0.28 0.1
Precipitation (inches) -0.08 -0.06 -0.11

aResiduals from linear regression models, after accounting for time trends (3 df for month, 4 df for days since 1 June 2002)
(model 1), and after controlling for time trends, elemental carbon, carbon monoxide, nitrogen dioxide, and iron. 5Explored
as potential confounders for association between zinc and health care utilization.

interaction of elemental carbon and nitrogen
dioxide with zinc (p for interaction < 0.01).
In both cases, the RR of asthma health care
utilization comparing medium zinc to low
zinc is higher on days with low levels of
elemental carbon (< 0.99 pg/m?) and nitro-
gen dioxide (= 22 ppb). Last, the 2-day lag
model showed evidence of an interaction of
carbon monoxide with zinc (p for interaction
= 0.048). The RR of asthma health care uti-
lization comparing high zinc to low zinc levels
is higher on days with high levels of carbon
monoxide (> 0.4 ppm).

Discussion

In this study, we explored the relationship
between ambient-air zinc, a specific compo-
nent of PM; s, and the need for children to
visit an ED or to be admitted to a hospital for
asthma. Exposure to airborne zinc in PM; 5
increasingly appears to be associated with
adverse health effects. Using urgent health
care utilization data for asthma, we investi-
gated the potential impact of ambient-air zinc
on children. Risk of health care utilization for
pediatric asthma is > 20% higher on the day
after increased ambient zinc levels than on the
day after low zinc levels. Our results are con-
sistent with other published studies that
focused primarily on respiratory or cardiovas-
cular diseases in adults, only on ED visits, or
did not differentiate the specific components
of the fine particulate matter (Babin et al.
2007; Claiborn et al. 2002; Dominici et al.
2006; Miller et al. 2007).

The relative toxicity of the components
found in PM, 5 requires further investiga-
tion, though epidemiologic research indicates
that specific metals such as zinc, iron, copper,
and nickel may disproportionately contribute
to disease burden (Burnett et al. 2000).
Intratracheal exposure studies of type 1 alve-
olar epithelial cells (Adamson et al. 2000)
and studies in mouse lung (Prieditis and
Adamson 2002) indicate that zinc is a signifi-
cant toxic component of atmospheric parti-
cles leading to lung injury and inflammation.
This may be related to the release of a num-
ber of proinflammatory cytokines, because
recent research indicates that zinc oxide pro-
duces potent but reversible pulmonary
inflammation (Sayes et al. 2007). However,
further research is needed to determine the

Table 5. RR (95% Cl) and p-values for sensitivity analysis models of zinc and potential confounders, Baltimore, Maryland, 1 June 2002-30 November 2002.

Sensitivity analysis models

Controlling for time trends only?

Controlling for time trends and additional copollutants?

Zinc level (ng/md) No lag 1-day lag 2-day lag No lag 1-day lag 2-day lag
Low (< 8.63) (referent) (referent) (referent) (referent) (referent) (referent)
Medium (8.63-20.76) 1.08(0.95-1.23) 1.13(1.003-1.28) 1.13(0.98-1.31) 1.12(0.98-1.29) 1.20(1.04-1.38) 1.12(0.95-1.32)
High (> 20.76) 0.98(0.86-1.11) 1.03(0.91-1.16) 1.15(1.01-1.30) 1.09(0.91-1.31) 1.12(0.93-1.35) 1.19(0.98-1.44)

a0verdispersed poisson mixed-effects regression controlling for natural cubic spline terms for month (df = 3) and number of days since 1 June 2002 (df = 4) fixed effects and a random
intercept and zinc effects. YOverdispersed poisson mixed-effects regression controlling for natural cubic spline terms for month (df = 3) and number of days since 1 June 2002 (df = 4)
and the pollutants elemental carbon, carbon monoxide, nitrogen dioxide, iron, nickel, and chromium fixed effects and a random intercept and zinc effects.
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underlying mechanism of pulmonary toxicity
from inhaled zinc.

Recent studies increasingly show significant
adverse health effects of PM, 5 (Coyle et al.
2006; Dominici et al. 2006; Laden et al. 2006;
Miller et al. 2007). PM, 5 is composed of a het-
erogeneous group of particles found in ambient
air. These particles also contain metals from
various sources, including industrial and auto-
motive combustion. Previous publications
related to occupational exposure to zinc fumes
have shown clinical disease from exposure to
significantly elevated levels of ambient zinc, for
example, at 0.26-0.29 mg/m?® (Malo et al.
1993). Our results estimate elevated risks of
health-care visits at the much lower level of
= 8.63 ng/m?, which may be attributable partly
to the large sample size in this population based
study. More recent research has begun to
explore the relationship between health care ut-
lization and components of PM, 5 including
zinc (Claiborn et al. 2002; Frampton et al.
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1999). Additional studies are needed to
improve our understanding of the relationship
between specific ambient metal levels and respi-
ratory diseases to better direct regulatory action
for protection of the public’s health.

Air pollution clearly contributes to the bur-
den of respiratory, cardiovascular, and other
human health problems (D’Amato et al. 2001;
Heinrich et al. 2000). One disease that man-
made fumes are known to adversely affect is
asthma (Kuo et al. 2002; Peden 2001, 2002).
Asthma is a chronic medical condition that can
have acute, and at times life-threateningly
severe, exacerbations. Both children and adults
are affected by asthma, a significant clinical and
public health problem in the United States
(Mannino et al. 2002; U.S. Department of
Health and Human Services 2000). Particularly
in children, asthma morbidity has worsened in
the United States and other countries over the
past decades. Pollution not only contributes to
acute exacerbations of asthma, but has also been
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@ Zinc 8.63-20.76 ng/m®

EC>0.99 ug/m* EC=<099pg/m®  CO>04ppm CO=0.4ppm

NO,>22ppb NO,<22ppb  Iron>0.12 ug/m* Iron <0.12 pg/m®

No-lag model
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1-day lag model
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NO,>22ppb NO,<22ppb  Iron>0.12 ug/m* Iron <0.12 ug/m*

2-day lag model

Figure 4. RRs (95% Cls) for high and medium levels of zinc (vs. low levels), separately for days with high
(> median) and low (< median) levels of co-pollutants, Baltimore, Maryland, 1 June 2002-30 November
2002. Asthma ED visits and hospitalizations did not depend on the values of copollutants when comparing
high and medium levels of same-day zinc to low levels of same-day zinc. However, the 1-day and 2-day lag
models showed evidence of interaction of elemental carbon (EC) and nitrogen dioxide with zinc, and the
2-day lag model showed evidence of an interaction of carbon monoxide with zinc.
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implicated as a factor causing new cases of
asthma (McConnell et al. 2002). Some of the
main criteria pollutants are known to con-
tribute to airway inflammation and to asthma
exacerbations (Peden 2001). However, there are
many other constituents to air pollution whose
contribution to asthma disease burden is not
well known. Of particular interest is the poten-
tial positive synergy, or interaction, of PM, 5
components in contributing to acute asthma
morbidity. In this study, we found conflicting
evidence of synergy between zinc and copollu-
tants. We found positive synergy of high levels
of zinc with carbon monoxide and nitrogen
dioxide in the 2-day lag model. However, our
estimated association in the 1-day and 2-day lag
models of medium levels of zinc with asthma
ED visits was higher when elemental carbon
and nitrogen dioxide were low, suggesting a
negative synergy. One plausible explanation for
this result is that those whose asthma symptoms
would be exacerbated by small elevations of
zinc are those whose symptoms would be exac-
erbated by high levels of copollutants, thus
leading to a negligible marginal increase in
asthma ED visits with medium versus low levels
of zinc when levels of copollutants are high.
Further empirical studies examining synergy are
needed to assess this hypothesis.

A causal link between air pollution and
ED visits/hospitalizations cannot be estab-
lished with the results of this study; however,
we have found that medium and high levels
of zinc are associated with increased acute
care for children with asthma, after control-
ling for other criteria pollutants known to
affect asthma outcomes. In the absence of
personal exposure measurements, we assumed
that additional time-varying individual-level
zinc exposure undetected by the Supersite
monitor does not confound time-varying
ambient zinc detected by the monitor. For
example, a child’s parents do not smoke more
indoors in front of the child (source of zinc
likely not detected by the monitor) on days
where there are more industrial emissions
(source of zinc likely detected by the moni-
tor). It is possible that zinc is a surrogate of a
component in outdoor air that we did not
analyze and that is a key trigger of asthma
exacerbations. We were also not able to con-
trol for other exposures such as second-hand
cigarette smoke, which is known to contain
zinc. We recognize that administrative data
must be used cautiously when conducting
research, because the primary uses of these
data are for nonresearch purposes. Although
severity of disease clearly influences the need
to seek care for acute-exacerbation asthma,
many other factors influence the decision to
seek medical care aside from air quality,
including socioeconomic status (Babin et al.
2007). Only the primary diagnosis code was
used for analysis, so asthma cases may have
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been underestimated throughout the time
period, but this should not be differentially
affected by high or low days of ambient zinc.
Postal codes of residence were used to identify
individuals who required a visit to a health
care facility. Though unlikely, health care vis-
its may have occurred outside Maryland by
Baltimore metropolitan-area residents. One of
the limitations of the zinc concentration data
is that PM ,5 pollutants were collected incon-
sistently from a single site. This was attribut-
able to the expense of analyzing continuously
such a large number of air pollution compo-
nents. Despite these limitations, there was no
sampling bias for selection of days for measur-
ing metal levels and corresponding health uti-
lization, because days for measurement were
not chosen based on levels of ED visits or
anticipated levels of metals (Rubin 1976).

Conclusion

Results suggest that days with increased ambi-
ent zinc levels are associated with an increased
risk of ED visits/hospital admission for asthma
on the following day among children living in
the Greater Baltimore area. Additional analyses
suggested that this relationship is not sensitive
to inclusion of other copollutants in the model,
and that zinc may have synergistic effects with
carbon monoxide, elemental carbon, and nitro-

gen dioxide, although further study is needed.

REFERENCES

Adamson 1Y, Prieditis H, Hedgecock C, Vincent R. 2000. Zinc is
the toxic factor in the lung response to an atmospheric
particulate sample. Toxicol Appl Pharmacol 166(2):111-119.

Babin SM, Burkom HS, Holtry RS, Tabernero NR, Stokes LD,
Davies-Cole JO, et al. 2007. Pediatric patient asthma-related
emergency department visits and admissions in Washington,
DC, from 2001-2004, and associations with air quality, socio-
economic status and age group. Environ Health Mar 21:6:9.

Burnett RT, Brook J, Dann T, Delocla C, Philips 0, Cakmak S,
et al. 2000. Association between particulate- and gas-phase

Ambient zinc increases pediatric asthma morbidity

components of urban air pollution and daily mortality in
eight Canadian cities. Inhal Toxicol 12(suppl 4):15-39.

Claiborn CS, Larson T, Sheppard L. 2002. Testing the metals
hypothesis in Spokane, Washington. Environ Health
Perspect 110(suppl 4):547-552.

Clean Air Act Amendments. 1970. 42 U.S.C., Public Law 91-604.

Clean Air Act Amendments of 1990. 1990. 42 U.S.C., Public Law
101-549.

Coyle YM, Minahjuddin AT, Hynan LS, Minna JD. 2006. An ecologi-
cal study of the association of metal air pollutants with lung
cancer incidence in Texas. J Thorac Oncol 1(7):654-661.

D’Amato G, Liccardi G, D’Amato M, Cazzola M. 2001. The role of
outdoor air pollution and climatic changes on the rising
trends in respiratory allergy. Respir Med 95(7):606—611.

Dominici F, McDermott A, Zeger SL, Samet JM. 2002. On the
use of generalized additive models in time-series studies
of air pollution and health. Am J Epidemiol 156(3):193-203.

Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL,
et al. 2006. Fine particulate air pollution and hospital
admission for cardiovascular and respiratory diseases.
JAMA 295(10):127-134.

Dye JA, Lehmann JR, McGee JK, Winsett DW, Ledbetter AD,
Everitt J1, et al. 2001. Acute pulmonary toxicity of particu-
late matter filter extracts in rats: coherence with epidemi-
ologic studies in Utah Valley residents. Environ Health
Perspect 109(suppl 3):395-403.

Frampton MW, Ghio AJ, Samet JM, Carson JL, Carter JD,
Devlin RB. 1999. Effects of aqueous extracts of PMq filters
from the Utah valley on human airway epithelial cells. Am
J Physiol 277(5 Pt 1):L960-L967.

Gavett SH, Haykal-Coates N, Copeland LB, Heinrich J, Gilmour
MI. 2003. Metal composition of zmbient PM, 5 influences
severity of allergic airways disease in mice. Environ
Health Perspect 111:1471-1477.

Gordon T, Fine JM. 1993. Metal fume fever. Occup Med
8(3):504-517.

Hastie TJ, Tibshirani RJ. 1990. Generalized Additive Models.
New York:Chapman and Hall, Inc.

Heinrich J, Hoelscher B, Wichmann HE. 2000. Decline of ambi-
ent air pollution and respiratory symptoms in children. Am
J Respir Crit Care Med 161(6):1930-1936.

Hirshon JM, Weiss SR, LoCasale R, Levine E, Blaisdell CJ. 2006.
Looking beyond urban/rural differences: emergency
department utilization by asthmatic children. J Asthma
43(4):301-306.

ICD-9CM. 2001. International Classification of Diseases, 9th
Revision: Clinical Modification. 6th ed. Los Angeles:Practice
Management Information Corporation.

Kelsall JE, Samet JM, Zeger SL, Xu J. 1997. Air pollution and
mortality in Philadelphia, 1974-1988. Am J Epidemiol
146(9):750-762.

Kuo HW, Lai JS, Lee MC, Tai RC, Ming CL. 2002. Respiratory
effects of air pollutants among asthmatics in central
Taiwan. Arch Environ Health 57(3):194-200.

Laden F, Schwartz J, Speizer FE, Dockery DW. 2006. Reduction
in fine particulate air pollution and mortality: extended fol-
low-up of the Harvard Six Cities study. Am J Respir Crit
Care Med 173(6):667-672.

Lagorio S, Forastiere F, Pistelli R, lavarone |, Michelozzi P, Fano
V, et al. 2006. Air pollution and lung function among sus-
ceptible adult subjects: a panel study. Environ Health 5:11.

Malo JL, Cartier A, Dolovich J. 1993. Occupational asthma due
to zinc. Eur Respir J 6(3):447-450.

Mannino DM, Homa DM, Akinbami LJ, Moorman JE, Gwynn C,
Redd SC. 2002. Surveillance for asthma—United States,
1980-1999. MMWR 51(SS01):1-13.

McConnell R, Berhane K, Gilliland F, London SJ, Islam T,
Gauderman WJ, et al. 2002. Asthma in exercising children
exposed to ozone: a cohort study. Lancet 359(9304):386-391.

Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH,
Anderson GL, et al. 2007. Long-term exposure to air pollu-
tion and incidence of cardiovascular events in women.
N Engl J Med 356(5):447-458.

Ondov JM, Buckley TJ, Hopke PK, Ogulei D, Parlange MB,
Rogge WF, et al. 2006. Baltimore Supersite: highly time
resolved cconcentrations of urban PM, 5 and its con-
stituents for resolution of sources and immune responses.
Atmos Environ 40:S224-S237.

Peden DB. 2001. Air pollution in asthma: effect of pollutants on
airway inflammation. Ann Allergy Asthma Immunol 87(6
suppl 3):12-17.

Peden DB. 2002. Pollutants and asthma: role of air toxics.
Environ Health Perspect 110(suppl 4):565-468.

Prieditis H, Adamson 1Y. 2002. Comparative pulmonary toxicity
of various soluble metals found in urban particulate dusts.
Exp Lung Res 28(7):563-576.

Rubin DB (1976). Inference and missing data. Biometrika
63(3):581-592.

Sayes CM, Reed KL, Warheit DB. 2007. Assessing toxicity of fine
and nanoparticles: comparing in vitro measurements to in
vivo pulmonary toxicity profiles. Toxicol Sci 97(1):163-180.

Suarez AE, Ondov JM. 2002. Ambient aerosol concentrations
of elements resolved by size and by source: contributions
of some cytokine-active metals from coal- and oil-fired
power plants. Energy Fuels 16:562—568.

U.S. Department of Health and Human Services. 2000. Healthy
People 2010. 2nd ed. With Understanding and Improving
Health and Objectives for Improving Health. 2 vols.
Washington, DC:U.S. Government Printing Office.

U.S. Environmental Protection Agency. 2006. Technology
Transfer Network Ambient Monitoring Technology
Information Center: PM Supersites Information. Available:
http://www.epa.gov/ttn/amtic/ssprojec.html [accessed 11
May 2008].

Weir DC, Robertson AS, Jones S, Burge PS. 1989. Occupational
asthma due to soft corrosive soldering fluxes containing
zinc chloride and ammonium chloride. Thorax 44(3):220-223.

Environmental Health Perspectives « voLume 116 | NUmBER 6 | June 2008

831




