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The dried raisin, the crushed soda can, and the collapsed bicycle
inner tube exemplify the nonlinear mechanical response of natu-
rally curved elastic surfaces with different intrinsic curvatures to a
variety of different external loads. To understand the formation
and evolution of these features in a minimal setting, we consider
a simple assay: the response of curved surfaces to point indenta-
tion. We find that for surfaces with zero or positive Gauss curva-
ture, a common feature of the response is the appearance of
faceted structures that are organized in intricate localized patterns,
with hysteretic transitions between multiple metastable states. In
contrast, for surfaces with negative Gauss curvature the surface
deforms nonlocally along characteristic lines that extend through
the entire system. These different responses may be understood
quantitatively by using numerical simulations and classified qual-
itatively by using simple geometric ideas. Our ideas have implica-
tions for the behavior of small-scale structures.

nonlinear mechanics � pattern formation � physical geometry

Thin naturally curved shells arise on a range of length scales:
from nanometer-sized viruses (1) to carbon nanotubes (2),

from the micrometer-sized cell wall (3) to bubbles with colloidal
armor (4), and from architectural domes (5) to the megameter-
scale earth’s crust (6). In each of these examples, the underlying
curved geometry of the object leads to enhanced mechanical
stability relative to that of naturally f lat sheets. In particular,
whereas a naturally f lat sheet can almost always be bent weakly
without stretching, almost any deformation of a curved shell
causes its mid-surface to bend and stretch simultaneously. This
fact is a simple consequence of a far-reaching concept from
differential geometry, Gauss’s Theorema Egregium and its ap-
plication to determine the conditions for the isometric defor-
mation of a surface (7). Indeed, our everyday experience playing
with thin flat and curved sheets of similar materials such as
sheets of plastic suggests that the natural geometry of the surface
dominates its mechanical response: a surface with positive Gauss
curvature (e.g., an empty plastic bottle) has a qualitatively
different response from that of a surface that is either flat (e.g.,
a plastic sheet) or has negative Gauss curvature. To understand
this we must combine the geometry of idealized surfaces and the
effects of a small but finite thickness on the mechanical response
of these slender structures.

We do this by using a simple indentation assay, the method of
choice to probe the properties of solid interfaces at various
length scales (8, 9) and connect geometry to mechanics. The
nonlinear character of the governing equations that arises from
the effects of large deformations precludes the use of purely
analytical techniques to solve them. It is nevertheless possible to
get a qualitative view of the mechanical response of a doubly
curved thin shell (thickness t, radii of curvature R1, R2; R �
min[R1, R2]; � � t/R �� 1) subjected to a point indentation load
by a consideration of the linearized equations of equilibrium. For
such a shallow shell, where we may use the Cartesian coordinates
(x, y) to describe any material point on the shell rather than any
more elaborate intrinsic coordinate system, these are given by
(10, 11):
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Here, w � w(x, y) is the deflection of the shell relative to its
naturally curved state, � � �(x, y) is the Airy stress function
(whose derivatives yield the components of the depth-integrated
in-plane stresses), and (.), x � �(.)/�x, etc. Futhermore R1 and R2
are (the possibly inhomogeneous) principal radii of curvature of
the shell, B � Et3/12(1 � �2) and S � Et are the bending and
stretching stiffness of the curved surface made of material with
Young’s modulus E and Poisson ratio �, respectively, and F is the
applied localized indentation load. A complete formulation of
the problem additionally requires the specification of boundary
conditions on the displacements and stresses associated with
support or lack thereof along a boundary curve. The Eqs. 1 are
globally elliptic, i.e., following the usual classification of linear
partial differential equations, they have imaginary characteris-
tics and thus require the prescription of conditions along all
boundaries. However as we shall see, they nevertheless can
exhibit behaviors associated with hyperbolic or parabolic systems
because of the fact that, when scaled appropriately, the term with
highest derivative in the first equation in 1 is in general very
small.

Because of the localized nature of the indentation load, the
behavior of the shell is expected to be quite different in the
neighborhood of the point of indentation than far from it. To see
this we define our dimensionless variables to be x̄ � x/t; ȳ � y/t;
w̄ � w/t; �̄ � �/Ft, where the Airy stress function is scaled so that
bending stresses dominate the strongly localized response of the
shell in a linearized setting, i.e., we have assumed that F � 	t2,
with the nominal stress 	 � O(E) near the localized indentation.
Then, we may write the dimensionless form of the above
equations, on dropping the bars, as

�2w � ��� � ��x���y�

�2� � ��w � 0,
[2]

where � � �2 � (.),xx 	 (.),yy is the Laplacian operator, � �
(1/R1)(.),xx 	 (1/R2)(.),yy is the generalized d’Alembertian wave
operator, and � � (B/SR2)1/2 � h/R �� 1 is a dimensionless
parameter. Further analysis requires the consideration of a
region close to the indentation region where the Eqs. 2 break
down owing to the dominance of nonlinear effects (12–14).
However, the mechanical response of the shell over this localized
zone is not relevant on distances large compared to the thickness
of the shell, where there is a different far-field solution that is
dominated by the almost inextensional bending response (10–
14) of the shell. Because we are interested in scales that are
comparable to the lateral extent of the shell, we define our
dimensionless variables to be x
 � x/R; y
 � y/R; w
 � wB/FR2;
�
 � �t2/FR3. Here the Airy stress function is scaled differently
so that bending stresses continue to dominate the almost inex-
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tensional response of the shell in a linearized setting. Then, we
may write the dimensionless form of the above equations, on
dropping the primes, as

�2�2w � �� � �2��x���y�

�2� � �w � 0.
[3]

On eliminating the Airy stress function � by substituting the
second equation in 4 into the first, we get

�2�4w � �w � �2�2��x���y� , [4]

which is a singularly perturbed linear partial differential equa-
tion, whose domain of validity is limited to regions far from the
point of indentation. Substituting the perturbation expansion
w(x, y) � w0(x, y) 	 �2w1(x, y) 	 O(�4) into 3 yields, at leading
order, �w0 � 0. Thus, we see that for very thin shells the far-field
response to point indentation depends in a fundamental way on
the geometry of the underlying shell (7, 10–12, 15), because the
generalized d’Alembertian operator � is elliptic for an ellipsoi-
dal surface (with Gauss curvature R1R2 � 0), it is parabolic for
a singly curved surface (with Gauss curvature R1R2 � 0), and it
is hyperbolic for a saddle-shaped surface (the Gauss curvature
R1R2 � 0). Of course, the complete solution is determined only
when the exterior solution to 4 is matched with the interior
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Fig. 1. Indentation of a spherical cap. (A) Localization of deformation in a plastic bottle indented by a sharp pen. The deformation is localized approximately
along a polyhedron with a triangular base (Left). As the indentation increases, one of the vertices bifurcates, leading to a polyhedral pattern with a square base
(Center). Further indentation leads to further symmetry breaking (Right). (B) Schematic diagram of a clamped spherical cap with natural curvature R, indented
at its center. (C) Elastic energy density in the elastic shell (t/R � 0.005) for various normalized indentations Z
 (see also Movie S1). The localization of deformation
at the vertices is characterized by the localized region of radius Rc (see Fig. S1). (D) Typical deformed configuration of the elastic shell (t/R � 0.005 for a normalized
indentation Z
 � Z/R � 0.8). The vertices lie approximately on a circle of r(Z). (E) The scaled radius r
 � r/R, versus the normalized center indentation, Z
. The solid
line is given by 5, which for small indentations simplifies to r
 � �Z
. The results from numerical simulations for different t/R (green: t/R � 0.001; red: t/R � 0.005;
blue: t/R � 0.01), where filled triangles, squares, pentagons, and hexagons correspond to deformed configurations with 3, 4, 5, and 6 vertices, respectively. (F)
Force–indentation response of an elastic shell with t/R � 0.005. Localization of deformation, which leads to formation of a pattern with three vertices, occurs
at Z
 � 0.076. The slopes of the response are shown at this indentation, which indicates �30% reduction in the apparent stiffness of the elastic shell as the
asymmetric buckling pattern emerges, which is consistent with the analytical predictions (17, 18) as well as the approximate solution based on estimating the
energy in the rim of the dimple. The dashed line is an approximate solution derived for axisymmetric deformations (14), and it compares qualitatively with
the numerical simulations; however, as expected, it overestimates the forces relative to those for the faceted shell. All of the simulations were carried out for
a cap with an opening angle 
 � 120°.
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solution to 2 in the neighborhood of the localized load and
further matched with the boundary-layer solution that inevitably
exists in the neighborhood of the curve of support (13, 14).

For a spherical cap shell that is clamped along its edge, the
underlying positive Gauss curvature implies that the deforma-
tion is localized in the neighborhood of the indentation but
decays isotropically away from it, and earlier results (12–14)
show that once the sphere is weakly deformed near the localized
load, it f lattens before eventually becoming partly inverted. Even
larger indentations lead to a faceting behavior of the spherical
shell as seen when a plastic bottle is poked with a pen (Fig. 1A).
For a cylinder that has zero Gauss curvature, the behavior under
indentation loads is more complex and subtle owing to the
anisotropy in initial curvature along and perpendicular to
the principal axis. Previous work (16) has shown that both the
location of the indentation and the nature of the boundary
conditions are crucial in determining the cylindrical shell’s
response. For a long free cylinder that is pinched at an edge, the
deformations persist over many diameters owing to the domi-
nant role of nearly inextensible deformations. In contrast, for a
cylinder that is clamped along its later edges, the deformation is
strongly localized near the point of indentation, but decays
anisotropically away from it, slowly along the axis but much more

rapidly in the direction perpendicular to it, eventually leading to
the formation of localized structures that themselves bifurcate
(17). Finally, for a shell with negative Gauss curvature such as
the inner part of a toroidal shell (15), the leading order solution
is wave-like with characteristics making an angle tan�1(�R1/R2)
with the principal axes of the shell, so that the deformation is
nonlocal and extends all of the way to the shell boundary or up
to the intersection of the nodal lines of zero Gauss curvature with
these characteristics. Indeed, for this last case, the indentation
problem is the spatial analogue of the Cauchy initial-value
problem for wave propagation, although there are important
differences caused by the presence of boundary layers near the
point of indentation and along the nodal lines.

The above approximate analysis is valid only for small defor-
mation because of the limitations posed by the asymptotic
analysis of the linearized equations and cannot be easily ex-
tended to explain the rich behavior afforded by poking a plastic
bottle with the point of a pen, as shown in Fig. 1A. This simple
experiment shows that as the indentation displacement is in-
creased, the bottle first deforms to form a circular dimple, which
then loses symmetry to a polygonal shape with three vertices
attached by ridges to each other as well as to the indentation
point. Further indentation leads to the formation of additional
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Fig. 2. Indentation of a cylindrical shell. (A) Schematic of a semicylindrical shell with radius R and length L, clamped along the lateral edges with free ends.
The ends of the shell are free to displace and rotate and the shell is indented at its center. (B) The deformed configuration of the shell (L/R � 6, t/R � 0.15) shows
an abrupt transition from a complex deformation pattern to a simple planar deformation mode as the indentation is increased from Z
 � Z/R � 0.67 (Upper) to
Z
 � 0.68 (Lower). (C) Force–indentation response of a semicylindrical elastic shell with L/R � 6. For the shell with t/R � 0.15, both loading and unloading responses
are plotted, and are again hysteretic. (D) Two possible transition pathways from a semicylindrical shell to the final developable surface. The results are for shells
with L/R � 6 and t/R � 0.15 (Upper Right) and t/R � 0.1 (Lower Right), the latter of which has been observed experimentally (16).

Vaziri and Mahadevan PNAS � June 10, 2008 � vol. 105 � no. 23 � 7915

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S



vertices and ridges. To understand the formation of these faceted
structures, we use detailed numerical simulations based on the
finite element method. We restrict our material choice to that of
an isotropic linear elastic material for two reasons: simplicity and
generality. The computations were carried out by using
ABAQUS (Dassault Systèmes), a commercial finite element
package, with the following material parameter values: Young’s
modulus E � 1 GPa and Poisson ratio � � 0.3. Four-node shell
elements with reduced integration were used in all calculations.
A single element spanned the thickness and no initial geometric
or material imperfection was included in the computational
model. To follow the postbuckling response of the structure, we
used a stabilizing mechanism based on automatic addition of
volume-proportional damping, which was decreased systemati-
cally to ensure that the response is insensitive to this change.

Our first numerical experiments explored the point indenta-
tion of a segment of a spherical shell with thickness t and natural
curvature R (here we considered the range 0.0005 � t/R � 0.01)
that is clamped at its boundary, shown in Fig. 1B. This simulation
qualitatively mimics the simple experiment of indenting a plastic
bottle shown in Fig. 1 A. Because the spherical cap has positive
Gauss curvature it responds initially by deforming axisymmetri-
cally with an approximately linear force–indentation response
(Fig. 1E), but once the deformation is of the order of the
thickness of the shell, the response becomes nonlinear. Further
indentation leads to the appearance of an axisymmetric dimple
with a strongly localized region of deformation along a circular
ridge, about which the cap is approximately mirror-symmetric
relative to its original shape, so that this mode of deformation is
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Fig. 3. Indentation of a toroidal shell. (A) Schematic of a segment of a toroidal shell with radii R1 and R2. Three different parts of the shell are subject to point
indentation. For all of the calculations, the shells with t/R1 � 0.005, R2/R1 � 4 were clamped along the lateral edges. The other ends of the shells are free to displace
and rotate. (B) Deformation caused by normal indentation of the outer surface, which has positive Gauss curvature. (C) Deformation caused by normal
indentation along the nodal line, which has zero Gauss curvature. (D) Deformation caused by normal indentation of the inner surface, which has negative Gauss
curvature. (E) Force–indentation response of the three shells under indentation. The inner part of the half-toroidal shell shows a much stiffer response under
indentation compared with the other two shells, consistent with an extended region along which the deformation is felt. The normalized force is plotted on
a logarithmic scale.
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sometimes termed mirror-buckling (13, 14). When the indenta-
tion is increased even farther, this dimpled axisymmetric mode
loses stability to an asymmetric mode (17–19), which starts out
with threefold symmetry and then through a series of transitions
moves through polyhedral shapes with a varying number of vertices,
as shown in Fig. 1C [see also supporting information (SI) Movie S1].
Each of these transitions is marked by the bifurcation of a single
vertex defect into two, which then move apart just as when a
cylindrical shell is indented along an edge (20).

Qualitatively, these faceted polyhedral forms arise because in-
extensible or almost-inextensible deformations are energetically
preferred by the shell when the axisymmetric mirror-buckled form
loses stability; a polyhedron involves stretching only in the neigh-
borhood of a few points and lines rather than uniform deformations
that would require stretching over large areas. The polyhedral shape
can be approximated by a regular n-gonal pyramid with its polygon
apex located at the indentation point (see Fig. 1D for n � 6). A
simple geometrical argument for the position of the vertices follows
by equating the length of a ridge that connects a vertex of the
pyramid to its apex and the length of the corresponding spherical
arc in the undeformed shape and yields

Z
2 � 2�1 � Z
��1 � �1 � r
2� � �sin�1r
�2, [5]

where Z
 � Z/R is the normalized indentation and r
 � r/R is the
scaled radius of the circle on which the vertices lie. The expres-
sion 5 describes the results of our detailed simulations very well
(Fig. 1E). In Fig. 1F, we show the force–displacement curve
associated with increasing and decreasing indentation, along
with a curve that corresponds to an analytical approximation
assuming axisymmetric deformations (14).

Z
 � 0.4
F

Et2
	 0.3� E

Et2�2

�
R
t
. [6]

The appearance of the asymmetric mode with three vertices is
accompanied by a reduction in the apparent stiffness of the
spherical cap, but is reversible with no hysteresis. In contrast, the
appearance and disappearance of the modes with a larger
number of vertices shows hysteresis, which here is due to the
inherent geometric nonlinearity rather than any material non-
linearities, which are absent in our system. As in other hysteretic
systems, the presence of heterogeneities is crucial in determining
the system response; indeed, this is well known in elastic shell
theory (21, 22). A closer look at the vertices shows that they are
‘‘rounded off’’; this is due to the small but finite thickness of the
shell, which leads to localized stretching and prevents divergent
curvatures. Indeed, the balance between bending and local
stretching yields a characteristic size of the vertices (see SI Text);
however, the size of the vertices is only weakly dependent on
their number and indentation amplitude, in contrast with ob-
servations of localized structures in naturally f lat sheets such as
developable cones (23, 24).

To contrast the behavior of spherical shells, which have
positive Gauss curvature, with that of other curved shells, we
now turn to the indentation of a segment of a cylindrical shell,
which has zero Gauss curvature and is clamped along its lateral
edges. Indenting the shell (length L, thickness t, radius R) shown
in Fig. 2A at its center leads to the formation of two vertices;
further indentation eventually leads to a final configuration that
is a simple deformed developable surface (16). However, the

intermediate configurations leading to the final developable
state depend on the geometrical parameters L/R and t/R. We find
two generic scenarios: (I) the shell never breaks symmetry in the
span-wise or longitudinal directions of the cylinder; and (II) the
shell breaks symmetry in both the span-wise and the longitudinal
directions. A phase diagram characterizing the parameter re-
gime for these scenarios is shown in Fig. 2C; shells with large t/R
and L/R always follow scenario I, whereas those with small t/R
and intermediate L/R follow scenario II. For shells with very
small L/R the behavior is like that of a planar elastica, which also
deforms symmetrically. In Fig. 2D, we show the detailed inden-
tation response in each of these scenarios: in scenario I we see
a single jump in the force when the cylinder snaps through to the
final configuration, whereas in scenario II, we see multiple jumps
corresponding to the different metastable states (which are
dependent on t/R) that lie between the initial and final config-
urations. As one might expect, these transitions are also strongly
hysteretic (Fig. 2C).

We finally turn to the case of the indentation of a segment
of a toroidal shell clamped along its edges, as shown in Fig. 3A.
This scenario is geometrically (and thus physically) interesting
because the outer (inner) halves of toroidal shells have positive
(negative) Gauss curvature, with two nodal lines of vanishing
Gauss curvature that separate these regions. In Fig. 3B, we
show the response of the toroidal shell as it is indented at a
point along the line with positive Gauss curvature. The
response qualitatively has the same features as the response of
the spherical shell studied in Fig. 1. In Fig. 3C, we show the
response of the shell when indented at a point on its nodal line
of vanishing Gauss curvature. For small deformations, local-
ized vertices form on either side of the nodal line. Increasing
the indentation causes the deformation in the outer half of the
shell, which has positive Gauss curvature, to remain localized,
whereas in the inner part of the toroidal shell the deformation
extends along a narrow zone all of the way to the two nodal
lines of zero Gauss curvature along characteristics as suggested
by our linearized analysis.

Our study shows that the mechanical behavior of naturally
curved thin shell structures, which are soft by virtue of their
geometry, is very rich. The indentation response of these objects
generally leads to multifaceted multistable polyhedral structures,
but the extent of these deformations depends on the underlying
geometry of the surface. Our analysis has been restricted to
purely elastic shells, i.e., systems where there are no irreversible
effects. This is not as restrictive as might seem, because on small
length scales, in polymersomes, nanotubes, virus shells, gra-
phene sheets, and other thin shell structures inelastic effects are
often relatively unimportant. Therefore, these symmetry-
breaking elastic bifurcations that lead to polyhedral localized
structures should be easily realizable in them. Furthermore, our
studies might provide a stimulus to the design of mesoscopic
structural materials with geometry-dominated responses that
can serve as mechanical memories (using the geometrically
determined multistability of the shape that the shells can take),
exhibit long-range force transmission (using toroidal shells), and
form the basis for surfaces with controllable frictional, wetting,
and adhesion properties.
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