Acute carbon dioxide avoidance in *Caenorhabditis elegans*

Elissa A. Hallem* and Paul W. Sternberg

Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125

Edited by Martin Chalfie, Columbia University, New York, NY, and approved February 20, 2008 (received for review August 8, 2007)

Carbon dioxide is produced as a by-product of cellular respiration by all aerobic organisms and thus serves for many animals as an important indicator of food, mates, and predators. However, whether free-living terrestrial nematodes such as Caenorhabditis elegans respond to CO2 was unclear. We have demonstrated that adult C. elegans display an acute avoidance response upon exposure to CO₂ that is characterized by the cessation of forward movement and the rapid initiation of backward movement. This response is mediated by a cGMP signaling pathway that includes the cGMP-gated heteromeric channel TAX-2/TAX-4. CO₂ avoidance is modulated by multiple signaling molecules, including the neuropeptide Y receptor NPR-1 and the calcineurin subunits TAX-6 and CNB-1. Nutritional status also modulates CO2 responsiveness via the insulin and TGFβ signaling pathways. CO₂ response is mediated by a neural circuit that includes the BAG neurons, a pair of sensory neurons of previously unknown function. TAX-2/TAX-4 function in the BAG neurons to mediate acute CO₂ avoidance. Our results demonstrate that C. elegans senses and responds to CO2 using multiple signaling pathways and a neural network that includes the BAG neurons and that this response is modulated by the physiological state of the worm.

behavioral genetics | cGMP signaling | chemosensation

Carbon dioxide is a critical sensory cue for organisms as diverse as humans (1), rodents (2, 3), insects (4, 5), and bacteria (6). The ability to rapidly detect and respond to changing CO₂ concentrations is important for survival: high CO₂ concentrations cause hypoxia, anesthetization, and death. CO₂ perception may be particularly important for soil-dwelling organisms such as *Caenorhabditis elegans*, because bacteria-rich soil microenvironments are often subject to large fluctuations in CO₂ and O₂ levels (7). However, despite the fundamental importance of CO₂ for all living organisms, remarkably little is known about how CO₂ evokes behavioral responses in animals.

Many mammals, including humans, are capable of detecting CO_2 . Humans detect CO_2 as a trigeminal stimulus, and different humans show different sensitivities to CO_2 (1). Mice detect and avoid near-atmospheric concentrations of CO_2 via a subset of olfactory sensory neurons that project to the necklace glomeruli in the olfactory bulb (2). Many insects also detect CO_2 . For example, *Drosophila* is repelled by CO_2 via a single class of olfactory receptor neurons on the antennae (8), whereas mosquitoes are attracted to CO_2 via olfactory receptor neurons on the maxillary palps (9).

The phylum Nematoda contains both free-living and parasitic species, some of which have been shown to respond to CO_2 . Many animal-parasitic nematodes, including the humanparasitic nematodes *Ancylostoma duodenale* and *Necator americanus*, are attracted to CO_2 ; for these nematodes, CO_2 exhaled by their hosts serves as a host-localization and host-invasion cue (10, 11). Similarly, many plant-parasitic nematodes use CO_2 emission by plant roots for host localization (12, 13). Some species of free-living marine nematodes are also attracted to CO_2 , which is used as a sensory cue to locate the decaying animal and plant carcasses that serve as their food sources (14). However, nothing is known about the mechanisms underlying CO_2 perception in these nematodes, and whether free-living terrestrial nematodes respond to CO_2 was unclear (10, 15, 16).

The well studied model *C. elegans* is a free-living terrestrial nematode that navigates through its environment using a combination of chemosensory, thermosensory, and mechanosensory cues. The nervous system of the *C. elegans* hermaphrodite consists of 302 neurons, >10% of which are chemosensory (17, 18). The perception of volatile and water-soluble chemicals is mediated primarily by 11 pairs of chemosensory neurons that extend ciliated dendrites into the paired amphid sensilla of the head (17). *C. elegans* also senses O₂ via two ciliated and two unciliated sensory neurons that extend dendrites into the pseudocoelomic body fluid (17, 19).

We demonstrate that *C. elegans* display an acute avoidance response to CO_2 . We then identify signaling pathways that affect CO_2 avoidance by conducting a screen of existing mutants with neurosensory defects. We find that CO_2 avoidance is mediated by cGMP signaling and requires the receptor guanylyl cyclase DAF-11 and the cGMP-gated channel TAX-2/TAX-4. CO_2 response is modulated by multiple neuronal regulatory molecules. Nutrient deprivation decreases CO_2 avoidance, and this response is mediated by the insulin and TGF β pathways. Finally, acute CO_2 avoidance is mediated primarily by the paired BAG neurons of the head, and cGMP signaling is required in the BAG neurons to mediate CO_2 avoidance.

Results

An Acute Carbon Dioxide Response in C. elegans. To determine whether C. elegans responds to CO_2 , we developed a CO_2 avoidance assay based on the osmotic avoidance assay (20, 21). Specifically, the head of a forward-moving worm is exposed to an air stream containing CO_2 , and a response is scored if the worm reverses direction within 4 seconds [Fig. 1A and supporting information (SI) Movies S1 and S2]. Reversals are characteristic of avoidance responses in C. elegans: exposure to 1-octanol, hyperosmolarity, and nose touch elicit rapid reversals (17, 22, 23).

Wild-type N2 worms respond to CO₂; for example, 76% reverse in response to an air stream containing 10% CO₂, whereas only 23% reverse when the air stream does not contain CO₂ (Table S1). We calculated an avoidance index (a.i.) for CO₂ by subtracting the fraction of worms that reversed in response to an air stream that does not contain CO₂ from the fraction that reversed in response to an air stream containing CO₂; N2 worms show an a.i. of 0.53 in response to 10% CO₂ (Fig. 1*B*).

Author contributions: E.A.H. and P.W.S. designed research; E.A.H. performed research; E.A.H. analyzed data; and E.A.H. and P.W.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

^{*}To whom correspondence should be addressed at: Division of Biology 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125. E-mail: ehallem@caltech.edu.

This article contains supporting information online at www.pnas.org/cgi/content/full/ 0707469105/DCSupplemental.

^{© 2008} by The National Academy of Sciences of the USA

Fig. 1. Acute CO₂ avoidance in *C. elegans.* (*A*) When the head of a forwardmoving N2 worm is exposed to an air mixture, the worm continues forward locomotion (*Upper*). When the worm is exposed to 10% CO₂, the worm halts forward locomotion and rapidly reverses (*Lower*). (*B*) The response of N2 worms to CO₂ is dose-dependent. ***, P < 0.001. n = 22-44 trials. For all graphs, error bars represent SEM.

C. elegans responds to CO_2 in a dose-dependent manner (Fig. 1*B*). The response to 1% CO_2 was significantly different from the response to 0% CO_2 , demonstrating that *C. elegans* can detect CO_2 concentrations as low as 1% above ambient levels (Fig. 1*B*). The average atmospheric concentration of CO_2 is $\approx 0.04\%$. A CO_2 concentration of 10% was used for subsequent experiments because of the robust response to this concentration.

Acute CO₂ Avoidance Varies Among Strains of *C. elegans* and Species of Free-Living Nematodes. We next asked whether CO₂ aversion is conserved across six strains of *C. elegans* (24). Strains N2, CB3191, and TR389 show robust CO₂ avoidance, whereas strains AB1, CB4853, and CB4856 are essentially unresponsive to CO₂ in this assay (Fig. S1*A*). This suggests that CO₂ avoidance is a rapidly evolving behavior. Different strains of *C. elegans* have been isolated from diverse ecological niches (25, 26), raising the possibility that this behavior may be advantageous in only some niches.

We then examined CO_2 avoidance in five phylogenetically and ecologically diverse species of nematodes from the order Rhabditida (27). *C. elegans* and *Pristionchus pacificus* show robust CO_2 avoidance, whereas *Caenorhabditis briggsae*, *Caenorhabditis* species 3, and *Panagrellus redivivus* show little or no CO_2 avoidance (Fig. S1*B*). Thus, acute CO_2 avoidance is found in some but not all free-living nematode species. However, species that do not avoid CO_2 in our assay may exhibit CO_2 responses under conditions not tested here.

The Neuropeptide Y Receptor NPR-1 Modulates CO₂ Avoidance. Different wild isolates of *C. elegans* show polymorphic feeding behavior: some are solitary feeders that disperse on bacterial lawns, and others are social feeders that aggregate into clumps at the edge of the bacterial lawn (28). The three CO₂-sensitive strains of *C. elegans* are solitary feeders, whereas the three

Fig. 2. Signaling pathways that affect acute CO₂ avoidance. (A) NPR-1 modulates CO₂ response. *npr-1(ky13)* hypomorphs show greatly reduced CO₂ avoidance, and *npr-1(ad609)* null mutants show essentially no CO₂ avoidance. ***, P < 0.001. n = 12-44 trials. For all graphs, error bars represent SEM. (B) cGMP signaling is required for CO₂ response. Mutants of *tax-2, tax-4,* and *daf-11* do not show acute CO₂ avoidance. ***, P < 0.001. n = 11-44 trials. (C) The *cnb-1, rgs-3,* and *tax-6* mutants do not show acute CO₂ avoidance. **, P < 0.001. n = 11-44 trials. (C) The *nb-1, rgs-3,* and *tax-6* mutants do not show acute CO₂ avoidance. **, P < 0.01; ***, P < 0.001. n = 11-44 trials. Data for N2 are from Fig. 1.

 CO_2 -insensitive strains are social feeders (Fig. S1A) (28). Thus, solitary feeding correlates with CO_2 avoidance, suggesting that both behaviors may be subject to common regulatory mechanisms.

Feeding behavior is modulated by the neuropeptide Y receptor gene npr-1: loss-of-function mutations in npr-1 can convert a solitary strain into a social strain (28). We therefore investigated whether npr-1 also modulates acute CO₂ avoidance. A hypomorphic mutation in npr-1 in an N2 background results in reduced CO₂ avoidance, and a null mutation eliminates acute CO₂ avoidance (Fig. 24). Thus, npr-1 modulates CO₂ avoidance.

Differences in feeding behavior among strains appear to be due to differences in O_2 response, and *npr-1* mutants display altered O_2 preference in the presence of food (29). The fact that O_2 and CO_2 responses are both modulated by NPR-1 raises the possibility that the same receptor proteins confer responses to both gases. O_2 receptors in *C. elegans* comprise a family of soluble guanylyl cyclases (sGCs) (29, 30). However, sGC mutants respond normally to CO_2 (Fig. S2.4). Moreover, mutation of the transcription factor AHR-1, which regulates expression of the sGC genes, does not affect CO_2 avoidance (Fig. S2.4). Thus, CO_2 and O_2 response are conferred by different receptors despite being subject to the same neuromodulatory control by *npr-1*.

Acute CO₂ Avoidance Is Mediated by cGMP Signaling. To identify the signaling pathways that mediate CO_2 avoidance, we screened candidate mutants that had been previously isolated and that display a wide variety of defects in neuronal development and function. TAX-2 and TAX-4 are subunits of a cGMP-gated channel required for normal chemosensory and thermosensory responses (17). We found that mutations in *tax-2* and *tax-4* eliminate acute CO_2 avoidance (Fig. 2B). Also, mutation of the receptor guanylyl cyclase DAF-11 eliminates CO_2 response (Fig. 2B). Thus, a cGMP signaling pathway(s) that includes DAF-11, TAX-2, and TAX-4 is required for acute CO_2 avoidance.

Multiple Signaling Molecules Modulate Acute CO_2 Avoidance. Our screen of candidate genes also identified a number of additional

Fig. 3. The response to CO_2 is modulated by starvation. (*A*) Avoidance of CO_2 is not modulated by the presence of food. No significant differences were observed between worms tested on OP50, the *Escherichia coli* strain typically used as a food source for *C. elegans*; HB101, a different strain of *E. coli*; or off food. n = 12-44 trials. For all graphs, error bars represent SEM. The data for N2 tested on OP50 are from Fig. 1. (*B*) Starvation results in a reversible decrease in CO₂ avoidance. *, P < 0.05; **, P < 0.01. n = 7-13 trials. As a control for the 24-h time point off food, N2 worms were left on assay plates for an additional 24 h and then tested on food; no difference was observed between these worms and worms left on assay plates overnight and then tested.

signaling molecules that modulate CO₂ avoidance: *tax-6*, *cnb-1*, *rgs-3*, and *nhr-49*. The calcineurin subunits TAX-6 and CNB-1 are required for CO₂ avoidance: *tax-6* and *cnb-1* mutants are unresponsive to CO₂ in our assay (Fig. 2*C*). These results suggest that CO₂ response requires calcium signaling.

rgs-3 mutants fail to avoid CO₂ (Fig. 2*C*). RGS-3 is a regulator of G protein signaling that is expressed in nine types of sensory neurons: ASH, ADL, AWB, AWC, ASI, ASJ, ASK, PHA, and PHB (31). The fact that *rgs-3* mutants do not show acute CO₂ avoidance suggests that CO₂ response is modulated by signaling through G proteins acting in one or more of the neurons that express *rgs-3*. Animals with mutations in individual G protein subunits, as well as *gpa-1 gpa-2 gpa-3* triple mutants, responded normally to CO₂ (Fig. S2*B*), suggesting that multiple G proteins act redundantly to regulate CO₂ response.

Mutation of the nuclear hormone receptor gene *nhr-49* results in reduced CO_2 avoidance (Fig. 2*C*). NHR-49 regulates transcriptionally the response to starvation, including expression of fat and energy metabolism genes (32). Thus, acute CO_2 avoidance and the starvation response share a common regulatory mechanism involving *nhr-49*.

Mutants defective in the synthesis and reception of nonessential excitatory neurotransmitters, as well as mutants defective in neuropeptide synthesis and secretion, respond normally to CO_2 (Fig. S2 *C* and *D*). CO_2 avoidance may be mediated by both neuromodulators and neurotransmitters or by multiple neuromodulators or neurotransmitters acting in parallel.

Starvation Modulates CO₂ Sensitivity in *C. elegans.* The regulation of CO₂ response by NHR-49 raised the possibility that starvation affects CO₂ avoidance. We therefore first asked whether CO₂ avoidance is affected by the presence of bacterial food. Many sensory behaviors in *C. elegans* are affected by food, including O₂ aerotaxis and 1-octanol avoidance (29, 33). However, worms show equally robust CO₂ avoidance in the presence and absence of food (Fig. 3*A*). We then asked whether CO₂ avoidance is modulated by starvation. Well fed worms tested off food showed an a.i. of 0.53; however, after 24 h of food deprivation the a.i. was reduced to 0.13 (Fig. 3*B*). When animals deprived of food for 24 h were placed back on food for 2 h, the a.i. was restored to the level of well fed animals (Fig. 3*B*). Thus, CO₂ response is reversibly modulated by nutritional status.

The Insulin and TGF β Pathways Modulate CO₂ Avoidance. The insulin and TGF β pathways are key regulators of starvation in *C. elegans* (34). Given that starvation reduces CO₂ avoidance, we asked

Fig. 4. Insulin and TGF β signaling modulate CO₂ response. (A) daf-2(e1370) mutants do not respond to CO₂. This defect is rescued by mutation of daf-16. ***, P < 0.001. n = 12-44 trials. For all graphs, error bars represent SEM. (B) The TGF β pathway mutants daf-7, daf-1, and daf-4 show little or no CO₂ avoidance. The daf-7 phenotype is rescued by mutation of daf-3. ***, P < 0.001. n = 12-44 trials. Data for N2 are from Fig. 1. (C) Epistatic interactions between insulin and TGF β signaling and starvation. A 24-h starvation decreases acute CO₂ avoidance. The daf-16(mgDf47) and daf-3(e1376) mutations restore CO₂ response to starved animals, indicating that starvation acts via the insulin and TGF β pathways. **, P < 0.01. n = 7-15 trials. Error bars represent SEM. Data for N2 are from Fig. 3.

whether insulin and TGF β signaling might also affect CO₂ response. Mutation of the insulin receptor DAF-2 eliminates CO₂ avoidance, and mutation of the forkhead transcription factor DAF-16 suppresses the *daf-2* phenotype (Fig. 4*A*). Thus, DAF-16 acts downstream of DAF-2 in the regulation of CO₂ response. Also, different alleles of *daf-2* confer different CO₂ sensitivities (Fig. S3*A*). The strength of the different *daf-2* alleles with respect to CO₂ avoidance correlates with the strength of the alleles with respect to hypoxia resistance (Fig. S3*B*) (35) but not lifespan and dauer formation (36, 37), suggesting that CO₂ avoidance and hypoxia resistance may be subject to similar mechanisms of regulation by *daf-2*.

The TGF β pathway also mediates acute CO₂ avoidance: mutations in the TGF β ligand DAF-7, as well as the TGF β receptors DAF-1 and DAF-4, show severely reduced CO₂ avoidance (Fig. 4B). The daf-7 phenotype is rescued by mutation of the SMAD gene daf-3, demonstrating that DAF-3 acts downstream of DAF-7 in the regulation of CO₂ avoidance (Fig. 4B). DAF-7 is thought to be expressed specifically in the ASI chemosensory neurons (38). However, ablation of the ASI neurons did not affect CO₂ avoidance (data not shown). This may be because daf-7 expression in ASI is required for CO₂ response only transiently during early development or because daf-7 is expressed at low levels in other cells required for CO₂ response.

To investigate the epistatic relationship between starvation and insulin and TGF β signaling, we examined whether starved *daf-16* and *daf-3* mutants respond to CO₂. In contrast to wild type, *daf-16* and *daf-3* mutants that had been starved for 24 h responded normally to CO₂ (Fig. 4C). Thus *daf-16* and *daf-3* rescue the CO₂ response defect of starved worms. Starvation

Fig. 5. CO₂ response is mediated primarily by the BAG neurons. (A) Among mutants with defects in ciliary structure, *osm-3* and *daf-19* mutants show reduced CO₂ avoidance, whereas *che-10* mutants show essentially no CO₂ avoidance. *, P < 0.05; **, P < 0.01; ***, P < 0.001. n = 11-44 trials. For all graphs, error bars represent SEM. Data for N2 are from Fig. 1. (B) BAG-ablated animals show greatly reduced CO₂ avoidance, whereas mock-, AWC-, ASH-, ADL-, and AWB-ablated animals respond normally to CO₂. No significant difference was observed between BAG-ablated animals and animals in which ASH, ADL, AWB, and BAG neurons were ablated. ***, P < 0.001. n = 13-36 animals for each condition. (C) *osm-3* mock-ablated animals show reduced CO₂ avoidance compared with N2 mock-ablated animals, and *osm-3* BAG-ablated animals. Data for N2 mock-ablated are from *B*. No significant difference was observed between N2 BAG-ablated animals. BAG-ablated animals. *, P < 0.05. n = 22-33 animals for each condition.

therefore modulates CO_2 response via the insulin and $TGF\beta$ pathways.

CO₂ Response Is Mediated by a Neural Circuit That Includes the BAG **Neurons.** To gain insight into the neural circuitry underlying CO₂ perception, we examined the CO₂ sensitivity of mutants with sensory neuron defects. We first tested mutations that affect the development of ciliated sensory neurons. osm-3 and daf-19 mutants showed reduced CO2 response, whereas a che-10 mutant was essentially unresponsive to CO2 (Fig. 5A). osm-3 encodes a kinesin subunit required for normal formation of amphid cilia, and daf-19 encodes an RFX transcription factor required for the formation of all sensory cilia (39). These mutants implicate ciliated sensory neurons in CO2 avoidance. A che-10 mutation causes degeneration of amphid and phasmid neurons; however, the IL1, OLQ, and BAG neurons are also affected (40). These results suggest that one or more of the amphid or phasmid neurons, as well as one or more of IL1, OLQ, and BAG, play a role in CO₂ perception. Mutations that affect development of specific subsets of sensory neurons do not affect acute CO_2 avoidance (Fig. S4).

We also tested the *tax-2* allele *tax-2(p694)*, a *cis*-regulatory mutation that disrupts *tax-2* expression in the AQR, AFD, ASE, and BAG neurons (19). *tax-2(p694)* mutants do not respond to CO_2 in our assay (Fig. 2B). Because mutations and transgenes that compromise the function of AQR, AFD, and ASE respond normally to CO_2 (Fig. 6 and Fig. S4), *tax-2* is likely required in the BAG neurons (Fig. S5) for acute CO_2 avoidance.

To further test the role of the BAG neurons in CO_2 response, we ablated them using a laser microbeam and measured the ability of ablated worms to respond to CO_2 . As a control, we ablated the AWC olfactory neurons, which mediate attraction (17). Ablation of the BAG neurons resulted in greatly reduced CO_2 avoidance (Fig. 5*B*). By contrast, mock-ablated and AWC- ablated animals responded normally to CO_2 (Fig. 5*B*). Therefore, the BAG neurons are important components of the neural circuit that mediates CO_2 response.

The fact that CO_2 response is severely reduced but not completely eliminated in BAG-ablated animals suggests that other sensory neurons play a role in acute CO_2 avoidance. In an attempt to identify these neurons, we ablated the ASH, ADL, and AWB neurons, which mediate olfactory repulsion (17). However, ablation of these neuron pairs individually did not affect acute CO_2 avoidance, and ablation of the ASH, ADL, AWB, and BAG neurons in the same animal resulted in a response that was not significantly different from the response of BAG-ablated animals (Fig. 5*B*). Thus ASH, ADL, and AWB play at most a minor role in acute CO_2 avoidance.

We then ablated the BAG neurons in osm-3 mutants. We found that the response of mock-ablated osm-3 mutants is reduced compared with mock-ablated wild-type animals, and the response of BAG-ablated osm-3 mutants is further reduced (Fig. 5C). These results suggest that, in addition to BAG, one or more of the ciliated sensory neurons affected by the osm-3 mutation play a role in CO₂ avoidance.

We note that acute CO_2 avoidance could be either a chemosensory or a nociceptive response. However, chemical nociception is mediated primarily by the ASH neurons (17), and ASH-ablated animals respond normally to CO_2 (Fig. 5*B*). Thus, acute CO_2 avoidance is likely to be a chemosensory response.

Finally, we generated dose–response curves for four mutants that showed defective CO_2 avoidance when tested with 10% CO_2 : osm-3 and nhr-49, which showed reduced avoidance of 10% CO_2 ; and tax-4 and npr-1, which failed to avoid 10% CO_2 . We found that the CO_2 response of all four mutants is defective across a broad range of concentrations (Fig. S6). These results suggest that acute CO_2 avoidance is mediated by the same signaling mechanisms across concentrations.

cGMP Signaling Is Required in the BAG Neurons for Acute CO₂ Avoidance. tax-2 and tax-4 are coexpressed in 12 neurons: AWC, AFD, ASE, ASG, ASJ, ASI, AWB, ASK, BAG, AQR, PQR, and URX (41). To identify the neuron(s) in which TAX-2/TAX-4 is required for acute CO₂ avoidance, we performed a series of cell-specific rescue experiments with tax-4. We first tested whether CO₂ avoidance requires tax-4 expression in AQR, PQR, and URX because tax-4 is required in these neurons for normal O₂ response (19, 29, 42). We found that tax-4 mutants in which tax-4 is specifically rescued in AQR, PQR, and URX (42) do not respond to CO₂ (Fig. 6A). Moreover, animals containing a genetic ablation of AQR, PQR, and URX (42) respond normally to CO₂ (Fig. 6A). Thus, AQR, PQR, and URX do not mediate acute CO₂ avoidance.

We then examined tax-4 mutants containing an odr-4::tax-4 transgene, in which tax-4 is expressed in AWA, AWB, AWC, ADF, ASG, ASH, ASI, ASJ, ASK, ADL, PHA, and PHB (19). These worms show essentially no CO₂ avoidance (Fig. 6B). However, expression of tax-4 in these neurons as well as AQR, PQR, URX, AFD, and BAG using the odr-4, gcy-8, gcy-32, and gcy-33 promoters (19) is sufficient to rescue the CO₂ response defect of tax-4 mutants (Fig. 6B). Given that ablation of the BAG neurons results in greatly reduced CO₂ avoidance, we then asked whether tax-4 expression in the BAG neurons is sufficient for CO₂ avoidance by expressing tax-4 under the control of only the gcy-33 promoter. We found that tax-4 expression in BAG rescues the CO₂ response defect of tax-4 mutants (Fig. 6B). Thus, a cGMP signaling pathway involving TAX-2/TAX-4 operates within the BAG neurons to mediate acute CO₂ avoidance.

Discussion

We have found that *C. elegans* exhibits acute avoidance of CO₂. This response requires a cGMP signaling pathway acting within

Fig. 6. cGMP signaling is required in the BAG neurons for acute CO₂ avoidance. (A) The URX, AQR, and PQR neurons are not required for acute CO₂ avoidance. Animals containing a gcy-32::tax-4 transgene in the tax-4(ks28) mutant background, in which tax-4 is expressed specifically in URX, AQR, and PQR (42), do not respond to CO2. Animals containing a gcy-36::egl-1 transgene, which kills URX, AQR, and PQR (42), respond normally to CO₂. ***, P < 0.001. n = 11-44 trials. For all graphs, error bars represent SEM. (B) tax-4 is required in the BAG neurons for acute CO2 avoidance. Animals containing an odr-4::tax-4 transgene in the tax-4(p678) mutant background (19), in which tax-4 is expressed in 12 sensory neurons, do not respond to CO2. Animals containing odr-4+gcy-8+gcy-32+gcy-33::tax-4 transgenes in the tax-4(p678) mutant background (19), in which tax-4 is expressed in 17 neurons including BAG, respond normally to CO₂. Animals containing a gcy-33::tax-4 transgene in the tax-4(p678) mutant background, in which tax-4 is expressed specifically in the BAG neurons, also respond normally to CO₂. ***, P < 0.001. n = 12-44trials. Data for N2 are from Fig. 1, and data for tax-4 mutants are from Fig. 2. (C) A model for acute CO₂ avoidance in C. elegans. CO₂ avoidance is mediated by a cGMP signaling pathway involving TAX-2/TAX-4 acting within the BAG neurons. This response is modulated by NPR-1. CO₂ response is decreased by starvation, which acts via the insulin and TGFB pathways.

the BAG neurons and is modulated by additional neuronal regulatory molecules as well as by insulin and TGF β signaling (Fig. 6C).

Acute CO_2 avoidance is exhibited by some but not all wild isolates of *C. elegans* and some but not all species of free-living terrestrial nematodes. Thus, acute CO_2 avoidance is a rapidly evolving behavior that has either arisen or been lost multiple times during the course of nematode evolution, raising the possibility that it is advantageous only under some ecological conditions.

Starved worms show reduced CO₂ avoidance, and this effect is mediated by insulin and TGF β signaling. The fact that CO₂ response is reduced by starvation contrasts with most olfactory responses in *C. elegans*, which are enhanced by starvation (17), presumably so as to maximize the worm's chance of finding food. The starvation-induced decrease in CO₂ avoidance may offer a similar ecological advantage: In nature, *C. elegans* presumably encounters CO₂ emitted by both bacterial food and predators. Under conditions of starvation it may be beneficial to downregulate CO₂ avoidance so as to maximize the probability of encountering food, even if this incurs an increased risk of predation.

The sensitivity of CO_2 response to nutritional status is not universal among animals. For example, starved larvae of the bloodsucking insect *Triatoma infestans* respond as robustly to CO_2 as well fed larvae, even after 60 days of starvation (43). By contrast, many mosquitoes use CO_2 as their primary hostseeking cue, and host-seeking behavior is greatly reduced after a blood meal (44). Thus, CO_2 response may be subject to different regulatory mechanisms in organisms with different life cycles and behavioral repertoires.

Acute CO₂ avoidance is mediated primarily by the BAG neurons, and cGMP signaling mediated by TAX-2/TAX-4 is required in BAG for acute CO₂ avoidance. The BAG neurons are ciliated neurons of previously unknown function located in the head but not associated with the amphid sensillum (18). These neurons may sense CO₂ directly via one or more CO₂ receptors, or they may be indirect modulators of CO₂ response. It will be interesting to determine whether the BAG neurons also modulate O₂ response and also to identify additional signaling components that operate within the BAG neurons. Of the signaling molecules identified in this study as mediators of CO₂ avoidance, only TAX-2/TAX-4 are known to be expressed in the BAG neurons. In particular, expression of the guanylyl cyclase DAF-11 has not been observed in the BAG neurons (45), raising the possibility that the effect of daf-11 on CO₂ response is indirect and that a different guanylyl cyclase acts upstream of TAX-2/TAX-4 in the BAG neurons to mediate CO_2 avoidance.

A CO₂ receptor in *C. elegans* has not yet been identified. In *Drosophila*, CO₂ avoidance is mediated by two members of the gustatory receptor (Gr) family of serpentine receptors, Gr21a and Gr63a (46–48), which are expressed in a single class of olfactory neurons on the fly antenna (5, 8, 46, 47). *C. elegans* does not contain orthologs of Gr21a and Gr63a, and thus *Drosophila* and *C. elegans* use different receptors for CO₂ detection.

The CO_2 avoidance we observed in some species of free-living terrestrial nematodes contrasts with the attraction to CO_2 exhibited by many parasitic and free-living marine nematodes (10–14, 49). Our study provides a foundation for investigations into how the CO_2 response network may have evolved in nematodes with very different life cycles and ecological niches.

Materials and Methods

Standard techniques are listed in the SI Methods.

Population Assay for Acute CO₂ Avoidance. For each assay, ≈10-30 C. elegans L4 hermaphrodites were placed onto assay plates overnight and tested as young adults. Assay plates consisted of NGM agar plates containing a thin lawn of OP50 bacteria grown for 1-2 days at room temperature. Gases were medical-grade certified mixtures (Air Liquide) of 0%, 0.2%, 1%, 2.5%, 5%, 10%, or 15% CO₂; 10% O₂; and the balance N_2 . An O₂ concentration of 10% was chosen to closely approximate the preferred O₂ concentration of C. elegans (29). Ten percent CO_2 was used for all experiments unless otherwise indicated. For the avoidance assay, two 50-ml syringes were filled with gas, one with and one without CO₂. The mouth of the syringes were connected to tubes attached to Pasteur pipettes, and gases were pumped through the Pasteur pipettes by using a syringe pump (PHD 2000; Harvard Apparatus) at a rate of 1.5 ml/min. Individual worms were exposed to gases by placing the tip of the Pasteur pipette near the head of a forward-moving worm. A response was scored if the worm initiated backward movement within 4 seconds. The gas mixture to which each plate was exposed was alternated such that half of the plates were exposed to air and half were exposed to CO2. Gases were delivered blindly, and worms were tested blindly. Each plate was considered one trial. Plates were assayed one to two times with at least 1 h between trials, except that worms tested off food were tested only once. An a.i. for each genotype was calculated by subtracting the fraction of worms that reversed in response to air from the fraction that reversed in response to CO₂. For assays involving other species, both males and females of dioecious species were tested. Values obtained for each genotype or treatment are listed in Table S1.

Single-Worm Assay for CO₂ Avoidance. For each assay, individual L4 or young adult hermaphrodites were placed onto assay plates overnight. Worms were tested as described above, except that each worm was tested 15 times with >2 min between trials. No adaptation was observed during the course of these experiments. For each worm, an a.i. was calculated by subtracting the fraction of trials the worm reversed in response to air from the fraction of trials the worm reversed in CO₂. The a.i. for each genotype or treatment was

calculated as the mean a.i. for each worm of the same genotype or treatment. Values obtained for each genotype or treatment are listed in Table S2. References for mutant strains are listed in Table S3.

ACKNOWLEDGMENTS. We thank M. de Bono (MRC Laboratory of Molecular Biology, Cambridge, U.K.), C. Bargmann (HHMI and The Rockefeller University, New York, NY), J. Thomas (University of Washington, Seattle, WA), and

- Bensafi M, Frasnelli J, Reden J, Hummel T (2007) The neural representation of odor is modulated by the presence of a trigeminal stimulus during odor encoding. *Clin Neurophysiol* 118:696–701.
- Hu J, et al. (2007) Detection of near-atmospheric concentrations of CO₂ by an olfactory subsystem in the mouse. Science 317:953–957.
- Youngentob SL, Hornung DE, Mozell MM (1991) Determination of carbon dioxide detection thresholds in trained rats. *Physiol Behav* 49:21–26.
- Bowen MF (1991) The sensory physiology of host-seeking behavior in mosquitoes. *Annu Rev Entomol* 36:139–158.
- 5. Suh GS, et al. (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431:854–859.
- Hammer A, Hodgson DR, Cann MJ (2006) Regulation of prokaryotic adenylyl cyclases by CO₂. Biochem J 396:215–218.
- Sylvia DJ, Fuhrmann JJ, Hartel PG, Zuberer DA (1998) Principles and Applications of Soil Microbiology (Prentice Hall, Upper Saddle River, NJ).
- de Bruyne M, Foster K, Carlson JR (2001) Odor coding in the Drosophila antenna. Neuron 30:537–552.
- 9. Lu T, et al. (2007) Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Curr Biol 17:1533–1544.
- Robinson AF (1995) Optimal release rates for attracting *Meloidogyne incognita*, *Rotylenchulus reniformis*, and other nematodes to carbon dioxide in sand. *J Nematol* 27:42–50.
- 11. Haas W (2003) Parasitic worms: Strategies of host finding, recognition and invasion. Zoology (Jena, Germany) 106:349-364.
- Pline M, Dusenbery DB (1987) Responses of plant-parasitic nematode *Meloidogyne* incognita to carbon dioxide determined by video camera computer tracking. J Chem Ecol 13:873–888.
- Klingler J (1965) On the orientation of plant nematodes and some other soil animals. Nematologica 11:4–18.
- Riemann F, Schrage M (1988) Carbon dioxide as an attractant for the free-living marine nematode Adoncholaimus thalassophygas. Marine Biol 98:81–85.
- Dusenbery DB (1974) Analysis of chemotaxis in the nematode Caenorhabditis elegans by countercurrent separation. J Exp Zool 188:41–48.
- Dusenbery DB (1985) Video camera-computer tracking of nematode Caenorhabditis elegans to record behavioral responses. J Chem Ecol 11:1239–1247.
- 17. Bargmann CI (October 25, 2006) Chemosensation in C. elegans. The C. elegans Research Community, WormBook, www.WormBook.org.
- White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc London B 314:1–340.
- 19. Coates JC, de Bono M (2002) Antagonistic pathways in neurons exposed to body fluid regulate social feeding in *Caenorhabditis elegans*. Nature 419:925–929.
- Hart AC, Kass J, Shapiro JE, Kaplan JM (1999) Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. J Neurosci 19:1952–1958.
- 21. Hart AC, Sims S, Kaplan JM (1995) Synaptic code for sensory modalities revealed by *C. elegans* GLR-1 glutamate receptor. *Nature* 378:82–85.
- 22. Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci USA 90:2227–2231.
- Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90:243–256.
- Denver DR, Morris K, Thomas WK (2003) Phylogenetics in Caenorhabditis elegans: An analysis of divergence and outcrossing. Mol Biol Evol 20:393–400.
- Hodgkin J, Doniach T (1997) Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146:149–164.

the *Caenorhabditis* Genetics Center (University of Minnesota, Minneapolis, MN) for strains; D. Anderson (California Institute of Technology, Pasadena, CA) and members of our laboratory for insightful discussions; and J. Srinivasan (California Institute of Technology, Pasadena, CA) for discussion of other species. This work was supported by the Howard Hughes Medical Institute, of which P.W.S. is an investigator, and a Helen Hay Whitney postdoctoral fellowship (to E.A.H.).

- Barriere A, Felix MA (2005) High local genetic diversity and low outcrossing rate in Caenorhabditis elegans natural populations. Curr Biol 15:1176–1184.
- Kiontke K, Fitch DHA (August 11, 2005) The phylogenetic relationships of Caenorhabditis and other rhabditids. The C. elegans Research Community, WormBook, www. WormBook.org.
- de Bono M, Bargmann CI (1998) Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94:679–689.
- 29. Gray JM, et al. (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430:317–322.
- Cheung BH, Cohen M, Rogers C, Albayram O, de Bono M (2005) Experience-dependent modulation of C. elegans behavior by ambient oxygen. Curr Biol 15:905–917.
- Ferkey DM, et al. (2007) C. elegans G protein regulator RGS-3 controls sensitivity to sensory stimuli. Neuron 53:39–52.
- Van Gilst MR, Hadjivassiliou H, Jolly A, Yamamoto KR (2005) Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in *C. elegans. PLoS Biol* 3:e53.
- Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC (2004) Feeding status and serotonin rapidly and reversibly modulate a *Caenorhabditis elegans* chemosensory circuit. *Proc Natl Acad Sci USA* 101:15512–15517.
- 34. Hu PJ (August 8, 2007) Dauer. The C. elegans Research Community, WormBook, www.WormBook.org.
- 35. Scott BA, Avidan MS, Crowder CM (2002) Regulation of hypoxic death in *C. elegans* by the insulin/IGF receptor homolog DAF-2. *Science* 296:2388–2391.
- Gems D, et al. (1998) Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 150:129– 155.
- Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) DAF-2, an insulin receptor-like gene that regulates longevity and diapause in *Caenorhabditis elegans*. Science 277:942–946.
- Schackwitz WS, Inoue T, Thomas JH (1996) Chemosensory neurons function in parallel to mediate a pheromone response in C. elegans. Neuron 17:719–728.
- Inglis PN, Ou G, Leroux MR, Scholey JM (November 27, 2006) The sensory cilia of Caenorhabditis elegans. The C. elegans Research Community, WormBook, www. WormBook.org.
- Perkins LA, Hedgecock EM, Thomson JN, Culotti JG (1986) Mutant sensory cilia in the nematode Caenorhabditis elegans. Dev Biol 117:456–487.
- Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in *C. elegans. Neuron* 17:695–706.
- 42. Chang AJ, Chronis N, Karow DS, Marletta MA, Bargmann CI (2006) A distributed chemosensory circuit for oxygen preference in *C. elegans. PLoS Biol* 4:e274.
- Barrozo RB, Lazzari CR (2004) The response of the blood-sucking bug Triatoma infestans to carbon dioxide and other host odours. Chem Senses 29:319–329.
- 44. Klowden MJ (1995) Blood, sex, and the mosquito. BioScience 45:326-331
- Birnby DA, et al. (2000) A transmembrane guanylyl cyclase (DAF-11) and hsp90 (DAF-21) regulate a common set of chemosensory behaviors in *Caenorhabditis elegans*. *Genetics* 155:85–104.
- Jones WD, Cayirlioglu P, Kadow IG, Vosshall LB (2007) Two chemosensory receptors together mediate carbon dioxide detection in *Drosophila*. Nature 445:86–90.
- Kwon JY, Dahanukar A, Weiss LA, Carlson JR (2007) The molecular basis of CO₂ reception in Drosophila. Proc Natl Acad Sci USA 104:3574–3578.
- Robertson HM, Warr CG, Carlson JR (2003) Molecular evolution of the insect chemoreceptor gene superfamily in *Drosophila melanogaster*. Proc Natl Acad Sci USA 100:14537–14542.
- O'Halloran DM, Burnell AM (2003) An investigation of chemotaxis in the insect parasitic nematode *Heterorhabditis bacteriophora*. *Parasitology* 127:375–385.