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Abstract
Recording single-neuron activity from a specific brain region across multiple trials in response to
the same stimulus or execution of the same behavioral task is a common neurophysiology protocol.
The raster plots of the spike trains often show strong between-trial and within-trial dynamics, yet the
standard analysis of these data with the peristimulus time histogram (PSTH) and ANOVA do not
consider between-trial dynamics. By itself, the PSTH does not provide a framework for statistical
inference. We present a state-space generalized linear model (SS-GLM) to formulate a point process
representation of between-trial and within-trial neural spiking dynamics. Our model has the PSTH
as a special case. We provide a framework for model estimation, model selection, goodness-of-fit
analysis, and inference. In an analysis of hippocampal neural activity recorded from a monkey
performing a location-scene association task, we demonstrate how the SS-GLM may be used to
answer frequently posed neurophysiological questions including, What is the nature of the between-
trial and within-trial task-specific modulation of the neural spiking activity? How can we characterize
learning-related neural dynamics? What are the timescales and characteristics of the neuron’s
biophysical properties? Our results demonstrate that the SS-GLM is a more informative tool than the
PSTH and ANOVA for analysis of multiple trial neural responses and that it provides a quantitative
characterization of the between-trial and within-trial neural dynamics readily visible in raster plots,
as well as the less apparent fast (1–10 ms), intermediate (11–20 ms), and longer (>20 ms) timescale
features of the neuron’s biophysical properties.

INTRODUCTION
Understanding how neurons respond to putative stimuli is a fundamental question in
neuroscience. Because neurons are stochastic, recording spiking activity from relevant brain
regions during multiple presentations or trials of the same putative stimulus is a commonly
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used experimental paradigm for characterizing neural responses. Such neural recordings
frequently have strong between-trial and within-trial dynamics (Fig. 1). The between-trial
dynamics may represent random variations in the neuron’s response to the same stimulus or
changes in how the neuron responds to the stimulus. The former may represent noise (Brody
1999;Dayan and Abbott 2001;Lim et al. 2006;Narayan et al. 2006;Ventura et al. 2005), whereas
the latter may represent the evolution of a neuron’s receptive field properties (Brown et al.
2001;Gandolfo et al. 2000;Kaas et al. 1983;Mehta et al. 1997;Merzenich et al. 1984) or
behavior-related changes such as learning and memory formation (Jog et al. 1999;Wirth et al.
2003;Wise and Murray 1999). The within-trial dynamics may reflect stimulus-specific or task-
specific features of the neuron’s responses (Lim et al. 2006;Narayan et al. 2006;Wirth et al.
2003), short timescale biophysical properties, such as absolute and relative refractory periods
and bursting, or longer timescale biophysical properties such as oscillatory modulations and
other network and local regional characteristics (Dayan and Abbott 2001).

Two standard methods for analyzing neuron spiking dynamics are raster plots and the
peristimulus time histogram (PSTH). Raster plots (Fig. 1A) are informative, two-dimensional
graphs of spike times plotted as a function of trial number and time into the trial. However,
they offer no means of quantitative analysis. The PSTH (Fig. 1B) is computed by totaling the
spike counts within bins across trials and dividing by the trial length and number of trials
(Abeles 1982;Gerstein 1960;Gerstein and Kiang 1960;Kass et al. 2003;Perkel et al. 1967).
Although easy to compute, the PSTH assumes that the spiking activity between trials does not
change, does not account for the effects of spike history on current spiking activity, and, by
itself, does not provide a framework for statistical inference.

To go beyond use of raster plots, several authors have proposed analyses based on parametric
or semiparametric statistical models to analyze between- and within-trial dynamics in neural
activity (Brody 1999; Ventura et al. 2005). In these analyses, the components of the between-
and within-trial dynamics are estimated sequentially rather than simultaneously, and the effects
of history dependence within trial are not considered. Point process likelihood– based
generalized linear models (GLMs) (Fahrmeir and Tutz 2001; McCullagh and Nelder 1989)
have been used to analyze history dependence in neural spiking activity (Brillinger 1988;
Brown et al. 2002, 2003; Kass and Ventura 2001; Paninski et al. 2004; Truccolo et al. 2005).
GLM methods are available in nearly every statistical package and have the optimality
properties and statistical inference framework common to all likelihood-based techniques.
State-space modeling is a highly flexible signal processing paradigm (Durbin and Koopman
2001; Fahrmeir and Tutz 2001; Kitagawa and Gersch 1996; Mendel 1995) that has been applied
in studies of neural dynamics including neural receptive field plasticity (Brown et al. 2001;
Frank et al. 2002, 2004), neural coding analyses, neural spike train decoding (Barbieri et al.
2004; Brockwell et al. 2004; Brown et al. 1998; Deneve et al. 2007; Eden et al. 2004; Ergun
et al. 2007; Paninski et al. 2004; Smith and Brown 2003; Wu et al. 2006), the design of control
algorithms for brain–machine interfaces and neural prostheses (Shoham et al. 2005; Srinivasan
et al. 2006, 2007a,b; Wu et al. 2006; Yu et al. 2007), and analyses of learning (Smith et al.
2004, 2005, 2007; Wirth et al. 2003). Although combined GLM and state-space methods have
been developed in the statistics literature (Dey et al. 2000; Fahrmeir and Tutz 2001), these
combined methods have not been used to analyze between-trial and within-trial dynamics of
individual neurons.

We develop a state-space generalized linear model (SS-GLM) to formulate a point process
representation of between-and within-trial neural spiking dynamics that has the PSTH as a
special case. We estimate the model parameters by maximum likelihood using an approximate
Expectation Maximization (EM) algorithm, assess model goodness-of-fit using Kolmogorov–
Smirnov (K-S) tests based on the time-rescaling theorem, and guide the choice of model order
with Akaike’s information criterion. We illustrate our approach using simulated hippocampal
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spiking activity and actual neural spiking activity of six hippocampal neurons recorded in a
macaque monkey executing a learning experiment.

METHOD
We describe our SS-GLM framework and the experimental protocol from which the data
analyzed in this study were collected.

A state-space generalized linear model of neural spiking activity
We assume that the spiking activity of a single neuron is a dynamic process that can be analyzed
with the state-space framework used in engineering, statistics, and computer science (Durbin
and Koopman 2001; Fahrmeir and Tutz 2001; Kitagawa and Gersch 1996; Mendel 1995). The
state-space model consists of two equations: a state equation and an observation equation. The
state equation defines an unobservable state process that will represent between-trial neural
dynamics. Such state models with unobservable processes are often referred to as hidden
Markov or latent process models (Durbin and Koopman 2001; Fahrmeir and Tutz 2001; Smith
and Brown 2003). The observation equation defines how the observed spiking activity relates
to the unobservable state process. The data we observe in the neurophysiological experiments
are the series of spike trains. In our analyses the observation model will be a point process that
depends on both between- and within-trial dynamics.

Point process observation model of neural spiking activity
We assume that the spike train that is the observation process of our state-space model can be
represented as a point process (Brown 2005; Brown et al. 2003; Daley and Vere-Jones 2003;
Kass et al. 2005). A point process is a time series of random binary (0, 1) events that occur in
continuous time. For neural spike train, the 1’s are the individual spike times and the 0’s are
the times of no spike occurrences. Given a trial interval (0, T], let N(t) be the number of spikes
counted in interval (0, t] for t ∈ (0, T] in some trial. A point process model of a neural spike
train can be completely characterized by its conditional intensity function, λ(t|Ht), defined as

(1)

where Ht denotes the history of spikes up to time t (Brown 2005; Brown et al. 2003; Daley and
Vere-Jones 2003). It follows from Eq. 1 that given the history up to time t, the probability of
a single spike in a small interval (t, t + Δ] is approximately λ (t|Ht)Δ. The conditional intensity
function generalizes the definition of the rate function of a Poisson process to a rate function
that is history dependent. Because the conditional intensity function characterizes a point
process, defining a model for the conditional intensity function defines a model for the spike
train.

To facilitate presentation of our model, we present the specific form of the conditional intensity
function in discrete time. Assume that a repeated trial experiment is conducted with K trials of
the same stimulus or task and neural activity is simultaneously recorded with the application
of the stimulus or the execution of the task. We index the trials k = 1, …, K. We define the
observation interval as (0, T], where T is the length of each trial. To obtain the discrete time
representation of the conditional intensity function, we choose L large and divide the time
interval T into subintervals of width Δ = TL−1. We choose L large so that each subinterval
contains at most one spike. We index the subintervals ℓ = 1, …, L and define nk,ℓ to be the
indicator, which is 1 if there is a spike in subinterval ((ℓ − 1)Δ, ℓΔ] on trial k and is 0 otherwise.
We let nk = {nk,1, …, nk,L} be the set of spikes recorded on trial k and N1:k = {n1, …, nk} be
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the set of spikes recorded from trial 1 to trial k. We let Hk,ℓ denote the history of spikes in trial
k, up to time ℓΔ.

We assume that the conditional intensity function for the spike trains recorded in our
experiment at time ℓΔ of trial k has the form

(2)

where the component λS(ℓΔ|θk) describes the effect of the stimulus on the neural response and
the component λH(ℓΔ|γ, Hk,ℓ) defines the effect of spike history on the neural response. The
units of , λk(ℓΔ|θk, γ, Hk,ℓ) are spikes per second. By convention (Kass and Ventura 2001) we
also take λS(ℓΔ|θk) in our analysis to have units of spikes per second and let λH(ℓΔ|γ, Hk,ℓ) be
dimensionless. The idea to express the conditional intensity function as a product of a stimulus
component and a temporal or spike-history component was first suggested by Kass and Ventura
(2001). An important appeal of this approach is that if the spike-history component does not
contribute to the model fit (i.e., if its value is close to 1 for all times), then Eq. 2 becomes an
inhomogeneous Poisson process within each trial. In this way, Kass and Ventura pointed out
that this formulation of the conditional intensity function makes it possible to measure the
degree to which complex spiking models differed from more widely used Poisson models.
Furthermore, the spiking model should explain two effects established as important in previous
studies: the stimulus and spike-history effects (Dayan and Abbott 2001). Although there are
many ways to model these two effects, Eq. 2 is equivalent to expressing the log of the
conditional intensity function as the sum of these two effects (see Eq. 5). Therefore we can
view this formulation as approximating the first two terms in a Wiener kernel expansion of the
log of a general function of the stimulus and the spike history (Rieke et al. 1997). We have
successfully used this formulation of the conditional intensity function in previous reports
(Frank et al. 2002, 2004; Kass et al. 2005; Truccolo et al. 2005). If this formulation of the
conditional intensity function fails to provide a good description of the data, then this lack of
fit will be apparent in the goodness-of-fit analysis described in the following text. The
parameters γ and θk are subsequently defined.

To model the effect of the stimulus or task on the neural spiking activity we assume that the
first component of the conditional intensity function of Eq. 2 has the form

(3)

where the gr(ℓΔ) are a set of R functions that model the within-trial stimulus or task-specific
effect on spiking activity parameterized by θk = {θk,1, …, θk,r, …, θk,R} for each trial k = 1,
…, K. That is, Eq. 3 defines for each trial how the stimulus or task modulates the spiking
activity. There is a different θk for each trial. We use a state-space model to define the relation
between the θk values on different trials. This dependence defines the between-trial dynamics.
There is flexibility in the choice of the gr(ℓΔ) functions. Possible choices include polynomials,
splines, and unit pulse functions. We use the unit pulse functions to represent the gr(ℓΔ) values
so that, as subsequently described, PSTH is a special case of our state-space model (Fig. 2).

To model the effect of spike history on current neural spiking activity, we assume that the
second component on the right side of Eq. 2 can be defined as

(4)
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for k = 1, …, K, where γ = (γ1, …, γj, …, γJ) is the vector of parameters that describes the
dependence of the current spiking activity on recent spike history. In this model, we take the
history to be Hk,ℓ = {nk,ℓ − J, …, nk,ℓ − 1}, which is the spiking activity during the preceding
J time intervals prior to time ℓΔ. We chose the linear autoregressive expansion on the right
side of Eq. 4 to relate the spike history to current spiking activity because it had been used
successfully in many other spike train analyses (Brillinger 1988;Kass and Ventura 2001;Kass
et al. 2005;Truccolo et al. 2005). The coefficients in the model in Eq. 4 capture spike-history
effects at a resolution that is at most Δ. In the model in Eq. 4 we assume that the dependence
on spike history defined by the parameter γ does not change across trials. However, the effects
of the spike history will be different at different times because the history of spiking activity
preceding different times differs.

By combining Eqs. 2, 3, and 4, we see that the conditional intensity function, which defines
the observation equation of our state space model of neural activity, may be written as

(5)

for k = 1, …, K and ℓ = 1, …, L. Equation 5 defines a GLM formulation of the conditional
intensity function (Brillinger 1988; Kass and Ventura 2001; McCullagh and Nelder 1989;
Truccolo et al. 2005). We perform the expansions in Eqs. 3 and 4 in terms of the logs of the
stimulus and the spike-history components instead of in terms of the stimulus and spike-history
components so that, as Eq. 5 shows, the analysis will always generate a conditional intensity
or rate function that is positive.

State-space model of between-trial neural dynamics
To complete the definition of our state-space model and to model the relation of spiking activity
between trials we define the state equation. We assume stochastic dependence between the
θk = {θk,1, …, θk,r, …, θk,R} defined by the random walk model

(6)

for k = 1, …, K, where εk is an R-dimensional Gaussian random vector with mean 0 and
unknown covariance matrix Σ. We also assume that the initial vector θ0 is unknown. The
random walk model provides a simple way to let the coefficients of the stimulus functions be
different on different trials subject to a plausible constraint that prevents the model estimation
problem from becoming intractable. It is reasonable to assume that the coefficients on the
different trails are different to model between-trial dynamics. However, this assumption creates
a challenging estimation problem if there is not a further constraint because it means that there
is a large number of free parameters to estimate in each analysis. The constraint imposed by
the random walk model is the plausible assumption that stimulus coefficients on trial k are
close to the coefficients on trial k − 1. Equation 6 states this constraint in stochastic terms. That
is, if no information is available, then given the coefficients on trial k − 1, the average or
expected value for the coefficients on trial k is the value of the coefficient on trial k − 1. The
variance about this mean is defined by Σ. Stated otherwise, given the coefficients on trial k −
1, and no other information, a good guess for values of the coefficients on trial k are the
coefficients on trial k − 1. When spike train data are observed, the relation between θk and
θk−1 is given by the Filter and Fixed-Interval algorithms in APPENDIX A. Equation 6 is a
stochastic continuity constraint in that as the variance of εk values goes to zero, the probability
that θk differs from θk−1 goes to zero. The smaller (larger) the components of Σ, the smaller
(larger) the average difference between θk and θk−1 and the smoother (larger) the between-trial
differences in the stimulus component.
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Equations 5 and 6 define our state-space generalized linear model (SS-GLM). This model can
be used to analyze between-trial and within-trial neural spiking dynamics provided we can
estimate the unknown parameter ψ = (γ, θ0, Σ). Because the values of θk are unobservable and
ψ is an unknown parameter, we use the EM algorithm to compute their estimates by maximum
likelihood (Dempster et al. 1977). The EM algorithm is a well-known procedure for performing
maximum-likelihood estimation when there is an unobservable process or missing
observations. In our model, the unobservable or hidden processes are the θk coefficients that
define the between-trial dynamics. The EM algorithm has been used previously to estimate
state-space models from point process observations with linear Gaussian state processes (Smith
and Brown 2003). Our EM algorithm is based on the same ideas and its derivation is given in
APPENDIX A. We denote the maximum-likelihood estimate of the model parameters ψ as
ψ ̂ = (γ ̂, θ ̂0 Σ ̂).

To understand what is accomplished in the EM model fitting, we note that the log of the joint
probability density of the spike train data and the state process or the complete data log
likelihood is (APPENDIX A, Eq. A1)

(7)

Equation 7 is a penalized log-likelihood function and shows, as mentioned earlier, that the
random walk model (Eq. 6) for the stimulus coefficients imposes a multivariate stochastic
smoothness or regularization constraint on the between-trial component of the conditional
intensity or spike rate function (Fahrmeir and Tutz 2001; Kitagawa and Gersch 1996). The
factor Σ−1 is the smoothing or regularization matrix. In general, the larger the elements of Σ,
the rougher the estimates of the between-trial component of the spike rate function, whereas
the smaller the elements of Σ, the smoother the estimates of this component. Thus the
maximum-likelihood estimate of Σ governs the smoothness of the spike rate function by
determining the degree of smoothing that is most consistent with the data.

The PSTH and GLM are special cases of the SS-GLM
If we assume that the effect of the stimulus is the same between trials, then θk = {θk,1, …,
θk,r, …, θk,R} = θ is the same for all trials. If we further assume that there is no dependence on
spike history, then the GLM model becomes an inhomogeneous Poisson process with
conditional intensity function

(8)

for k = 1, …, K and ℓ = 1, …, L. Thus the conditional intensity function is the same for all trials
k = 1, …, K. Next, we choose the basis functions gr to be unit pulse functions with equal length

(9)

for ℓ = 1, …, L (Fig. 2). For the bin in which gr(ℓΔ) = 1, the spiking activity obeys a
homogeneous Poisson with mean rate exp(θr). It is easy to show that because the basis functions
in Eq. 9 are orthogonal, the values exp(θr) (r = 1, …, R) can be estimated independently of
each other. Furthermore, it can be shown that the maximum-likelihood estimate of exp(θr) is
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the number of spikes that occur in the bin in which gr(ℓΔ) = 1, summed across all trials, divided
by the number of trials and the bin width. This is equal to the height of the corresponding bar
in a PSTH. Since this is true for all pulse functions, it follows that the PSTH is the maximum-
likelihood estimate of the conditional intensity function defined by Eqs. 8 and 9. That is, we
choose the unit pulse functions as the basis functions for the right side of Eq. 3 so that the
PSTH is a special case of our SS-GLM model. Therefore we term the model Eq. 8, with the
gr values being equal-sized unit pulse functions (Eq. 9), the PSTH model.

The state-space model in Eqs. 5 and 6 is an extension of the GLM model in Truccolo et al.
(2005). In that report, the stimulus effect is the same across trials. That is, the conditional
intensity function has the form

(10)

Thus the conditional intensity at trial k and time ℓΔ is a function of spike history in trial k and
the time since the onset of the stimulus. This conditional intensity differs between trials
because, in any given trial, it depends on the spike history in that trial. The spike history for
different trials or, more generally, for different spike events is almost always different. This
model can therefore capture implicitly between-trial neural dynamics. We refer to this model
as a GLM model. Equations 2–4 make the GLM model with a log-link function (Eq. 10) a
special case of our SS-GLM model when the coefficients of the stimulus term are the same for
all trials. Truccolo et al. (2005) showed that this formulation of the GLM provided a simple
way to perform maximum-likelihood analyses of neural spike trains by using a point process
likelihood discretized at a resolution of Δ, readily available GLM fitting procedures such as
glmfit in Matlab (The MathWorks, Natick, MA) and point process–based goodness-of-fit
procedures based on the time-rescaling theorem as subsequently described.

Model goodness-of-fit
Before making an inference from a statistical model, it is crucial to assess the extent to which
the model describes the data. Measuring quantitatively the agreement between a proposed
model and a neural spike train or point process time series is a more challenging problem than
measuring agreement between a model and continuous data. Standard distance measures
applied in analyses of continuous data, such as average sum of squared errors, are not designed
for point process data. One alternative solution to this problem is to apply the time-rescaling
theorem (Brown et al. 2002; Ogata 1988; Truccolo et al. 2005) to transform point process
measurements such as a neural spike train into a continuous measure appropriate for a
goodness-of-fit assessment.

Once a conditional intensity function model has been fit to a neural spike train, we can compute
rescaled times from the estimated conditional intensity function as

(11)

where uk,m is the time of spike m in trial k for m = 1, …, Mk is the number of spikes in trial k
for k = 1, …, K, and γ ̂is the vector of maximum-likelihood estimates of the parameters γ. The
vectors θk|K = (θk,1, …, θk,R) are the estimates of the unobserved states θk based on all K trials
and ψ ̂ on the maximum-likelihood estimates of the parameter ψ. We obtain θk|K from the E-
step of the last EM iteration (APPENDIX A). The zk,m values will be independent, uniformly
distributed random variables on the interval [0, 1) if the conditional intensity function model
is a good approximation to the true conditional intensity of the point process. Because the
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transformation in Eq. 11 is one to one, measuring the agreement between the zk,m and a uniform
distribution directly evaluates how well the original model agrees with the spike train data.

To evaluate whether the zk,m values are uniformly distributed, we order the zk,m from smallest
to largest, denote the ordered values as zk*, and plot the quantiles of the cumulative distribution
function of the uniform density on [0, 1), defined as bk* = (k* − 0.5)/K* against the zk* for k*

= 1, …, K*, where  is the total number of interspike intervals to which the
model was fit. We term these Kolmogorov–Smirnov (K-S) plots. If the model is consistent
with the data, then the points should lie on a 45° line. Approximate large-sample 95%
confidence intervals for the degree of agreement between a model and the data may be
constructed using the distribution of the K-S statistic as bk* ± 1.36K*−1/2 (Brown et al. 2002).

Evaluating whether the zk,m values are independent is in general difficult. Here we can take
advantage of the structure of our problem and assess independence by further transforming the
rescaled times to

(12)

where Φ(·) is the cumulative distribution function of a Gaussian random variable with zero
mean and variance 1. If the rescaled times zk,m are independent with a uniform distribution on

the interval [0, 1), then the rescaled times  are independent Gaussian random variables with
mean 0 and variance 1 (and vice versa). Independence of a set of Gaussian random variables
can be evaluated by analyzing the correlation structure because being uncorrelated is equivalent

to being independent for Gaussian random variables. Thus if the  are uncorrelated, then the

 are independent and thus the zk,m are independent. We assess the independence of the

rescaled times by plotting the autocorrelation function (ACF) of the  (Eq. 12) with its
associated approximate confidence intervals calculated as ±z1−(α/2) K*−1/2, where z1−(α/2) is
the 1 − (α/2) quantile of the Gaussian distribution with mean 0 and variance 1 (Box et al.
1994). If the ACF of the Gaussian rescaled times is indistinguishable from zero up to lag r,
then we can conclude that the rescaled times are independent up to a lag r consecutive interspike
intervals.

Model selection criteria
We fit several models to the neural spike train data and use Akaike’s Information Criterion
(AIC) (Burnham and Anderson 1998; Truccolo et al. 2005) to identify the best approximating
model from among a set of possible candidates. We evaluate the AIC as

(13)

where p is the dimension of ψ and log P(N|ψ) is the log likelihood of the observed data computed
at the final iteration of the EM algorithm from Eqs. A2, A6, and A7 in APPENDIX A.
Minimizing the AIC across a set of candidate models identifies a model from among the
candidates that has approximately the smallest expected Kullback–Leibler distance to the
“true” model (Burnham and Anderson 1998). Hence, in theory, the optimal model by this
criterion is the one with the smallest AIC. In practice a small difference in AIC between two
models may be due to random sample fluctuations. Therefore if the AIC difference between
two models is <10, we choose the model with the smaller number of parameters. If the AIC
difference between two models is >10, we conclude that the model with lower AIC explains
substantially more structure in the data (Burnham and Anderson 1998).
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The model we consider most appropriate to use to analyze the data is the one that: 1) is the best
approximating model in terms of AIC and 2) gives the best summary of the data in terms of
K-S and ACF plots.

Answering specific neurophysiological questions
Once the SS-GLM model has been estimated and its goodness-of-fit has been established, the
principal objective is to use functions of the model and the model parameters to make inferences
about the neural system being studied based on the recorded experimental data. An important
property of maximum-likelihood estimation is invariance. That is, if ψ ̂ is the maximum-
likelihood estimate of a parameter ψ in a given model and h(ψ) is a function of ψ, then the
maximum-likelihood estimate of h(ψ) is h(ψ ̂) (Pawitan 2001). In particular, all of the optimality
properties of maximum-likelihood estimation that are true for ψ ̂ are also true for h(ψ ̂) (Pawitan
2001). This seemingly obvious property is not true of all estimation procedures. We use this
invariance principle explicitly in all of our analyses by simply computing h(ψ ̂) as the obvious
and optimal estimate of h(ψ).

The five principal, neurophysiologically relevant functions, h(ψ), we compute using this
important property of maximum-likelihood estimation are: 1) the stimulus effect on the spiking
activity; 2) the effect of spike history (intrinsic and network dynamics) on current spiking
activity; 3) the spike rate per trial; 4) between-trial comparisons of the spike rate function; and
5) within-trial comparisons of the spike rate function. We show how these functions can be
used to answer specific neurophysiological questions.

ESTIMATE OF THE STIMULUS EFFECT ON THE SPIKING ACTIVITY—From Eq. 3
it follows that the maximum-likelihood estimate of the stimulus effect, λS(ℓΔ|θk), at time ℓΔ
and trial k, is

(14)

where θk|K = (θk,1, …, θk,R) is the estimate of the hidden state θk based on all K trials and on
the maximum-likelihood estimates of the parameter ψ. We obtain θk|K from the E-step of the
last EM iteration (APPENDIX A). The construction of simultaneous confidence intervals for
the stimulus component is described in APPENDICES B and D.

ESTIMATE OF THE SPIKE-HISTORY FUNCTION—We denote exp{γj}, j = 1, …, J as
the spike-history function, which describes the effects on spiking propensity of the absolute
and relative refractory period as well as other biophysical properties such as rebound
hyperpolarization and network dynamics. This function estimates the extent to which current
spiking activity can be predicted from recent spiking history. Its maximum-likelihood estimate
is

(15)

for j = 1, …, J. Because each γ ̂j is the maximum-likelihood estimate of γj its approximate
distribution is Gaussian (Pawitan 2001). Therefore we can use the fact that exp{γ ̂j} is
approximately distributed as a lognormal random variable to compute the confidence intervals
for exp{γj} (Smith and Brown 2003). The algorithm to compute the standard errors for the
model’s spike-history component is given in APPENDIX C.
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ESTIMATE OF THE SPIKE RATE FUNCTION—We define the expected number of spikes

on trial k in the interval [t1, t2] as . Furthermore, we define the
spike rate function on interval [t1, t2] as

(16)

The maximum-likelihood estimate of the spike rate function on trial k in the interval [t1, t2] is

(17)

where ℓ1Δ = t1 and ℓ 2Δ = t2. We compute confidence intervals for Λk(t1, t2) using the Monte
Carlo method in APPENDIX E.

BETWEEN-TRIAL COMPARISONS OF THE SPIKE RATE FUNCTION—An
important objective of these analyses is to compare spike rate functions between two trials.
These comparisons are central to identifying a learning effect in behavioral learning
experiments. We can do this by comparing the spike rates in the two trials in the same time
interval. That is, for a given interval [t1, t2] and trials m and k we can compute using the
maximum-likelihood estimates in Eq. 17

(18)

for any k = 1, …, K − 1 and m > k. We compute this probability using the Monte Carlo methods
described in APPENDIX F.

WITHIN-TRIAL COMPARISONS OF THE SPIKE RATE FUNCTION—A second
important objective of these analyses is to compare the spike rate function between two disjoint
periods within a trial. For example, it is important to compare spiking activity during a baseline
period with spiking activity during another period in the trial such as the scene period or the
delay period (Fig. 1). Differences in neural activity between a baseline and a specified period
are used as one criterion to classify the neurophysiological properties of neurons (Wirth et al.
2003;Wise and Murray 1999). We compare the two spike rates on trial k given the two intervals
[t1, t2] and [t3, t4] defined from Eq. 16 as

(19)

and the maximum-likelihood estimate of the difference between these two spike rates is

(20)

If the entire confidence interval for the difference between the two spike rate functions is
positive (negative), then it is reasonable to infer that the spike rate function in period [t3, t4] is
larger (smaller) than the spike rate in period [ t1, t2]. If the confidence interval for the difference
in the two rates contains zero, then we conclude that the two spike rates do not differ. We
compute confidence intervals for the difference (t4 − t3)− 1 Λk (t3, t4) − (t2 − t1)− 1 Λk(t1, t2)
using the Monte Carlo methods in APPENDIX E.
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Experimental protocol: location-scene association learning task
To illustrate our framework in the analysis of actual experimental data, we analyze responses
of six hippocampal neurons recorded from macaque monkeys performing a location-scene
association task. A detailed description of the experiment is in Wirth et al. (2003). The objective
of that study was to characterize the response of the neurons to individual scenes and relate it
to learning behavior. Here, we analyze in detail the responses of a single hippocampal neuron
(see RESULTS) and we summarize the analyses of five other neurons.

The spikes of the neuron that we analyze in detail (RESULTS) were recorded during the
presentation of the same scene across 55 trials. Each trial lasted 1,700 ms (Fig. 1A) and the
spikes were recorded with a resolution of 1 ms. For this neuron, each trial time was divided
into four epochs (Fig. 1A). These were: the fixation period from 0 to 300 ms; the scene
presentation period from 300 to 800 ms; the delay period from 800 to 1,500 ms; and the response
period from 1,500 to 1,700 ms. Across these 55 trials, this neuron fired 1,911 spikes in response
to this scene.

RESULTS
Analysis of simulated multiple trial neural spiking activity

SIMULATING NEURAL SPIKING ACTIVITY—We first illustrate our SS-GLM
framework in the analysis of simulated neural spike train data designed to reflect the structure
of activity seen in learning experiments (Wirth et al. 2003). To simulate the data we constructed
a point process model of the neural spiking activity whose conditional intensity function is a
product of a stimulus and a spike history component (Eq. 2).

To construct the stimulus component of the model we chose cardinal splines as the basis
functions gr (Eq. 3), with R = 11 being the number of spline basis functions and with a control
point vector being [t1, …, t11] = [0, 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2] (Frank et al.
2002;Hearn and Baker 1996). The stimulus component is then defined as (Fig. 3A)

(21)

for t ∈ (tj, tj + 1] and u(t) = (t − tj)/(tj + 1 − tj). The magnitudes of the spline functions at the
control points, which are the stimulus parameters θk = [θk,1, …, θk,R] in our model, satisfy the
deterministic state equation

(22)

where θ 0 = [1, 1.7, 2.2, 3.1, 1.75, 1.75, 1.88, 1.88, 1.75, 1.75, 1] and where Fk is an 11-
dimensional diagonal matrix whose diagonal elements evolve across the trials as

(23)
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The system in Eqs. 21–23 yields a stimulus component with two peaks that evolve between
and within trials (Fig. 3A). The smaller peak between 0 and 1,000 ms decreases across the
trials, whereas the larger peak, between 1,000 and 2,000 ms, rapidly increases after trial 25.
For trials 1 to 25 the stimulus effect increases from 0 to 500 ms, decreases from 500 to 1,000
ms, and remains constant from 1,000 to 2,000 ms. From trials 26 to 50 the stimulus shows a
lower magnitude increase and decrease between 0 to 1,000 ms and then shows a sharp increase
and decrease from 1,000 to 2,000 ms.

We assume Δ = 1 ms and we define the history component of the model as (Fig. 3B)

(24)

where

(25)

We chose the first five parameters of spike-history component (Eq. 25) to be highly negative,
to model the absolute and the early part of the relative refractory period of the simulated neuron
(Fig. 3B). This is the value of exp(−2) in the 1- to 5-ms bins. Thus if the neuron fires once
(twice) between 1 to 5 ms prior to time t, then the probability of a spike at time t decreases
because it is multiplied by exp(−1 × 2) = 0.14 [exp(−2 × 2) = 0.02]. We chose the second five
coefficients of the spike-history component for the 6- to 10-ms bins (Fig. 3B) to be −1 to model
the later part of the neuron’s relative refractory period. If the neuron spiked once between 6
and 10 ms prior to time t, then the spiking probability is downweighted by multiplying the
other components of the conditional intensity function by exp(−1) = 0.37. We chose the third
set of five coefficients (11-to 15-ms bins) to be 0 so that a spike occurring in this time interval
has no effect on the propensity of the neuron to spike at time t because exp(0) = 1. Finally, if
the neuron spiked once between 16 and 20 ms prior to time t, then the probability of spiking
at time t is increased by a factor of exp(γ 4) = exp(0.5) = 1.65. Spiking activity ≥ 20 ms prior
to the current time is assumed to have no effect on the spiking probability at the current time.

The conditional intensity function is therefore the product of the stimulus component defined
in Eqs. 21–23 (Fig. 3A) and the history component defined in Eq. 24 and 25 (Fig. 3B). Following
Kass and Ventura (2001), we constructed the stimulus component (Fig. 3A) with units of spikes
per second and the spike-history component (Fig. 3B) as a dimensionless time-dependent
scaling function. If the value of the spike history component is above (below, equals) one, then
multiplying the stimulus component by the history component increases (decreases, does not
affect) the firing rate.

We simulated neural spiking activity consisting of K = 50 trials each 2 s in length (Fig. 3C) by
using the conditional intensity function defined in Eqs. 21–25 in a thinning algorithm (Brown
et al. 2003,2005). The simulated data (Fig. 3C), in which the PSTH is binned at 10 ms (Fig.
3D) and the spike rate is plotted as a function of trial (Fig. 3E), show patterns consistent with
the between- and within-trial structure of the stimulus (Fig. 3A). The spike history component
of the model cannot be discerned from these plots.

CANDIDATE MODELS, MODEL FITTING, AND MODEL SELECTION—To analyze
the simulated data, we considered two models with a stimulus-only component: a PSTH (Eqs.
8 and 9) and a state-space PSTH [Eqs. 6, 8, and 9; λH(ℓΔ|γ, Hk,ℓ) = 1 for k = 1, …, K, ℓ = 1,
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…, L]. We also considered two types of models with a spike-history component: a GLM (Eqs.
9 and 10) and a state-space GLM (Eqs. 5, 6, and 9). We construct the spike-history components
of the GLM models (Eq. 4) by considering spike dependence going back 300 ms prior to the
current spike time using coarse time binning and fine time binning. The coarse time bins were
1–5, 6 –10, 11–15, 16 –20, 21–30, 31–50, 51–100, 101–150, 151–200, 201–250, and 251–300
ms. The fine time bins consisted of sixty 5-ms bins.

The model used to simulate the data differs from the SS-GLM model in two ways. First, we
used a deterministic state equation (Eqs. 22 and 23) to ensure the presence of systematic change
in the stimulus component and thus in the neural spiking activity both between and within
trials. Such an evolution would occur by chance only with the random walk model in Eq. 6.
Second, we used cardinal splines rather than unit pulse functions (Eq. 9, Fig. 2) to construct
in the stimulus component (Fig. 3A) to guarantee smooth changes in the stimulus effect. By
using a model to simulate the data that differs from the models used in the analysis we study
the more realistic problem of analyzing data for which the “true model” is unknown.

We fit the GLM and PSTH models by maximum-likelihood estimation using GLMfit in Matlab.
We fit the state-space models using the EM algorithms in APPENDIX A. To identify the best
approximating model we used AIC and K-S goodness-of-fit tests based on the time-rescaling
theorem and ACF of the transformed interspike intervals. An analysis of AIC as a function of
the number of model parameters (Fig. 4) shows that in order of improving descriptive power
(i.e., lowest AIC), the models are the PSTH, the SS-PSTH, the GLM with a 200-ms spike
history with coarse binning, and SS-GLM with a 20-ms spike history and coarse binning (Table
1). Therefore to have a candidate from each type of model we consider, we choose these four
models and analyze their fits in greater detail.

The histogram of the rescaled interspike intervals (Fig. 5, A–D) and the K-S plots (Fig. 5I)
assess the extent to which the distribution of the rescaled interspike intervals are uniform
whereas the ACF (Fig. 5, E–H) assesses the extent to which the transformed times are
approximately independent. If the rescaled times are uniformly distributed, the histograms in
Figs. 5, A–D will be uniform and the K-S plot will be close to the 45 ° line. If the transformed
times are independent, the ACF will be close to zero and within the 95% confidence intervals.

Of the four models we consider, the PSTH describes the data least well in terms of the K-S
and ACF analyses. The SS-PSTH model gives a good fit in terms of ACF but fits less well in
terms of the K-S plot. The GLM 200 and the SS-GLM 20 agree closely with the data in terms
of both the ACF and K-S plots. That is, for both the GLM 200 and the SS-GLM 20 the rescaled
times are consistent with a uniform probability density and the ACF suggests that the
transformed times are independent up to lags of 100 consecutive interspike intervals. The AIC,
K-S, and ACF analyses suggest that the SS-GLM 20 provides the most parsimonious and
accurate summary of the data. Therefore it is the preferred model to use to answer specific
neurophysiological questions. The SS-GLM 20 model (Table 1) offers strong evidence that
the within-trial dynamics described by the spike history of 20 ms and the between-trial
dynamics described by the state-space are important components of the spiking activity.

TASK-MODULATION OF THE NEURAL SPIKING ACTIVITY—We next demonstrate
how the SS-GLM 20 model can be used to answer specific neurophysiology questions. Because
we know the true underlying structure in the data in this simulated example, we also compare
the conclusions we draw from SS-GLM 20 with those we draw from the other three candidate
models. First, we examine how the stimulus or the task modulates the spiking activity (Eq. 3).
The SS-GLM 20 model gives an estimate of the stimulus component (Fig. 6D) as a function
of trial and time within the trial. It demonstrates that the task-specific activity changes both
between and within trials. The SS-GLM 20 (Fig. 6D) captures the three-dimensional structure
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in the true stimulus surface (Fig. 3A). This estimate is not smooth because the estimated
stimulus component was constructed with the unit pulse functions (Fig. 2) instead of with the
spline functions used to simulate the data. The fit of the SS-PSTH (Fig. 6C) is not as good as
the SS-GLM 20. In addition, the SS-PSTH estimate of the three-dimensional structure in the
stimulus (i.e., spike rate as a function of the stimulus as its between- and within-trial
components) does not closely agree with the true stimulus component (Fig. 3A). By definition,
the PSTH (Fig. 6A) and GLM 200 (Fig. 6B) models cannot provide estimates of the between-
trial stimulus components.

To obtain another view of the between trial comparisons in spiking rates, we follow Smith et
al. (2005) and compute the following probability matrix (Eq. 18) using the SS-GLM 20 model:
The entry in row k and column m is the probability that the spike rate on trial m (x-axis in Fig.
6E) is greater than the spike rate on trial k (y-axis in Fig. 6E). The gray scale displays the
comparison (Fig. 6E) with the light (dark) shades corresponding to a low (high) probability.
For contrast, the red areas (Fig. 6E) show the trial pairs for which this probability is ≤ 0.95.
This is not a significance test, but rather use of the approximate joint distribution of the
maximum-likelihood estimates of the coefficients of the stimulus effect (APPENDICES B and
F) to compute empirical Bayes’ estimates of these probabilities (Smith et al. 2005). As a
consequence, there is no multiple hypothesis testing problem with these comparisons.

The first 23 rows show that from approximately trial 24 to trial 50, there is at least a 0.95
probability that spiking activity on these trials is greater than the spiking activity at trials 1 to
23. Rows between 23 and 35 show that spiking activity is steadily increasing between trials,
although this rate is getting smaller. Finally at about trial 35 this increase in spiking activity
between trials stops. The spiking activity between trial 36 and trial 50 does not differ because
all the corresponding probabilities are >0.05 and <0.95, which is illustrated by the gray areas.
Furthermore, the spiking activity between trial 1 and trial 20 does not differ. These differences
are also suggested by the raster plot (Fig. 3A).

To provide an example of a more detailed analysis of the within-trial dynamics, we show for
the true stimulus component at trial 50 (Fig. 6F, black curve), 95% simultaneous confidence
intervals (Fig. 6F, red vertical lines with bars). The state-space model analysis gives an estimate
of the joint distribution of the stimulus components of the model. Thus we can construct
confidence intervals for any function of the stimulus that is of interest (METHODS,
APPENDICES D, E, and F). The confidence intervals cover the true stimulus component for
this trial. The PSTH (Fig. 6A) and the GLM 200 (Fig. 6B) provide an average rather than a
trial-specific estimate of the stimulus effect. As a consequence, their confidence intervals fail
to cover the true stimulus component at trial 50. We conclude that this neuron has a stimulus-
specific response that has both strong between- and within-trial components. Thus Fig. 6E and
F provide quantitative analyses of the structure seen in the raster plot (Fig. 3A) and confirm
that there is a very high probability of both between- and within-trail task-modulated changes
in this neuron’s spiking activity.

BETWEEN-TRIAL DYNAMICS AND LEARNING-RELATED EFFECTS—
Characterizing between-trial dynamics in neural activity is important in behavioral
experiments because a frequent objective of these studies is to relate the between-trial changes
in neural activity to between-trial changes in behavioral variables such as a learning curve or
reaction time measurements (Eichenbaum et al. 1986; Siegel and Castellan 1988; Smith et al.
2004, 2005, 2007; Wirth et al. 2003). The strong between-trial dynamics of this neuron were
already evident in the estimated stimulus surface (Fig. 6D). To examine another representation
of these between-trial dynamics that is closer to the between-trial spike rate estimate computed
in learning experiments, we estimate the spike rate within 0.3 and 2 s (Eq. 17) for our four
models: the PSTH, the SS-PSTH, the GLM 200, and the SS-GLM 20 (Fig. 7). The PSTH

Czanner et al. Page 14

J Neurophysiol. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



estimate of the between-trial spike rate dynamics (Fig. 7A) and its 95% confidence intervals
are flat and do not capture the between-trial changes in rate. The GLM 200 model overestimates
the between-trial changes in rate between trial 1 and trial 28 and underestimates it from trial
31 to trial 50 (Fig. 7B). The SS-PSTH and SS-GLM 20 models capture well the dynamics of
the between-trial spiking dynamics because their 95% confidence intervals (APPENDIX E)
cover the true change in spike rate between trials (Fig. 7, C and D).

ANALYSIS OF INTRINSIC AND NETWORK DYNAMICS—We examine the spike-
history component in detail by plotting the estimate obtained from the GLM 200 model (Fig.
8, A and B) and the SS-GLM 20 model (Fig. 8C). The estimate (Fig. 8C, solid line) is in good
agreement with the true spike history effect because the 95% confidence intervals for this model
cover the true history component (Fig. 8C, white squares). In contrast, the 95% confidence
intervals for the spike-history function computed from the GLM 200 model do not cover the
true spike-history function (Fig. 8A). The GLM 200 model overestimates the true history
component at all time bins. The PSTH and the SS-PSTH models do not provide an estimate
of the spike-history dependence.

From this analysis we conclude that the spiking activity of this neuron is strongly modulated
by a spike-history component for which the short-term components 1 to 10 ms most likely
represent the intrinsic dynamics of the neuron such as the absolute and relative refractory
period, whereas the components from 15 to 20 ms could represent late intrinsic dynamics and
perhaps the effects of network dynamics (Truccolo et al. 2005).

In conclusion, the state-space GLM analysis provides a highly informative summary of the
between- and within-trial dynamics of this neuron, which can be interpreted as possible
learning-related dynamics (stimulus- or task-specific modulation), and intrinsic and network
dynamics (spike-history component).

Analysis of actual multiple trial neural spiking activity
To illustrate our state-space GLM framework to characterize actual multiple trial neural spiking
activity, we analyze the spike trains of the hippocampal neuron (Fig. 1) recorded from the
monkey executing the location-scene association task (see METHODS). We demonstrate how
to select the most appropriate model from among a set of candidate models to describe the data
and show how that model may be used to characterize the properties of the neuron’s spiking
activity and to answer specific neurophysiological questions.

CANDIDATE MODELS, MODEL FITTING, AND MODEL SELECTION—We
considered two models with a stimulus-only component: a PSTH (Eqs. 8 and 9) and a state-
space PSTH [Eqs. 6, 8, and 9; λH(ℓΔ|γ, Hk,ℓ) = 1 for k = 1, …, K, ℓ = 1, …, L]. We also
considered two types of models with a spike-history component: a GLM (Eqs. 9 and 10) and
a state-space GLM (Eqs. 5, 6, and 9). We construct the spike-history components of the GLM
models (Eq. 4) by considering spike dependence going back 200 ms using coarse time binning
and fine time binning. The coarse time bins were 1–2, 3–5, 6 –10, 11–20, 21–30, 31–50, 51–
100, 101–150, and 151–200 ms. For the fine time binning the first two bins are 1–2 and 3–5
ms, whereas from 5 to 200 ms, we divide time into 39 bins, each 5 ms in width.

We fit the GLM and PSTH models by maximum likelihood using GLMfit in Matlab and the
state-space models using the EM algorithms in APPENDIX A. Model selection and goodness-
of-fit were carried out using AIC and K-S goodness-of-fit tests based on the time-rescaling
theorem and ACF of the Gaussian transformed interspike intervals. An analysis of AIC as a
function of the number of model parameters (Fig. 9) shows that in order of improving
descriptive power (i.e., lowest AIC), the models are the PSTH, the SS-PSTH, the GLM with
a 100-ms spiking history, and the SS-GLM with a 100-ms spiking history (Table 2). Therefore
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to have a candidate from each type of model we consider, we choose these four models and
analyze their goodness-of-fit in greater detail.

Of the four models we consider, the PSTH describes the data least well in terms of the plots
of the transformed times, ACF and K-S analyses (Fig. 10, A, E, and I, green curve). The SS-
PSTH model gives a good fit in terms of ACF (Fig. 10G) but fits less well in terms of the
transformed times and K-S plot (Fig. 10, C and I, black curve). The transformed times of the
GLM 100 appear to be slightly more uniform (Fig. 10B) than those of the SS-GLM 100 (Fig.
10D). All of the ACF components of the SS-GLM 100 (Fig. 10H) appear to be independent
up to a lag of 100 consecutive interspike intervals, whereas several of the ACF components of
the GLM 100 (Fig. 10F) are outside the 95% confidence bounds, suggesting that these latter
transformed times are not independent. The K-S plots of the GLM 100 (Fig. 10I, blue curve)
and the SS-GLM 100 (Fig. 10I, red curve) are almost indistinguishable, as suggested by their
respective plots of the transformed times (Fig. 10, B and D).

The AIC, K-S, and ACF analyses suggest that the SS-GLM 100 provides the most parsimonious
and accurate summary of the data of the four models. Therefore it is the preferred model to use
to answer specific neurophysiological questions. The SS-GLM 100 model (Table 2) offers
strong evidence that the within-trial dynamics described by the spike history of 100 ms and
the between-trial dynamics described by the state-space model are important components of
the spiking activity. We next demonstrate how the SS-GLM 100 model can be used to answer
specific neurophysiological questions and we compare the conclusions drawn from it with
those drawn from the other three candidate models.

IS THERE TASK-SPECIFIC MODULATION OF THE NEURAL SPIKING ACTIVITY?
—We first examine how the stimulus, which in this case is a location-scene association task,
modulates the spiking activity (Eq. 3). The SS-GLM 100 model gives an estimate of the
stimulus component (Fig. 11D) as a function of trial and time within the trial. As suggested by
the raster plot of the spiking activity (Fig. 1A), the three-dimensional surface (Fig. 11D) shows
that there are strong task-specific changes both between and within trials. This estimate is not
smooth because the estimated stimulus component was constructed with the unit pulse
functions (Eq. 9). The fit of the SS-PSTH is not as good as that of the SS-GLM 100.
Furthermore, the SS-PSTH estimate of the stimulus (Fig. 11C) is about 1.4-fold higher than
the stimulus component estimated from the SS-GLM 100 model (Fig. 11D). By definition, the
PSTH (Fig. 11A) and GLM 100 (Fig. 11B) models cannot provide estimates of the between-
trial stimulus components. The SS-GLM 100 model demonstrates that the location-scene
association task strongly modulates the spiking activity of this neuron.

However, to make this statement firmly, it is important to conduct a formal statistical analysis
of these changes. Our SS-GLM analysis estimates the joint probability distribution of the
model’s stimulus components. Therefore we can construct confidence intervals or make
probability statements about any given aspect of the stimulus using the Monte Carlo algorithms
in APPENDICES D, E, and F. Using the SS-GLM 100 model, we compute, as we did for the
simulated data example (Fig. 6E), the empirical Bayes’ probability matrix (Eq. 18) (Smith et
al. 2005) in which the entry in row k and column m is the probability that the spike rate on trial
m (x-axis in Fig. 11E) is greater than the spike rate on trial k (y-axis in Fig. 11E). The gray
scale displays the comparison (Fig. 11E) with the light (dark) shades corresponding to a low
(high) probability. For contrast, the red areas (Fig. 11E) show the trials for which this
probability is ≥0.95.

The first five rows show that from trial 17 to trial 55 there is at least a 0.95 probability that
spiking activity on these latter trials is greater than the spiking activity on trials 1 to 5 (Fig.
11E, red areas). Row 6 shows that from trial 19 to trial 55 there is at least a 0.95 probability
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that spiking activity on these trials is greater than the spiking activity on trial 6, whereas rows
7 to 19 show that from trial 20 to trial 55, there is a >0.95 probability that spiking activity on
these trials is greater than the spiking activity on trials 19 or less. Finally, row 24 shows that
spiking activity from trial 25 to trial 55 is greater than spiking activity on trials 1 to 24. In
contrast, the spiking activity between trial 1 and trial 14 and between 25 and 55 do not differ
because the corresponding probabilities are almost all (except of 6) >0.05 and <0.95 (Fig.
11E, dark gray areas).

Therefore we conclude that there is a very high probability of a difference in spike rate between
trials beginning as early as trial 17 compared with the first six trials and definitively by trial
25 and all subsequent trials compared with all trials prior to trial 25. This latter difference is
clearly evident in Fig. 1A. Thus Fig. 11, D and E provides quantitative analyses of the structure
seen in the raster plot (Fig. 1A) and confirms that there is a very high probability that this neuron
has strong between-trial, task-related modulation of its spiking activity.

The three-dimensional structure of the response surface (Fig. 11D) shows that our analysis
provides for each trial a within-trial estimate of the task modulation of the neural spiking
activity. To illustrate, we show the estimated stimulus component and its simultaneous 95%
confidence intervals at trials 1 (Fig. 11F, green curve) and 25 (Fig. 11F, red curve). Because
the 95% confidence intervals for the two curves do not overlap between 1.1 to 1.7 s, we
conclude that the task-specific activity at trial 25 is greater than that at trial 1 within this time
interval. Figure 11F shows that we can compute for any trial the within-trial estimate of the
task-modulated dynamics and that we can compare these dynamics to those in any other trial.
These trial-specific within-trial estimates of the task-modulated dynamics are more informative
than the PSTH (Fig. 1B), which provides only an average estimate of the within-trial, task-
modulated dynamics.

HOW CAN WE CHARACTERIZE BEHAVIOR-RELATED (BETWEEN-TRIAL)
NEURAL DYNAMICS?—Characterizing between-trial dynamics in neural activity is
important in behavioral experiments because a frequent objective of these studies is to relate
the between trial changes in neural activity to between trial changes in behavioral variables
such as learning curves or reaction time measurements (Eichenbaum et al. 1986; Siegel and
Castellan 1988; Smith et al. 2004, 2005, 2007; Wirth et al. 2003). In this case, these between-
trial dynamics may represent behavior-related changes.

The strong between-trial dynamics of this neuron were already evident in the raster plot (Fig.
1A), the empirical spike rate function (Fig. 1C), the estimated response surface (Fig. 11D), the
probability matrix (Fig. 11E), and the within-trial estimates of the task-specific activity (Fig.
11F). To provide another display of these between-trial dynamics that is closer to the empirical
spike rate estimate (Fig. 1C), computed typically in multiple trial experiments as the number
of spikes per trial divided by the trial length, we estimate the spike rate per trial within 0.2 and
1.7 s (Eq. 17), respectively, for the GLM 100 model (Fig. 12A) and the SS-GLM 100 model
(Fig. 12B). The spike rate estimated from the GLM 100 model (Fig. 12B, solid black curve)
exceeds the empirical spike rate (Fig. 12A, solid gray curve) between trial 1 and trial 24,
whereas it underestimates the spike rate between trial 26 and trial 55. Moreover, because the
GLM 100 model does not consider explicitly between-trial dynamics, its 95% confidence
intervals (Fig. 12A, dashed black curve) estimate only a small amount of uncertainty in its spike
rate. The SS-GLM 100 model estimate (Fig. 12B, solid black curves) and its wider 95%
confidence intervals (Fig. 12A, dashed black curve) capture well the between-trial spiking
dynamics. The empirical spike rate estimate (Fig. 12B, gray curves) is closer to the SS-GLM
100 estimate. Because we established in the goodness-of-fit analyses that the SS-GLM 100
model provides the best description of the data, its spike rate estimate is more credible and
informative than either the GLM 100 or the empirical spike rate estimates (Figs. 1C and 12,
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gray curves). Therefore the SS-GLM model can be used to characterize the between-trial
changes in this neuron’s spiking activity.

IS THERE A DIFFERENCE IN TASK-SPECIFIC ACTIVITY BETWEEN THE
BASELINE AND THE DELAY PERIODS?—An important question to answer at the start
of the analysis of a neurophysiological experiment consisting of multiple trials is whether
activity in a specified period of the task is different from activity in the baseline period. This
analysis is performed at the start to determine whether a neuron has any evidence of task-
specific activity. If the null hypothesis of no task-specific activity is rejected (not rejected) the
neuron is included in (excluded from) further analysis. A standard convention is to use an
ANOVA to answer this question (Wirth et al. 2003; Wise and Murray 1999). This approach is
usually less than optimal because, except in the case of extremely high spike rates, neural
spiking activity is rarely well described by the Gaussian assumptions that are required to
correctly apply ANOVA. Although we have already shown with the analyses in Figs. 11 and
12 that this neuron has strong task-specific modulation of it is spiking activity, we demonstrate
that the appropriate analog of this ANOVA can be carried out very easily using our SS-GLM
framework.

The question we ask is, “Is there a difference in task-specific activity between the delay period
(Fig. 1, 800 –1,500 ms) and the fixation period (Fig. 1, 0 –300 ms)?” We consider the fixation
period as a baseline period and the delay period as a period of possible task-specific activity.
We used one-way ANOVA on the spike rates estimated from the PSTH and found significant
task-specific activity with P < 0.05. The ANOVA does not give details about the differences
in response across the task without a further post hoc testing analysis. Using the SS-GLM 100
we estimated the difference in the spike rates for each trial using Eq. 20 with t1 = 200, t2 = 300,
t3 = 800, t4 = 1,500 ms. The estimate of this difference by trial (black curve) with 95%
confidence intervals (black dashed curves) is shown in Fig. 13. The estimate of this difference
is positive from trial 15 to trial 55 and the lower bound of the 95% interval for the difference
is positive from trial 20 to trial 55. Therefore our analysis confirms the ANOVA finding of
task-specific activity and shows that the difference between the activity in the delay and fixation
periods is significant beginning at trial 20. The empirical estimate of the observed rate
difference (Fig. 13, gray curve) computed on each trial as the number of spikes in the delay
period divided by the length of the delay period minus the number of spikes in the baseline
period divided by the length of the baseline period suggests a similar conclusion, but is noisier
and does not provide confidence intervals.

WHAT ARE THE TIMESCALES AND CHARACTERISTICS OF THE NEURON’S
INTRINSIC AND NETWORK DYNAMICS?—We examine the spike-history component
in detail by plotting the estimate obtained from the GLM 100 (Fig. 14A) and the SS-GLM 100
models (Fig. 14B). The spike-history components of the two models suggest that the neuron
has strong absolute refractory (1–5 ms) and relative refractory (6 –10 ms) periods. The spiking
propensity of this neuron is not modulated by spiking activity 11 to 20 ms prior to the current
time. It also shows a strong positive modulation by spiking activity from 21 to 100 ms prior
to the current time that may be due to late intrinsic dynamics and perhaps the effect of network
dynamics (Truccolo et al. 2005). The positive modulation of the GLM 100 model is slightly
greater than that of the SS-GLM 100 model. These two models demonstrate that this neuron’s
spiking activity is strongly modulated by intrinsic and possibly network dynamics. These spike-
history modulations of the neural spiking activity cannot be discerned from the standard raster,
PSTH, and spike rate plots (Fig. 1).

In conclusion, we see that the SS-GLM analysis provides a highly informative summary of
this neuron’s spiking activity that estimates using one model the between-trial and within-trial
spiking dynamics that were estimated separately from the SS-PSTH and the GLM 100,
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respectively. The between-trial dynamics and part of the within-trial dynamics may be
interpreted as strong behavioral or learning effects (stimulus- or task-specific modulation),
whereas the other component of the within-trial dynamics represents strong intrinsic and
possibly network dynamics (spike-history component) of the neuron.

ELECTROPHYSIOLOGICAL PROFILES OF FIVE OTHER HIPPOCAMPAL
NEURONS—We use the SS-GLM model to analyze the spiking activity of five other
hippocampal neurons recorded from monkeys executing the location-scene association task.
The neural responses varied dramatically from very sparse spiking activity (Fig. 15C, column
1) to very intense spiking (Fig. 15E, column 1). The differences in the raster plots are reflected
in the differences in the estimated stimulus components for each neuron (Fig. 15, column 2).
For each neuron the SS-GLM analysis shows significant spike-history modulation (Fig. 15,
column 3). These analyses illustrate that despite the fact that these are the same type of neurons
recorded during the same task, the nature of their intrinsic and possibly network dynamics
show wide differences. In particular, the timescales and characteristics of the extent to which
each of the five neurons depends on its spike history differ appreciably. Neurons B and C show
significant decreases in their between-trial or learning components in their experiments,
whereas none of the other three neurons shows significant between-trial changes in their
activity (Fig. 15, column 4).

Further details of these analyses may be found at our website (https://
neurostat.mgh.harvard.edu/SSGLM).

DISCUSSION
Logic of the state-space generalized-linear model

In developing our state-space generalized-linear model, we believe, as suggested by Dayan
and Abbott (2001), that analyses of neural responses should simultaneously characterize the
neuron’s stimulus response and its biophysical properties. Spike-triggered average (Schwartz
et al. 2006), reverse correlation (Dayan and Abbott 2001), Wiener kernel (Rieke et al. 1997),
PSTH (Gerstein 1960), and GLM methods (Brillinger 1988; Brown et al. 2002, 2003, 2004;
Harris et al. 2003; Kass and Ventura 2001; Kass et al. 2005; Paninski et al. 2004; Truccolo et
al. 2005) have been used to relate neural responses to applied stimuli. Because, in addition, the
GLM has been used to relate spiking activity simultaneously to a stimulus, biophysical
properties (spike history), and other covariates (Truccolo et al. 2005), we chose it from among
these several methods to be the basis for constructing our analysis methods for multiple-trial
neurophysiology experiments.

A GLM alone could be successful in predicting single-neuron activity in multiple trial
experiments if there were no between-trial changes in either the task-specific or the spike-
history effects (Kass et al. 2005; Truccolo et al. 2005). However, in many behavioral
experiments, a key objective is to determine whether there is an evolution of the task-specific
response between trials because such dynamics provide evidence for important behavioral
changes such as learning. Thus to account for between-trial dynamics in the task-specific
activity, we developed a state-space extension of the GLM (Eqs. 5 and 6). The state-space
formulation captures the evolution of the task-specific activity by allowing the coefficients of
the model’s stimulus component (Eqs. 3 and 6) to differ between trials. In this way, the stimulus
effect at each trial can be different. We guard against overfitting by imposing the continuity
constraint that the coefficients at trial k should be stochastically close to the coefficients at trial
k − 1 (Eq. 6). The stimulus component, described at each trial by the linear combinations of
unit pulse functions (Eq. 9 and Fig. 2), is not constant, and thus has a within-trial component
as well. The other component of the within-trial dynamics is captured by the model’s spike-
history component (Eq. 4). It is designed to capture the biophysical properties of the neuron
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such as the effects on the neuron’s spiking propensity of its absolute and relative refractory
periods and possible network dynamics.

The random walk model (Eqs. 3 and 6) provides a simple way to let the coefficients of the
stimulus functions be different on different trials subject to a plausible constraint that prevents
the parameter estimation problem from becoming intractable. For example, in the actual data
example we consider, without the random walk constraint, the number of parameters to be
estimated for the stimulus component with the number of basis functions being R = 11 in an
experiment with 55 trials would be 11 coefficients/trial × 55 trials = 605 coefficients. Because
the coefficients of the between-trial components of the stimulus represented by the random
walk model are an unobservable process, we estimated them, along with the model parameters
using an EM algorithm (Smith and Brown 2003;Smith et al. 2004,2005,2007). We
demonstrated how AIC, K-S plots, and ACF analyses can be used to identify the best form of
the SS-GLM to approximate the deterministic state-space point process model used to simulate
the data. The SS-GLM captured the important features of the stimulus and spike-history
components. Our results further showed how the between-trial and within-trial neural spiking
dynamics can be identified with the stimulus components of these models and how the spike-
history component can be identified with the biophysical properties of the neuron.

Model selection and goodness-of-fit for the actual data analysis
In the analysis of the neural spiking activity from the monkey performing the location-scene
association task, the SS-PSTH clearly improved on the PSTH by including a between-trial
component. In fact, the SS-PSTH gave a quantitative formulation (Fig. 11C) of the structure
seen in the raster plots (Fig. 1A). That is, it provides an estimate of the task-specific effect as
a function of trial and time within the trial. The GLM 100 with a PSTH stimulus component
gave an appreciably more accurate description of the data that, despite not having an explicit
component for between-trial dynamics, improved appreciably on the SS-PSTH in terms of the
AIC model selection analysis (Fig. 9) and the K-S plot and ACF goodness-of-fit analyses (Fig.
10). The ability of the GLM 100 to describe the data successfully underscores the importance
of the spike history (the neuron’s biophysical properties) in providing an accurate prediction
of the neuron’s spiking activity. As a consequence, it was not a surprise that by including a
stimulus component that had between-trial and within-trial dynamics and a spike-history
component, the SS-GLM improved on both the SS-PSTH and the GLM in terms of the model
selection (Fig. 9) and goodness-of-fit (Fig. 10) criteria.

The AIC showed that the SS-GLM 100 provided a better approximating model than the GLM
100 (Fig. 9 and Table 2). However, the fit of the GLM 100 in terms of K-S plots (Fig. 10I, blue
curve) appeared to be as good as the fit of SS-GLM 100, even though the GLM 100 modeled
the stimulus as a PSTH instead with a between-trial component. The GLM 100 gave a good
fit because, although the same coefficients were used to estimate the spike-history component
on each trial, a different set of initial spikes was used to start the estimation on each trial (Eq.
4). This is analogous to starting a differential equation from different sets of initial conditions.
This feature of the GLM 100 allowed it to estimate implicitly different effects between trials
in the absence of an explicit between-trial model component.

Despite this apparently good fit of the GLM 100, several other properties of the GLM 100, in
addition to AIC and the ACF, demonstrate why it is not the best approximating model. First,
because it had no between-trial model component, the GLM 100 does not provide an explicit
estimate of a between-trial or behavior-related effect. Second, simulation of the SS-GLM 100
generated data like those seen in the experiment, whereas simulation of the GLM 100 did not
(results not shown). Third, the results from the SS-GLM 100 analysis are robust in the sense
that a model estimated on just the odd trials predicted very well the spiking activity on the even
trials and vice versa in terms of K-S plots and ACF analyses (results, not shown). Also, the
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estimates of the stimulus and spike-history model components are nearly identical to those
estimated from the full data set. This was not true for the GLM 100. Finally, it was not possible
with either the SS-GLM 100 or the GLM 100 to predict the spiking activity at trials 28 to 55
from that in trials 1 to 27 or vice versa, confirming the importance of between-trial dynamics
across the entire experiment. These results demonstrate the importance of using multiple
measures of goodness-of-fit and of checking the descriptive and predictive properties of models
that have apparently good fits to assess the validity of the approximations.

Answering neurophysiological questions
Standard questions asked in analyses of multiple-trial neurophysiological experiments include:
Does a neuron have task-specific activity? What is the nature of the stimulus or task-specific
activity between trial and within trial? In learning experiments, is there evidence of learning-
related neural dynamics? These three questions are all related yet, in current analyses, the first
is answered with ANOVA; the second with raster plots, ANOVA, and the PSTH; and the third
by plotting spike rates across trials. The most compelling feature of our SS-GLM analysis is
its ability to give detailed, quantitative answers to all of these neurophysiology questions from
the estimated stimulus component of our model. This is because our model captures the rich
between-trial and within-trial structure readily apparent in the raster plots. Our inference
framework allows us to ask specific questions about this structure and other features of the
data in a way that is more appropriate than the Gaussian-based framework associated with
ANOVA or the Poisson-based analyses commonly used with the PSTH. The SS-GLM analysis
obviates the problem of multiple hypothesis tests or the use of techniques to correct for multiple
hypothesis tests by estimating the joint distribution of the stimulus components. By so doing,
we actually conduct an empirical Bayes’ analysis of the neuron’s response to the stimulus rather
than conducting formal hypothesis tests (Carlin and Louis 2001). Our results (Figs. 11–15)
demonstrate that our approach leads to far more informative analyses than current methods.

As reported in previous GLM analyses (Truccolo et al. 2005), the spike-history component of
our model readily identifies short-, intermediate-, and long-timescale biophysical properties
of the neuron (Fig. 14). These important properties are not considered in the current analyses
of multiple-trial experiments. Moreover, they cannot be deduced from any of the standard plots
or analyses of these data (Fig. 1). We showed that these biophysical properties can be quite
different even for neurons recorded in the same experiment (Fig. 15). Studies of the differences
in these biophysical properties of the neurons may provide a new dimension along which to
characterize the properties of the neural response. The model selection (Fig. 9) and the
goodness-of-fit (Fig. 10) analyses for the GLM 100 also showed that these biophysical
properties can be of equal or greater importance than the stimulus component in predicting the
spiking activity of a neuron. Therefore their simultaneous estimation along with the stimulus-
or task-specific component of the model is crucial for correctly identifying the appropriate
magnitude of the neuron’s stimulus response. Finally, the strength of the spike-history
component in the data from all six of the neurons analyzed here demonstrates that the spiking
activity of these neurons is highly non-Poisson because, in a Poisson model, spiking activity
is independent of history. Furthermore, the spike-history component of our model makes
explicit that the spike rate determines spiking activity and that previous spiking activity affects
the current spike rate. Therefore future instantiations of the SS-GLM may offer new insights
into the rate versus temporal code debate in neuroscience (Shadlen and Newsome 1994; Victor
1999).

Extensions and future work
To establish what new neurophysiological insights can be gained from our new methods, a
detailed study of all of the neurons recorded in the location-scene association task (Wirth et
al. 2003) will be the topic of a future report. In addition, we are investigating two extensions
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of the current work: extensions of the model and extensions of the estimation procedures. First,
we chose unit pulse functions (Fig. 2) to model the stimulus so that the PSTH would be a special
case of our SS-GLM. We can replace these functions with any other functions deemed
appropriate to model the structure in the stimulus. Second, in addition to behavioral
experiments, many other types of neuroscience experiments record the responses of single
neurons to repeated applications of the same stimulus. For example, these include light for
retinal neurons, odors for olfactory neurons, and sounds for auditory neurons. We can extend
the stimulus component of the model to include analyses of stimuli in these experiments.
Wiener kernel methods are often used to model the stimulus–response relation for these stimuli
(Rieke et al. 1997). Third, the stimulus component of the model can also be easily modified to
include other covariates that are simultaneously recorded with the application of a stimulus
such as spiking activity of other neurons (Truccolo et al. 2005) and local field potentials. Fourth,
our current state-space model uses the most rudimentary form possible to describe the between-
trial dynamics: a random walk model. Thus a fifth important extension of the current model
would be to develop more complex state-space representations guided both by more detailed
hypotheses about the between-trial neural dynamics and by use of the model selection and
goodness-of-fit techniques to evaluate formally the significance of the new formulations.
Similarly, if deemed appropriate, the between-trial dynamics can be extended in a
straightforward manner to include the spike-history component of the model. This could allow
characterization of another aspect of the neuron’s plasticity on perhaps a faster timescale
(Frank et al. 2004). Finally, an alternative form of the state-space model could also be a way
to incorporate other types of dynamics such as cortical up– down states (Haslinger et al.
2006; Ji and Wilson 2007).

The use of the EM algorithm to perform the model fitting by maximum likelihood can be
extended to Bayesian estimation by formulating prior distributions for the model parameters.
Successful extensions of the EM algorithm methods for fitting state-space models to behavioral
data to Bayesian approaches using the Bayesian Analysis Using Gibbs Sampling (BUGS)
program have been recently reported (Smith et al. 2007). A key advantage of this extension is
that each change of the model does not require writing a new EM fitting algorithm as is
presently the case with any changes in the SS-GLM. Finally, the view of the model fitting as
an L2 regularization problem (Eq. 7) suggests that for other neural systems other types of
regularization, such as L1 regularization (Hastie et al. 2003), may be more appropriate and
could be used as alternatives. These extensions will be the topics of future reports.

The Matlab software used to implement the methods presented here is available at our website
(https://neurostat.mgh. harvard.edu/SSGLM/MatlabCode).
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APPENDIX A

Derivation of the EM algorithm
We use an EM algorithm to find the maximum-likelihood estimates of ψ = (γ, θ0, Σ). This
requires us to maximize the expectation of the complete data log-likelihood (Dempster et al.
1977). The complete data likelihood is the joint probability density of N and θ, which for our
model is

(A1)

where the first term on the right-hand side of the Eq. A1 is the joint probability mass function
of a point process characterized by a conditional density function λk(ℓΔ|θk, γ, Hk,ℓ) (Eq. 5). The
second term is the joint probability density of the unobservable state process defined by the
Gaussian random walk model in Eq. 6. An EM algorithm is an iterative procedure for
computing maximum-likelihood estimates (Dempster et al. 1977). Each iteration consists of
two steps: an Expectation or E-step and a Maximization or M-step. At iteration i + 1 of the
algorithm, we compute in the E-step the expectation of the complete data log-likelihood given

N, the spiking activity in all of the trials, the parameter estimates,  from
iteration i. The expectation of the complete data log-likelihood is defined as follows

E-Step

(A2)

where E[· || N, ψ(i)] denotes the expectation of the indicated quantity taken with respect to the
probability density of θ given N and ψ(i). On expanding the terms in Eq. A2, we see that
computing the expected value of the complete data log-likelihood requires us to evaluate the
expected value of the unobserved process θk|K ≡ E[θk || N, ψ(i)], the covariances Wk,k+1|K ≡ Cov
[θk, θk+1||N, ψ(i)], , and the expected value of the exponential function of the
unobserved process, E[exp(θk) || N, ψi)]. The notation k|k′ denotes the expectation of the
unobserved process at trial k given N1:k′, the spiking activity in trial 1 to trial k′. To compute
these quantities we combine three algorithms: a filter algorithm to compute θk|K ≡ E[θk ||
N1:k, ψ(i)] and Wk|k ≡; a fixed-interval smoothing algorithm to compute θk|K and Wk|K; and a
state-space covariance algorithm to compute Wk,k+ 1|K (Smith and Brown 2003). The algorithms
are as follows.

E-Step I: filter algorithm
A recursive linear filter algorithm for computing θk|K and Wk|K is given as (Eden et al. 2004)
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for k = 1, …, K. We evaluate the quantities in the following order: θk|k − 1, Wk|k − 1, Wk|k, and
θk|k. Because the initial condition is a constant vector θ0, we have θ1|0 = θ0, W0|0 = 0. The filter
algorithm provides a sequential Gaussian approximation to the posterior density and the one-
step prediction density for our state-space model in Eqs. 5 and 6 (Eden et al. 2004;Smith and
Brown 2003).

E-Step II: fixed-interval smoothing algorithm
Given the estimates θk|k and Wk|k, we use the fixed-interval smoothing algorithm to compute
θk|K and Wk|K. This algorithm is (Mendel 1995; Smith and Brown 2003)

for k = K − 1, …, 1 and the initial conditions θK|K and WK|K. We compute

.

E-Step III: state-space covariance algorithm
The covariance estimate, Cov [θk, θu|N, ψ(i)] can be computed by using the state-space
covariance algorithm (deJong and MacKinnon 1988) as

for 1 ≤ k ≤ u ≤ K. We have that Wk,k+ 1|K is computed by taking u = k + 1. The other covariances
for which u ≠ k + 1 are used to compute the complete joint distribution of the unobserved state
process in APPENDICES B through F.

Finally, we need to evaluate the term

This can be accomplished by expanding exp(θk,r) in a Taylor series about θk|K,r and taking the
expected value to obtain the approximation (Smith and Brown 2003)
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where θk|K,r is the rth element of θk|K and Wk|K,r,r is the rth diagonal element of the matrix
Wk|K. To evaluate the expectation we use the fact that θk is approximately a Gaussian random
vector with mean θk|K and covariance matrix Wk|K.

M-Step
In the M-step, we maximize the expected value of the complete data log likelihood (Eq. A2)
with respect to the parameter vector ψ = (γ, θ0, Σ). In so doing, we obtain new iterates

. There is no closed form solution for ; thus
we use a Newton–Raphson algorithm (Fahrmeir and Tutz 2001) to find γ(i + 1) as the solution
to

(A3)

where  is the mth iterate of Newton–Raphson algorithm at the ith iteration of the EM
algorithm and ∇ (∇2) is the first (second) partial derivative with respect to vector γ. The initial
value  is set equal to γ (i), the estimate from the previous EM iteration. When the absolute

value of the difference of the consecutive iterates,  changes <10−2 in all J elements,

we stop the Newton–Raphson iterations and take . The other parameter updated in

the M-step is . The closed form solution that maximizes the expected value
of the complete data log-likelihood with respect to Σ is

(A4)

for r = 1, …, R and k = 1, …, K. Choosing as the basis functions for the model in Eq. 5 the unit
pulse functions (Eq. 9) makes all of the off-diagonal elements of Σ(i+ 1) zero. The last parameter
updated in M-step is the initial value of the unobserved state process, θ0 = (θ0,1, …, θ0,R). Its
closed form solution is

(A5)

For the AIC comparisons (see METHODS) we need to evaluate the observed data log-
likelihood, log P(N|ψ ̂). To do so we note that because P[N|ψ(i+ 1)] = P[θ, N|ψ(i+ 1)]/P[θ |N,
θ(i + 1)], it follows that log P(N|ψ) = log P(θ, N|ψ) − log P(θ|N, ψ) and that (Hastie et al. 2001)

(A6)

Because the random variable θ|N, ψ(i) is approximately Gaussian with mean θ(i) = E[θ|N,
ψ(i)] and covariance W(i) = Cov [θ|N, ψ(i)] computed in the E-step of ith EM iteration, it follows
that
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At the last EM iteration ψ(i + 1) is the maximum-likelihood estimate of ψ and we have that R
[ψ(i + 1)|ψ(i)] is approximately

(A7)

The details on how to accelerate this EM algorithm are given on our website (https://
neurostat.mgh.harvard.edu/SSGLM/MatlabCode).

APPENDIX B

Approximation of the joint distribution of the unobserved state process
We approximate the probability density p(θ1, …, θK|N, ψ ̂) by the Gaussian probability density
with mean (θ1|K, …, θK|K) and covariance

(B1)

where the θ1|K, …, θK|K are R × 1 vectors and Wk|K and Wk,k′ = 1,…,K are R × R matrices defined
in the last iteration of EM algorithm. To draw a random sample from a multivariate Gaussian
distribution with mean θ1|K, …, θK|K and a nondiagonal covariance matrix W we use the
Cholesky decomposition of the covariance matrix W (Gentle 1998). If the basis functions in
Eq. 5 are unit pulse functions (Eq. 9), then the random vectors (θ1,r, …, θK,r), r = 1, …, R, are
independent, whereas the components of each vector (θ1,r, …, θK,r) are not independent.
Therefore to draw a random sample from p(θ1, …, θK|N, ψ ̂) we draw R independent random
samples.

APPENDIX C

Standard errors for the EM estimates of the parameters
The asymptotic covariance matrix for the maximum likelihood ψ ̂ = (γ ̂, θ0^ Σ^) is the inverse
of the expected information matrix. Thus we can approximate Var (ψ ̂) as I−1(ψ ̂|N). From
McLachlan and Krishnan (1997) it follows that

(C1)

where p(θ, N|ψ) is the complete data likelihood (Eq. A1). The first term on the right side of
Eq. C1 contains terms of the form E[θkθk − 1|N, ψ ̂], which can be easily evaluated from the EM
algorithm calculations already performed. We evaluate the second term using a Monte Carlo
algorithm as follows:

1. For r = 1, …, R draw a random sample of size Mc from a Gaussian distribution with
mean vector (θ1,r|K, …, θK,r|K) and covariance matrix W (APPENDIX B). Denote the
draws as , for c = 1, …, Mc. Further, let
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2. For every c compute

3.
Take  as an estimate of Im(ψ ̂|N).

In our analyses we use Mc = 100.

APPENDIX D

Constructing confidence intervals for the stimulus component
A Monte Carlo algorithm for computing K × L simultaneous confidence intervals for the
stimulus effect, λS(ℓΔ|θk), and at time ℓΔ trial k (Eq. 3), is as follows:

1. For r = 1, …, R draw a random sample of size Mc from a Gaussian distribution with
mean vector (θ1,r|K, …, θK,r|K) and covariance matrix W (APPENDIX B). Denote the
draws as , for c = 1, …, Mc.

2.
For every sample c, trial k, and time bin ℓ, compute , where
c = 1, …, Mc; k = 1, …, K; and ℓ = 1, …, L.

3. For every k and ℓ order the values λc from the smallest to the largest and denote the
ordered values as λc.

4. The 100(1 − α)% confidence interval for λS(ℓΔ|θk) is [λ(c′), λ(c″)], for k = 1, …, K,
where λ(c′) and λ(c″) are defined such that α/2 = c′/Mc and 1 − (α/2) = c″/Mc for α ∈
(0, 1).

Choosing α = 0.05 yields 95% confidence intervals. In our analyses we take Mc = 3,000.

APPENDIX E

Constructing confidence intervals for functions of the spike rate
We compute simultaneous confidence intervals for the true spike rate function Eq. 16 and the
true difference in spike rate functions defined in Eq. 19. We refer to the two functions as h(ψ;
θk). The K confidence intervals for h(ψ; θk) can be obtained by the following Monte Carlo
algorithm:

1. For r = 1, …, R draw a random sample of size Mc from a Gaussian distribution with
mean vector (θ1,r|K, …, θK,r|K) and covariance matrix W (APPENDIX B). Denote the
draws as , for c = 1, …, Mc.

2. For every sample c and trial k compute , where c = 1, …, Mc, k =
1, …, K.

3. For every k order the values hc from the smallest to the largest and denote the ordered
values as h(c).

4. The 100(1 − α)% confidence band for h(ψ; θk), is [h(c′), h(c″)] for k = 1, …, K, where
h(c′) and h(c″) are such that α/2 = c ′/Mc and 1 − (α/2) = c ″/Mc for α ∈ (0, 1).

Choosing α = 0.05 yields 95% confidence intervals. In our analyses we take Mc = 300.
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APPENDIX F

Between-trial comparisons for the spike rate
We show how to evaluate Pr [(t2 −t1)−1 Λ ̂m(t1, t2) > (t2− t1)−1 Λ ̂k(t1, t2)] in Eq. 18, for any k =
1, …, K − 1, m > k. As in Smith et al. (2005), we estimate the K × K matrix of these probabilities
using Monte Carlo methods. The algorithm is as follows.

1. For r = 1, …, R draw a random sample of size Mc from a Gaussian distribution with
mean vector (θ1,r|K, …, θK,r|K) and covariance matrix W (APPENDIX B). Denote the
draws as , for c = 1, …, Mc.

2. For every sample c and trial k compute

, where c = 1, …, Mc, k = 1, …,
K.

3. For every pair of trials m, k, m > k, m = 1, …, K, k = 1, …, K let SMc be the number
of cases for which .

4. For each m, k pair such that m > k, we estimate Pr [(t2 − t1) −1 Λ ̂m(t1, t2) > (t2 −
t1)−1 Λ ̂k(t1, t2)] as .

In our analyses we use Mc = 300.
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FIG. 1.
Fifty-five trials of spiking activity recorded from a hippocampal neuron of a macaque monkey
in response to the same scene of a multiple location-scene association task presented as the
raster plot (A), peristimulus time histogram (PSTH) (B), and trial-by-trial empirical spike rate
function computed as the number of spikes across all trials divided by the trial length and by
number of trials (C). Each trial is 1,700 ms in duration.
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FIG. 2.
R orthogonal unit pulse basis functions (Eq. 9) defined on the interval (0, T].
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FIG. 3.
Simulated neural spiking activity from a 50-trial experiment. A: stimulus component of the
conditional intensity function (Eqs. 21–23). B: history component (Eqs. 24 and 25) of the
conditional intensity function. C: raster plot. D: PSTH. E: trial-by-trial empirical spike rate
function. Each trial is 2,000 ms in duration.
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FIG. 4.
Akaike’s information criterion (AIC) (Eq. 13) for the analysis of the simulated neural spiking
activity (Fig. 3) plotted as a function of the number of parameters for the candidate models:
PSTH (×), generalized linear model (GLM) with coarse binning (black squares), state-space
(SS)-PSTH (asterisk), GLM with fine binning (open squares), and SS-GLM with coarse
binning (black circles). The model with the smallest AIC value provides the best approximating
model in terms of minimum expected Kullbach–Leibler distance between the candidate model
and the true model. The number of parameters is p, the dimension of ψ = (γ, θ0, Σ) in Eq. 13.
We construct the spike-history components of the GLM models (Eq. 4) by considering spike
dependence going back 300 ms using coarse time binning and fine time binning. The coarse
time bins were 1–5, 6 –10, 11–15, 16 –20, 21–30, 31–50, 51–100, 101–150, 151–200, 201–
250, and 251–300 ms. The fine time bins consisted of sixty 5-ms bins. The best approximating
model among the nonstate-space GLM models used coarse history dependence ≤ 200 ms
defined as bins: 1–5, 6 –10, 11–15, 16 –20, 21–50, 51–100, 101–150, and 151–200 ms (GLM
200, blue). The best approximating model among all the models considered was the SS-GLM
model with a 20-ms coarse history dependence defined as bins: 1–5, 6 –10, 11–15, and 16 –
20 (SS-GLM 20, red). The model fits of the PSTH (green), GLM 200 (blue), SS-PSTH (pink),
and SS-GLM 20 (red) are summarized in Table 1.
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FIG. 5.
Goodness-of-fit analysis of the four models in Table 1 fit to the simulated neural spiking activity
(Fig. 3). Row 1 shows the histogram of rescaled interspike intervals zk,m (Eq. 11) derived from
the (A) PSTH, (B) GLM 200, (C) SS-PSTH, and (D) SS-GLM 20 fits. Row 2 shows 100 lags
of the autocorrelation function (ACF) for the Gaussian transformation of the rescaled interspike

intervals  (Eq. 12) derived from the (E) PSTH, (F) GLM 200, (G) SS-PSTH, and (H) SS-
GLM 20 fits. I: Kolmogorov–Smirnov (K-S) plots for the PSTH (green curve), GLM 100 (blue
curve), SS-PSTH (black curve), and SS-GLM 20 (red curve). The gray 45 ° line defines an
exact model fit and the parallel gray lines define 95% confidence bounds.
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FIG. 6.
Stimulus component estimated from the simulated neural spiking activity (Fig. 3) for the (A)
PSTH, (B) GLM 200 and approximate local 95% confidence intervals computed using the
quantiles of the lognormal distribution. The estimated stimulus component from (C) the SS-
PSTH and (D) the SS-GLM 20 model showing both the between- and within-trial dynamics.
The entry in row k and column m of the matrix (E) gives a between trial comparisons of the
spike rate functions from the SS-GLM 20 computed as the probability that the spike rate on
trial m (x-axis) is greater than the spike rate on trial k (y-axis) (Eq. 18). Gray scale displays the
comparisons (E) with light (dark) shades corresponding to low (high) probability. For contrast,
red areas denote the trial comparisons for which the probability is greater than 0.95. F: the true
stimulus component at trial 50 (black curve) and the estimated stimulus component of the SS-
GLM 20 model (red curve) and 95% confidence intervals (bars).
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FIG. 7.
Estimated spike rate (Eq. 17) by trial (black curve) and the 95% confidence intervals (black
dashed curves) for the simulated neural spiking activity (Fig. 3) for the (A) PSTH, (B) GLM
200, (C) SS-PSTH, (D) SS-GLM 20 fits. The true spike rate per trial is given by the gray curve.
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FIG. 8.
Spike-history component (Eq. 15) for the simulated neural spiking activity (Fig. 3) estimated
from the GLM 200 (A) and the SS-GLM 20 (C) models along with 95% confidence intervals
(bars) and the true values of spike-history component (open squares). B: the first 5 coefficients
(20 ms) of the spike-history component of the GLM 200 model plotted for better comparison
with the SS-GLM 20 coefficients. The spike-history component of the SS-GLM 200 model
was estimated with time bins of 1–5, 6 –10, 11–15, 16 –20, 21–50, 51–100, 101–150, and 151–
200 ms. The spike-history component of the SS-GLM 20 model was estimated with time bins
of 1–5, 6 –10, 11–15 and 16 –20 ms.
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FIG. 9.
AIC for the analysis of the hippocampal neural spiking activity (Fig. 1) plotted as a function
of the number of parameters for the candidate models: PSTH (×), GLM with coarse binning
(black squares), SS-PSTH (asterisk), GLM with fine binning (open squares), and SS-GLM
with coarse binning (black circles). The model with the smallest AIC value provides the best
approximating model. The number of parameters is p, the dimension of ψ = (γ, θ0, Σ) in Eq.
13. We construct the spike-history components of the GLM models (Eq. 4) by considering
spike dependence going back 200 ms using coarse time binning and fine time binning. The
coarse time bins are 1–2, 3–5, 6 –10, 11–20, 21–30, 31–50, 51–100, 101–150, and 151–200
ms. For the fine time binning the first 2 bins are 1–2 and 3–5 ms, whereas from 5 to 200 ms,
we divide time into 39 bins each 5 ms in width. The best approximating model among the
nonstate-space GLM models used coarse history dependence ≤ 100 ms defined as bins: 1–2,
3–5, 6 –10, 11–20, 21–30, 31–50, and 51–100 ms (GLM 100, blue). The best approximating
model among all the models considered was the SS-GLM model also with a 100-ms coarse
history dependence (SS-GLM 100, red). The model fits of the PSTH (green), GLM 100 (blue),
SS-PSTH (pink), and SS-GLM 100 (red) are summarized in Table 2.
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FIG. 10.
Goodness-of-fit analysis for the four models in Table 2 fit to the hippocampal neural spiking
activity. Row 1 shows the histogram of rescaled interspike intervals zk,m (Eq. 11) derived from
the (A) PSTH, (B) GLM 100, (C) SS-PSTH, and (D) SS-GLM 100 fits. Row 2 shows 100 lags

of the ACF for the Gaussian transformation of the rescaled interspike intervals  (Eq. 12)
derived from the (E) PSTH, (F) GLM 100, (G) SS-PSTH, and (H) SS-GLM 100 fits. I: K-S
plots for the PSTH (green curve), GLM 100 (blue curve), SS-PSTH (black curve), and SS-
GLM 100 (red curve). The gray 45 ° line defines an exact model fit and the parallel gray lines
define 95% confidence bounds.
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FIG. 11.
Stimulus component estimated from the hippocampal neural spiking activity (Fig. 1) using the
(A) PSTH, (B) GLM 100, and approximate local 95% confidence intervals computed using the
quantiles of the lognormal distribution. The estimated stimulus component from the (C) SS-
PSTH and (D) SS-GLM 100 models showing both the between- and within-trial dynamics.
The entry in row k and column m of the matrix (E) gives a between trial comparisons of the
spike rate functions from the SS-GLM 100 computed as the probability that the spike rate on
trial m (x-axis) is greater than the spike rate on trial k (y-axis) (Eq. 18). Gray scale displays the
comparisons (E) with light (dark) shades corresponding to low (high) probability. For contrast,
red (blue) areas denote the trial comparisons for which the probability is >0.95 (<0.05). F: the
estimated stimulus component and 95% confidence intervals for trial 1 (green curve) and the
estimated stimulus component and the 95% confidence intervals for trial 25 (red curve) from
SS-GLM 100 model.
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FIG. 12.
Spike rate by trial (black curve) and the 95% confidence intervals (black dashed curves) for
the hippocampal neural spiking activity (Fig. 1) estimated from the (A) GLM 100 model, (B)
SS-GLM 100 model (Eq. 17). The empirical spike rate estimate computed as the number of
spikes per trial divided by the trial length is given by the gray curve.
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FIG. 13.
Within-trial comparisons of the difference in the spike rates of the delay periods (800 to 1,500
ms) and the baseline period (0 to 300 ms) derived from the SS-GLM 100 analysis of the
hippocampal spiking activity (Fig. 1). The solid black curve is the estimated spike rate
difference (Eq. 20), the dashed black curves are the 95% confidence intervals, and the gray
curve is the empirical estimate of the observed rate difference computed on each trial as the
number of spikes in the delay period divided by the length of the delay period minus the number
of spikes in the baseline period divided by the length of the baseline period.
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FIG. 14.
Spike-history component (Eq. 15) for the hippocampal neural spiking activity (Fig. 1)
estimated from the GLM 100 (A) and the SS-GLM 100 (B) models along with 95% confidence
intervals (bars). The spike-history components of the 2 models were estimated with time bins
of 1–2, 3–5, 6 –10, 11–20, 21–30, 31–50, and 51–100 ms.
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FIG. 15.
Summary analysis of SS-GLM model fits to spiking activity from five additional hippocampal
neurons (rows A–E) recorded from monkeys executing the location-scene association task. The
analysis includes the raster plots (column 1), the between-trial and within-trial estimates of the
stimulus component (column 2), the spike-history component with 95% confidence intervals
(red curve with bars) (column 3) and the learning component (column 4). The green vertical
lines and the blue vertical lines in raster plots in column 1 demarcate the baseline period and
delay period, respectively. The color scale in column 2 is in spikes/s. The learning component
(task-specific activity) was estimated as the within-trial difference between the spike rate
between the baseline and delay periods (Eq. 20) as a function of trial number (column 4, red
curve). The dashed red lines (column 4) are the 95% confidence intervals and the gray curve
is the empirical estimate of the difference in spike rates.
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