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Abstract
We have developed a novel model-to-image registration technique which aligns a 3-dimensional
model of vasculature with two semiorthogonal fluoroscopic projections. Our vascular registration
method is used to intra-operatively initialize the alignment of a catheter and a pre-operative
vascular model in the context of image-guided TIPS (Transjugular, Intrahepatic, Portosystemic
Shunt formation) surgery. Registration optimization is driven by the intensity information from the
projection pairs at sample points along the centerlines of the model. Our algorithm shows speed,
accuracy and consistency given clinical data.

1 Introduction
Endovascular surgery consists of inserting a catheter into a major artery or vein and guiding
that catheter through a vascular network to a target region. The main difficulty with
endovascular treatments is that they are guided by two 2-dimensional projection
fluoroscopic images which makes it difficult for the physician to visualize the needle and the
target in 3D. This is especially true for Transjugular, Intrahepatic, Portosystemic Shunt
(TIPS) surgery. During TIPS, the portal vein is physically disconnected from the hepatic
vein, separated by the liver parenchyma prior to needle insertion, and when a contrast agent
is injected it does no flow through the portal venous system. The target, portal vein, is
therefore not visible when the needle is pushed through the liver from the hepatic vein.

The overall goal of the computer-augmented TIPS project [10] is to provide 3-dimensional
visualizations to the surgeon, and thereby improve procedure accuracy and decrease
procedure time. Before a TIPS procedure, a 3-dimensional model of the target vasculature is
created from a previous CT/MR image using a ridge traversal technique [8]. During the
procedure, the needle is tracked in real time [4] and the three-dimensional visualizations are
provided by a stereo polarized projection display. The challenge is that, because of
breathing, needle pressure and heartbeat, the liver moves as the needle is guided through the
target. Therefore, a real-time registration is performed by tracking an ovoid balloon catheter
lodged in the hepatic vein and its movement is used to estimate the movement of the liver’s
vessels [11]. In the context of this project, it is critical to initialize the position and
orientation of the 3-dimensional vascular model with respect to the balloon, prior to any
tracking.

3D/2D registration is one of the grand challenges in medical image analysis. From the
literature, the different approaches to this problem can be divided into three main categories:
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(a) model-to-model registration in which external information about correspondences are
added, (b) image-to-image optimization where the 3D image is projected and the registration
is solved by optimizing pixel match metrics, (c) model-to-image algorithm, where a 3D
model is created from the image volume and the quality of the fit of the model and target
image is optimized.

Liu et al [9] have shown that by designating similar curves, i.e blood vessels, in both the 3D
image and digitally subtracted angiogram (DSA) images, an accurate alignment can be
made. This technique, belonging to the model-to-model category, requires user interaction
and is sensitive to manual picking. On the other hand, several image-to-image registration
techniques have been presented and have shown promising results. Kerrien et al. [5], for
instance, perform maximum intensity projection to simulate a 2D projected image from the
volume. Others [6] have derived more complex registration metrics. Complete surveys of
image-to-image similarity measures have also been published [1] [2]. Model-to-image
techniques have also been used in sophisticated systems [3] where 3D fiducials are matched
with their intensity representation in 2D projected images. The advantage of this technique
is that it can be automated compared to (a) and shows faster convergence compared to (b).
Our method belongs to the last category (c) and registers a preoperative model of the
vasculature with two semiorthogonal fluoroscopic images.

Next we present our methods then we quantify speed and accuracy given clinical data.

2 Methods
In this section we describe the system in which our algorithm performs. First we detail the
steps that must be performed to prepare for registration. Second we describe our registration
algorithm.

2.1 Overview of the system
Model-to-image vascular registration requires a geometric representation of the patient’s
vascular system. Prior to any TIPS operation, an MR or CT scan of the patient’s liver is
acquired. Then, a vessel extraction technique [8] is used to segment the main vascular tree.
This segmented vasculature constitutes our model and its geometric representation is
described as a set of centerlines (collection of 3D points) with associated radius value at
each point. Since this stage is performed before surgery, time can be spent to obtain an
accurate model.

Next, the precise pose of the two image planes is assessed prior to any registration. The
operating room for TIPS surgery is equipped with a biplane digital angiographic unit which
produces X-ray angiograms video streams as biplane views, the anteroposterior (AP) and the
lateral (LAT) projections, separated by approximately 90°. The two image planes of the
fluoroscopic unit can be rotated as needed to obtain the best images. Therefore, calibration
of the system is needed. Such calibration is performed using a phantom made of two
orthogonal plexiglass panels supporting regularly spaced iron ball bearings. The phantom is
roughly placed where the patient’s liver is going to be imaged. From the 3-dimensional
model of the phantom and the two projected images, intrinsic and extrinsic parameters of the
fluoroscopic unit are determined using epipolar geometry.

After calibration, the pose of the two image planes and the projection matrices on these
planes are defined in the coordinate frame of the phantom. The calibration does not currently
correct for radial distortions. Results from the calibration have shown that, without
correction, the maximum reconstruction error from the calibration is around 2mm and is
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located on the periphery of the image. Figure 1 shows the 3-dimensional model of the
vasculature before alignment and the two projection images.

2.2 Registration
Our model-to-image metric is based on the work of Aylward et al. [7]. We seek the optimal
pose of the 3-dimensional vascular model, extracted from the pre-operative MR or CT,
given the two projection images, AP and LAT.

Given a centerline point X in the 3-dimensional model, we project that point onto the 2-
dimensional image using the projection matrix previously computed from the calibration
stage. The associated radius R at that point is also projected on the plane by projecting a
vector parallel to the image plane at position X with a magnitude R.

After projection, a 2-dimensional centerline point x with associated radius r is defined. The
metric is defined by the sum of the Gaussian-blurred intensity values in the 2D image at the
projected model points. From the DSA images, one can notice that the vasculature has lower
intensity values than the background, therefore the optimal alignment is obtained when the
metric is minimal. For each point x, the amount of blurring is proportional to the radius r at
that point.

Also, since larger vessels have greater contrast on the X-ray angiograms, we weight the
metric value at each point proportionally to the radius so that larger vessels drive the
optimization process more than smaller ones. Equation 1 describes our metric.

(1)

Next we align the registration frame such that the Z-axis axis is orthogonal to the AP plane
and the X-axis axis is orthogonal the LAT plane as shown in figure 2. We assume from the
clinical setup that the two fluoroscopic digitizers are orthogonal, however, since they may
not be perfectly orthogonal, we optimize the orientation of this registration frame to
maximize these alignments. This axis configuration defines a relationship between each
parameter of the rigid body transform and the two views as described in table 1.

Table 1 details that parameter optimization could be separated by view. However the genetic
algorithm optimizer [12] we are using does not support separable parameters and multiple
metric values. Therefore we have chosen to tune each parameter independently. Independent
parameter optimization can be performed using two different strategies. First option consists
of using each view separately and optimizing the parameters from that plane. For instance,
from table 1, the AP view optimizes β,γ,x and y and the LAT view optimizes α,β,y and z.
However, unreported experiments show that the presence of local minima in the metric
precludes the registration from converging. The second optimization strategy consists of
optimizing each parameter independently and use the appropriate view (or combination of
views) to drive the registration. This optimization is used in our experiments. Figure 3
shows that our metric is smooth and free of local minima near its optimum. These graphs
were generated using a vascular model of a human liver from a preoperative MR and the
corresponding intraoperative DSA images.

Next we report results using clinical data.
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3 Results
For the following experiments a Siemens Neurostar biplane digital angiographic unit was
used to obtain X-ray angiograms. The fields of view ranged from 8.7° to 16.5°. Images were
captured and stored as 8-bit 884×884 pixel images. Pre-operative images of the 3D liver
vasculature were acquired by MR on a Siemens MagicVision 1.5T system with collimation
0.86×0.86×3mm. Voxel size was variable, but around 1.0×1.0×3mm. We conducted
multiple experiments to evaluate the speed, robustness and accuracy of our algorithm on five
sets of images from five patients.

The first experiment verified the method’s ability to align the pre-operative model with the
DSA images. In the operating room, calibration was performed before surgery as well as the
extraction of the vascular trees from MR volumes. The pose of the 3D vascular model was
initialized by aligning the center of mass of the vasculature with the origin of the reference
frame (from the calibration phantom). This is a valid assumption since the vascular tree has
to be centered on the DSA image to obtain good quality images. Second, the orientation of
the model is initialized using prior knowledge about the position of the two image planes; by
design, the AP view corresponds to the coronal plane and the LAT view to the sagittal plane
of the MR. Given this initial pose, registration was conducted using a uniform subsampling
of vascular models to 150 points for the metric. Our method converged for the five datasets
in less than 20 seconds on a Pentium 4, 2.2GHz PC using 50 iterations, i.e each parameter
was successively optimized 50 times. Figure 4 shows the qualitative validation of the
registration.

Next we conducted a Monte-Carlo validation experiment. For the five datasets, an initial
registration was performed using Liu’s method [9], then 100 Monte-Carlo iterations were
computed by adding random offsets (±20mm) and rotations (±10°). Table 2 summarizes the
results of our experiment.

Our registration converged 95% of the time. Registration failure occured when the
registration was initialized far from the solution. This issue is discussed next.

4 Discussion and Conclusions
Even showing promising results, we are conscious that our method has some limitations.

The main limitation is the use of rigid body transformation. We assume that non-rigid
deformations are negligible for three reasons. First, TIPS patients possess livers that are
hard, dense, fibrotic and generally rigid. This means that although both needle pressure and
respiration may displace the liver, neither is likely to deform it. Second, the portions of the
hepatic and portal venous systems relevant to TIPS are located within this rigid liver. Third,
the liver is bounded on three sides by the bony ribcage and superiorly by the diaphragm; it is
additionally tethered by the left and right triangular ligaments and by the falciform ligament,
all of which limit or preclude rotation.

The second limitation is the starting pose for the registration. From the clinical datasets we
have found that 20mm and 10° were the maximal displacements. However, in some cases
the registration fails and we are currently implementing a random sample consensus type
algorithm which should improve our success rate.

In conclusion, we have developed a new model-to-image registration algorithm, which is
driven by the image intensities of two fluoroscopic projections images. Our technique does
not require the specification of correspondences between blood vessel from the 3-
dimensional model and their 2-dimensional projections. Our method shows excellent results
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on real datasets. We are conscious that the validation part of this study does not address the
clinical accuracy of the registration and we are currently extending the validation to include
this aspect.

Our software was implemented using the Insight Toolkit [13].
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Fig. 1.
System setup. 3-dimensional model of the vasculature is to be registered with two
orthogonal fluoroscopic projections: anteroposterior (AP) on the right and lateral (LAT) on
the left.

Jomier et al. Page 6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2008 June 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Reference frame used for registration.
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Fig. 3.
Plots of the model-to-image metric.left: translation in X and Y. right: rotation in alpha and
beta.
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Fig. 4.
Qualitative results of the 3D/2D registration. Vasculature before (left) and after registration
(right) for both anteroposterior (top) and lateral (bottom) views
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Table 2

Final displacement from the Monte-Carlo experiment on five clinical datasets.

Parameter Mean (SD)

α 0.60(1.91)°

β 0.12(1.27)°

γ 0.89(1.82)°

x −0.27(1.19)mm

y 0.61(0.91)mm

z 0.18(0.90)mm

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2008 June 18.


