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Abstract: Schizophrenia has been associated with a dysfunction of brain dopamine (DA). This, so called, DA hypothesis

has been refined as new insights into the pathophysiology of schizophrenia have emerged. Currently, dysfunction of

prefrontocortical glutamatergic and GABAergic projections and dysfunction of serotonin (5-HT) systems are also thought

to play a role in the pathophysiology of schizophrenia. Refinements of the DA hypothesis have lead to the emergence of

new pharmacological targets for antipsychotic drug development. It was shown that effective antipsychotic drugs with a

low liability for inducing extra-pyramidal side-effects have affinities for a range of neurotransmitter receptors in addition

to DA receptors, suggesting that a combination of neurotransmitter receptor affinities may be favorable for treatment

outcome.

This review focuses on the interaction between DA and 5-HT, as most antipsychotics display affinity for 5-HT receptors.

We will discuss DA/5-HT interactions at the level of receptors and G protein-coupled potassium channels and

consequences for induction of depolarization blockade with specific attention to DA neurons in the ventral tegmental area

(VTA) and the substantia nigra zona compacta (SN), neurons implicated in treatment efficacy and the side-effects of

schizophrenia, respectively. Moreover, it has been reported that electrophysiological interactions between DA and 5-HT

show subtle, but important, differences between the SN and the VTA which could explain (in part) the effectiveness and

lower propensity to induce side-effects of the newer atypical antipsychotic drugs. In that respect the functional

implications of DA/5-HT interactions for schizophrenia will be discussed.
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DOPAMINE AND SCHIZOPHRENIA

The mesocortical pathway, the mesolimbic pathway, the
nigrostriatal pathway and the tuberoinfundibular pathway
have all been postulated to be involved in the pathophysiology
of schizophrenia and the propensity of antipsychotic drugs to
induce side-effects [144]. Hypofunction of the mesocortical
pathway and hyperfunction of the mesolimbic pathway [44,
55, 144] are thought to be responsible for the symptoms that
can be observed (see also Sesack and Carr, 2002 [138])) and
points to one of the many difficulties for effective treatment:
increasing dopamine (DA) activity in the mesocortical
pathway, while concomitantly decreasing DA activity in the
mesolimbic pathway. The nigrostriatal and tuberoinfundibular
pathways are involved in side-effects of antipsychotic drug
treatment, such as extra-pyramidal side effects and
hyperprolactinemia, respectively [10, 30] which are related
to changes in firing activity of neurons in these pathways,
especially the DA neurons. What lies at the root of this
mesocortical mesolimbic dysfunction is unclear but loss of
cholinergic interneurons in the striatum, hypoglutamatergia
or “miswiring” of glutamatergic and _-amino butyric acid
(GABA)-ergic projections from the prefrontal cortex (PFC)

*Address correspondence to this author at Center for NeuroScience-

Swammerdam Institute for Life Sciences, University of Amsterdam,
Kruislaan 320, 1098 SM Amsterdam, The Netherlands; Tel: +31-20-525-

7632; Fax: +31-20-525-7709; E-mail: olijslag@science.uva.nl

have all been proposed [5, 22, 23, 34, 66, 154]. The
glutamatergic and GABAergic PFC projections synapse
directly and indirectly (via e.g. the nucleus accumbens) to
VTA DA neurons (Fig. (1), partly based on [138]). The
GABAergic inputs together with local GABAergic inter-
neurons in the VTA and SN (Fig. (1)) reduce DA neuronal
firing activity by exerting an inhibitory tone on DA neuronal
activity through GABAA and GABAB receptors present on
DA neurons [26, 43, 151]. Thus, dysfunction of the PFC
pathway could disinhibit VTA DA neurons leading to
hyperactivity of VTA neurons.

THE DA RECEPTOR AND ANTIPSYCHOTIC DRUGS

The discovery of DA in the brain [8] and subsequent
discovery in the late 1950s that schizophrenia could be
treated with antipsychotic drugs, which antagonize DA D2

receptors, reducing mesolimbic DA neuronal hyperactivity,
has led to the DA hypothesis for schizophrenia. This
hypothesis has been refined recently to incorporate other
neurotransmitters such as glutamate, GABA and serotonin
(5-hydroxytryptamine; 5-HT) [11, 23, 24, 136, 155].
However, attempts to develop an effective antipsychotic
drug that lacks DA D2 receptor antagonism have been,
generally, unsuccessful. For example selective 5-HT2A

receptor antagonists [75, 92] and DA D4 receptor antagonists
[12, 169] failed to show efficacy in schizophrenia reinforcing
a pivotal role for DA D2 receptors in the treatment efficacy
of schizophrenia. However, recent studies have suggested
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that the neurokinin (NK)3 receptor antagonist does have
effects in schizophrenia [100].

DA D2 RECEPTORS AND DA NEURON FIRING

ACTIVITY

DA D2-like receptors are present as auto-receptors on the
DA neurons in SN and VTA and play an important role in
the regulation of DA neuronal firing activity by means of
auto-inhibition (Fig. (1). These G protein-coupled receptors
are activated by somatodendritically released DA [7] and
their activation opens G protein-coupled inward rectifying
potassium channels (GIRKs) (Fig. (2)). Opening of the GIRK
channels leads to hyperpolarization of the cell membrane and
consequently a decrease in firing activity [81]. Furthermore,
the hyperpolarization mediated via the DA D2 auto-receptor-
activated GIRK channels decreases somatodendritical release
of DA [141], allowing the DA neuron to depolarize via
voltage-dependent calcium current activation and the non-
selective cation current Ih [139, 168]. This in turn leads to

increased DA release, increased DA D2 auto-receptor-
mediated GIRK current and so on, contributing to the
maintainance of a spontaneous, pace-maker-like firing
pattern.

DEPOLARIZATION BLOCKADE THEORY AND

ANTIPSYCHOTIC DRUG EFFICACY

In vitro studies demonstrate that DA neurons usually fire
at low pacemaker-like frequencies of 1-8 Hz [61, 162] and
this pacemaker-like firing is also observed in vivo, although
DA neurons in vivo also display irregular and burst firing
activity [18, 47, 140]. In general, it is thought that the tonic
release of DA (via regular firing rates) serves to maintain a
steady-state level of DA in the brain, while the phasic DA

Fig. (1). A schematic view of SN and VTA connections.

DA neurons receive input from the local GABAergic interneurons

and input from other brain areas. Both areas receive serotonergic

input from the dorsal raphe nucleus (DRN). The dotted line

indicates the subdivision of the SN: the SN pars reticulata (SNr)

and the SN pars compacta (SNc). Neurons receiving a collective

input are grouped (dotted circles). GABAergic, glutamatergic and

serotonergic inputs are indicated by black, white and gray symbols,

respectively. HIPP, hippocampus; NAC, nucleus accumbens; PFC,

prefrontal cortex; STN, subthalamic nucleus.

Fig. (2). Model scheme for atypical antipsychotic drug action.

The two schemes above represent the situation under normal

conditions, where activation of 5-HT receptors (an unknown (5-

HTX) receptor on SN and the 5-HT2 receptor on VTA DA

neurons) can enhance the DA D2 receptor-mediated auto-

inhibitory process. The two schemes below represent the situation

in the presence of an atypical antipsychotic drug. This drug

antagonizes a portion of the DA D2 receptors, thereby reducing

GIRK channel function, resulting in depolarization and increased

firing activity of the DA neurons. Prolonged depolarization could,

theoretically, lead to the induction of depolarization blockade and

subsequently therapeutic efficacy and extra-pyramidal side-effects

(EPS). In VTA DA neurons an atypical antipsychotic drug will,

by blocking the 5-HT2 receptors, prevent 5-HT2-mediated

enhancement of GIRK channels, and thus auto-inhibition. This

would permit a further depolarization, and ultimately depolariz-

ation blockade. In SN DA neurons “normal” enhancement of

auto-inhibition can occur through the 5-HTX receptor (which is

not affected by the antipsychotic drug), a process that will reduce

the chance that depolarization blockade will develop.
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release through bursting activity gives rise to high but
transient DA levels which convey discrete signals [42, 46].
Switching the firing pattern from regular to bursting or back
is thought to be dependent on coinciding glutamatergic and
cholinergic inputs from the subthalamic and pedunculo-
pontine nuclei, respectively [80, 87, 130, 159]. In the
absence of coinciding glutamate and acetylcholine signaling,
switching to a bursting firing pattern is unlikely, although the
firing rate can be increased through depolarization of the DA
neuron. It has been shown that upon depolarization (e.g.
through GIRK channel inhibition) DA neurons cannot
sustain increases in the firing rates above a plateau level
[170]. At depolarization levels above that producing
maximum frequency, DA neuronal firing ceases; such a state
is referred to as acute depolarization blockade, a mechanism
that could function to curb neuronal excitation [59, 65, 145,
170]. Although difficult to prove in vivo, it is believed that
antipsychotic drugs induce a more or less chronic
depolarization blockade in VTA DA neurons, thereby
effectively reducing mesolimbic hyperactivity [60]. The
development of depolarization blockade by antipsychotic
drug treatment probably involves the blockade of the DA D2-
like autoreceptors on the VTA DA neurons and activation of
excitatory feedback systems, a process that develops over
time (i.e. during chronic antipsychotic drug treatment) and is
often characterized by an initial increase in DA neuronal
activity. However, this mechanism of depolarization
blockade will also be effective in SN DA neurons. This is
reflected by one of the side-effects of the classical
antipsychotic drugs: extra-pyramidal side effects (EPS), a
collective name for symptoms such as dystonia, akinesia,
dyskinesia, and akathisia [19, 91]. Due to the high liability
for EPS induction the search for better antipsychotics
continued. The introduction of clozapine was a large step-
forward in achieving this goal [9, 17, 29, 49, 94, 111, 142]
and mesolimbic hyperactivity could be reduced without
inducing EPS. Clozapine, and other so-called atypical
antipsychotics known as such for their low propensity to
induce EPS [31, 67, 150], has a much lower tendency to
induce EPS compared to the older, classical antipsychotic
drugs [149]. However, it has been demonstrated that a
selective depolarization blockade of only VTA DA neurons
may be involved in the underlying mechanism [14]. In vivo
studies suggest that atypical antipsychotic drugs appear to
preferentially modulate VTA DA neuronal firing activity
[27, 28, 58, 167]. Pharmacological studies have demonstrated
that most atypical antipsychotic drugs are not only DA D2

antagonists, but also have affinities for a range of other
neurotransmitter receptors such as 5-HT2, adrenergic,
muscarinic and histamine receptors [20, 21]. These additional
receptor affinities could contribute to the selective develop-
ment of depolarization blockade of only VTA DA neurons
and consequently the lower incidence of EPS and improved
efficacy compared to the classical antipsychotic drugs.

Besides the development of depolarization blockade of
VTA DA neurons, other mechanisms, for instance at the
level of the prefrontal cortex, are also likely to improve
antipsychotic drug efficacy. It is reported that clozapine
facilitates NMDA-mediated neurotransmission in prefrontal
cortical neurons [3] and atypical antipsychotic drugs, but not

classical antipsychotic drugs, increase acetylcholine release
in the forebrain [69]. The release of DA and noradrenaline is
also increased by antipsychotic drugs [126, 166]. For a
comprehensive review on these mechanisms in the forebrain
and their implications for schizophrenia treatment see Moore
et al., 1999 ([108]).

Not all atypical antipsychotic drugs combine DA D2

receptor antagonism with affinities for other receptors [107],
and it has been suggested that multi-receptor affinity is not
the key to atypical antipsychotic effectiveness. It has been
proposed that their effectiveness is related to selective
affinities for DA receptors in specific areas of the brain or
receptors in specific conformational states [107]. Also a fast
dissociation theory has been proposed [73, 74, 109]. This
theory suggests a “hit-and-run” action of the antipsychotic
drug at the DA receptor insofar as the drug rapidly binds and
then dissociates from the receptor, thereby not “rigidly”
blocking all DA neurotransmission. This mechanism might
explain the clinical atypical antipsychotic profile of
amisulpride, a pure D2/D3 receptor antagonist, although it
has been suggested that the possible selective preference for
mesolimbic versus nigrostriatal DA D2-like receptors by
amisulpride or its D3 receptor antagonism might account for
the atypicality [86, 107, 122]. So far, not all the evidence for
the “hit-and-run” theory is conclusive and the hypothesis that
multi-receptor affinities underlie atypicality is still very
much favored [101]. From the large variety in receptor
affinities, besides DA D2 receptors that are displayed by
atypical antipsychotic drugs, especially affinity for the 5-
HT(2) receptor has received considerable attention for its
potential role in atypicality.

5-HT AND DA PATHWAYS

In vivo DA-dependent behaviors can be modulated by 5-
HT receptor activation, as demonstrated using 5-HT1, 5-HT2

and 5-HT4 receptor agonists. For example synergistic
enhancement of the acoustic startle reflex by 5-HT1A receptor
agonists [98] or 5-HT2 and 5-HT4 receptor-mediated modu-
lation of cocaine-induced locomotor activity [95-97]. In
addition, DA release in the medial prefrontal cortex (mPFC),
dorsal and ventral striatum can be increased by (cortical) 5-
HT2A receptor activation, while 5-HT2C receptors suppress
DA release (likely via effects on DA cell bodies) [33, 56, 57,
119, 120]. Cortical 5-HT1A receptor activation appears to
increase DA release in the mPFC, possibly in concert with
mesolimbic 5-HT2 receptor antagonism [70]. Others have
also extensively demonstrated that 5-HT facilitates DA
release and neurotransmission via 5-HT receptors in the
forebrain, with specific roles for 5-HT1, 5-HT2 and 5-HT4

receptors [6, 76] and secondary messengers, such as protein
kinase A [164] or nitric oxide [165]. Moreover, the
modulation of DA synthesis and release is under control of
different mechanisms [48, 77, 165], often depending on the
projection field [127, 156]. These findings show that 5-HT
influences and shapes DA neurotransmission by actions at
the somatic and terminal-field level. The findings that DA
neurotransmission to the PFC is influenced by 5-HT suggests
a role for 5-HT receptors in antipsychotic modulation of
mesolimbic hyperactivity (for a comprehensive review see
Werkman et al., in press ([161])).
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5-HT AND SN AND VTA DA NEURON ACTIVITY

VTA and SN DA neurons (as well as the local
GABAergic interneurons) express a range of 5-HT receptor
types that can be activated by 5-HT input from the dorsal
raphe nucleus (DRN) [62] (Fig. (1)). In Table (1) a summary
is provided of the 5-HT receptors and the effect their
activation has on DA neuronal firing activity. Some of these
receptors have been found on GABAergic interneurons, such
as the 5-HT1B and 5-HT2C receptor, although the latter might
also be present on the DA neurons [128]. The activation of
5-HT1B receptors inhibits GABA release [71, 171], while 5-
HT2C receptor activation excites GABAergic interneurons
[36] and stimulation of the 5-HT1A receptor has been
reported to excite DA neurons [84]. 5-HT3 receptors are not
well studied yet in the SN and VTA, but based on findings in
other brain areas they are expected to be located
presynaptically [110]. In vivo, i.v. administration of 5-HT3

receptor antagonists is reported to increase DA neuronal
firing, although the mechanism underlying this remains
unclear [105, 117]. 5-HT4 receptor activation increases nigral
DA firing activity, but it is not clear if the receptors are
present on the DA neurons or GABAergic interneurons [13,
90, 118]. The 5-HT6 receptor is present on interneurons, and
possibly also on the terminals of GABAergic and possibly
cholinergic projections to DA neurons [50] but is not thought
to be directly involved in modulating DA neurotransmission,
but likely indirectly via  the regulation of cholinergic
neurotransmission [15]. Little is known about the presence
or function of the 5-HT7 receptor in SN and VTA areas,
although it has been proposed as an interesting candidate for
future antipsychotic drugs, as a number of atypical
antipsychotics bind to this 5-HT receptor subtype [99, 133].

These findings, and the reports that 5-HT receptor-
induced changes in DA neuronal activity are dependent on
the activation state of the DA neurons, i.e. when the DA
impulse flow is activated [37, 90, 129, 143], show that 5-HT
regulates DA neuronal firing activity both in a tonic and
phasic manner. Furthermore, differential roles appear to exist
for some 5-HT receptor types, such as the 5-HT2 receptors,

i.e. 5-HT2C receptors change DA neuronal firing activity and
bursting in VTA, but not in SN DA neurons [35, 39, 116],
while 5-HT4 receptors play a more pronounced role in SN
DA neurons [90].

The existence of differential roles for a 5-HT receptor
type can be related to the diversity of second messenger
pathways that 5-HT receptors utilize [4]. Most 5-HT
receptors are G protein-coupled receptors (GPCRs) (with the
ligand-gated 5-HT3 receptor being the exception) and they
can activate second messenger systems such as phospholipase
C, and ion channels linked to specific G protein subunits,
including GIRK channels [54, 115] (for a comprehensive
review see Barnes and Sharp, 1999 ([4])). 5-HT receptor-
mediated activation of second messenger pathways and ion
channels can directly increase or decrease DA neuronal
firing activity as well as influence the neuronal response to
activation of other receptors, such as DA D2 receptors [16,
51, 88, 112, 116, 124].

5-HT MODULATION OF DA D2 RECEPTOR-
MEDIATED INHIBITION

As mentioned previously, midbrain DA neurons tonically
regulate their own firing activity via a feedback auto-
inhibition. Extracellular recordings of SN and VTA DA
neurons in vitro have shown that concentrations of 5-HT that
do not change the firing rate when applied alone enhanced
DA D2 receptor-mediated auto-inhibition [16, 116]. It was
demonstrated that this enhancement of auto-inhibition was
mediated via different 5-HT receptors in the SN and VTA,
with 5-HT2 receptors being critically involved in the VTA, in
line with in vivo findings that 5-HT2 receptors differentially
affect DA neuronal activity in SN and VTA [35, 39].
Various mechanisms underlying this DA/5-HT interaction
have been suggested. One proposed mechanism is the
inhibition of the Ih current [88]. However, 5-HT concen-
trations higher than the concentrations used to enhance auto-
inhibition were necessary to inhibit Ih [16]. This finding and
previous reports that inhibition of Ih current occurs
secondary to GIRK channel activation by DA or GABA [25,
102, 160] suggest that additional mechanisms may also

Table 1. 5-HT Receptor Types in SN and VTA. An Overview of 5-HT Receptor Types with Their Locations in SN and VTA Areas

and Reported (Indirect) Effects on DA Neuron Firing Activity. n.d.=not Determined

Location
DA neuron

firing activity
references

5-HT1A

DA neurons

Presynaptic processes

increase or

pattern change

[2, 41, 85, 106, 123]

5-HT1B GABAergic interneuron increase [71, 171]

5-HT2A DA neurons increase [40, 114, 123]

5-HT2C

GABAergic interneuron

DA neuron?

decrease [38, 57, 157]

5-HT3 n.d. increase [104, 110, 117]

5-HT4 n.d. increase [152]

5-HT6

GABAergic interneuron

DA neuron?

n.d. [50, 132]



Modulation of Midbrain Dopamine Neurotransmission Current Neuropharmacology, 2006, Vol. 4, No. 1 63

involved. The close link between GIRK channel and Ih

channel activities [147, 148] is not fully understood, but as
GIRK channels play a prominent role in the regulation of
DA neuronal firing by translating DA D2 receptor activation
into inhibition of firing activity, 5-HT receptor-mediated
modulation of GIRK channels may underlie 5-HT-enhanced
auto-inhibition (Fig. (2)).

GIRK CHANNEL MODULATION

GIRK channels have up to four binding sites for  G
protein subunits. Upon activation of a GPCR such as the DA
D2 receptor, the attached G protein dissociates and separates
into the  and the  subunit. Binding of one  subunit only
partially activates the channel and additional binding (to 3-4
subunits) results in full activation of the channel [32, 113,
134, 135]. It has been established that this graded activation
is a form of positive co-operativity [134]. Besides the
capability of binding multiple  subunits that contribute in a
graded manner to channel (in)activation, it has been
suggested recently that GIRK channels can be inhibited by
binding of the G protein  subunit to the channel [83, 121,
137, 172].

Thus, different GPCRs can influence their respective
effects on GIRK channel activation directly at the level of
the channel. For instance, GABAB and DA D2 receptors
activate the same GIRK channel. Submaximal activation of
both receptors results in an additive effect on the GIRK
current [81], probably due to the positive co-operativity of
the  subunits. Such effects at the level of the GIRK
channel itself can also lead to inhibitory actions. Neurotensin
receptors are coupled to G proteins that inhibit GIRK
function; simultaneous activation of neurotensin and DA D2

receptors in midbrain DA neurons results in a decreased
GIRK current [45] and consequently an attenuation of DA
D2 receptor-mediated auto-inhibition [163]. Furthermore,
receptors that activate second messenger pathways (such as
5-HT receptors) can modulate GPCR-activated GIRK
channels, as it has been shown that intracellular components
such as protein kinases and phosphatidyl inositol diphos-
phate (PIP2) are able to stabilize the channel in the open state
or facilitate  subunit binding [63, 64, 68, 82, 89, 125, 135].

Alltogether, GPCR stimulation and intracellular mecha-
nisms that influence GPCR and G protein coupling can
affect GIRK channel activation, and thus the effect of GPCR
activation on DA neuronal firing. Such interactions have
been demonstrated for estrogen receptors in hypothalamic
neurons, which upon activation, disrupt the coupling of
GABAB receptors to GIRK channels through an action on
the G protein [78, 79]. As the relative size of the G protein
pools that GPCRs have access to differs [115], it is possible
to attain a weighted effect on GIRK channel activity upon
receptor activation through different input systems.

FUNCTIONAL MECHANISM OF 5-HT MODULATION

AND IMPLICATIONS FOR ANTIPSYCHOTIC DRUG

ACTIVITY

5-HT2 receptors differentially affect SN and VTA DA
neuronal activity, both in vitro and in vivo. In animal models
of schizophrenia, limited as they are, it appears that 5-HT2

receptor antagonism indeed plays a role in a differential
modulation of DA neuron firing activity by antipsychotic

drugs [52, 53, 72, 146, 153] and this may underlie the
reduced EPS liability in drugs possessing mixed D2 / 5-HT2A

receptor modalities.

How are the affinities of atypical antipsychotic drugs for
DA D2 and 5-HT2 receptors translated to functional changes
in mesolimbic (and possibly mesocortical) DA neuronal
firing? DA D2 receptor-mediated auto-inhibition can be
enhanced by 5-HT2 receptors in the VTA, but in the SN
probably another 5-HT receptor type is involved [116] (Fig.
(2)). Antagonism of part of the DA D2 receptor population
increases the firing activity of DA neurons in SN and in
VTA [103, 131, 162]. However, in the presence of 5-HT, the
inhibitory effect remaining through DA D2 receptor
activation will be enhanced, thus (partly) counteracting the
effect of the DA D2 receptor antagonism. This can occur in
both SN and VTA DA neurons. In the case of treatment of
schizophrenia, the preferential effect of the atypical
antipsychotic drugs is the induction of depolarization
blockade in VTA DA neurons, while leaving the firing
activity of SN DA neurons largely unchanged. Classical
antipsychotic drugs, as discussed before, will induce
depolarization blockade in both areas [28]. In contrast,
atypical antipsychotic drugs have an additional feature that
could assist in achieving selective depolarization blockade
[1, 60]. The atypical antipsychotic drugs also block the DA
D2 receptors in SN and VTA DA neurons. However, the 5-
HT2 receptor antagonistic action of these drugs [20] results
in a blockade of the 5-HT-mediated enhancement of the
remaining DA auto-inhibition in VTA DA neurons, allowing
a further depolarization and increase in firing rate (Fig (2)),
ultimately leading to depolarization blockade. In SN DA
neurons however, since another 5-HT receptor subtype may
be responsible for the enhancement of auto-inhibition, the
remaining DA D2 receptor mediated auto-inhibition can still
be enhanced. In general, it is thought that 5-HT2 receptor
antagonism increases the likely-hood that DA D2 receptor
antagonism induces depolarization blockade of VTA DA
neurons and not of SN DA neurons, thereby decreasing the
liability for EPS induction. This mechanism is supported by
the observations that elevated 5-HT level seems related to
clinical efficacy of some atypical antipsychotics, and that
atypical antipsychotics can increase 5-HT levels in the brain
[93, 158], but this appears very brain area dependent.

In conclusion, 5-HT receptor-mediated modulation of
DA neuron physiological function involves direct effects on
DA neuron firing activity and indirect effects such as the
enhancement of DA D2 receptor-mediated auto-inhibition.
Moreover, 5-HT2 receptors have been established to be
differentially involved in shaping DA D2 receptor-mediated
auto-inhibition, possibly through actions on the GIRK
channel via second messenger pathways. This indicates that
this channel plays a central role in determining SN and VTA
DA neuron activity and possibly the development of
depolarization blockade. Differences in control mechanisms
of the GIRK channel by DA and 5-HT receptors in both SN
and VTA areas allows compounds like atypical antipsychotic
drugs to have differential effects on the electrical activity of
SN and DA neurons. A pivotal role for the modulation by 5-
HT on DA neurotransmission has been established, not only
in SN and VTA, but also in areas such as the mPFC. This
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points to the relevance of 5-HT2 receptor modulation of DA
neurotransmission in schizophrenia, either in understanding
the pathophysiology of the disease or, perhaps more pro-
nounced, in the treatment of the disease with antipsychotic
drugs.
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