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Abstract
PURPOSE—To evaluate the effect of pixel size on the detection of simulated microcalcifications
in digital mammography using a phantom.

MATERIALS AND METHODS—A high-resolution prototype imager with variable pixel size of
39 and 78 μm, and a clinical full-field digital mammography (FFDM) system with pixel size of 100
μm were used. X-ray images of a contrast-detail (CD) phantom were obtained to perform alternative
forced choice (AFC) observer experiments. Polymethyl-methacrylate (PMMA) was added to obtain
phantom thickness of 45 and 58 mm which are typical breast thickness conditions encountered in
mammography. Phantom images were acquired with both systems under nearly identical exposure
conditions using an anti-scatter grid. Twelve images were acquired for each phantom thickness and
pixel size (total of 72 images) and six observers participated in this study. Observer responses were
used to compute the fraction of correctly detected disks. A signal detection model was used to fit the
recorded data from which CD characteristics were obtained. Repeated-measures analyses using
mixed effects linear models were performed for each of the 6 observers. All statistical tests were 2-
sided and unadjusted for multiple comparisons. A P value of 0.05 or less was considered to indicate
statistical significance.

RESULTS—Statistical analysis indicated significantly better CD characteristics with 39 and 78
μm pixel sizes compared to the 100 μm pixel for all disk diameters and phantom thickness conditions
(p<0.001). Increase in phantom thickness degraded CD characteristics irrespective of pixel size
(p<0.001).

CONCLUSION—Based on the conditions of this study, reducing pixel size below 100 μm with low
imaging system noise enhances the visual perception of small objects that correspond to typical
microcalcification size.
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The results of a large-scale clinical study involving a variety of digital mammography systems
indicated that the overall diagnostic accuracy of full-field digital mammography (FFDM) and
screen-film mammography (SFM) as a means of screening for breast cancer was similar (1).
However, the study also reported that digital mammography was more accurate in women
under the age of 50, women with radiographically dense breasts, and premenopausal or
perimenopausal women (1). Despite the advantages of FFDM over SFM, the relative
performance of digital mammography compared to film for specific types of features,
particularly for very subtle microcalcifications, remains to be established. The large-area
contrast properties of FFDM suggest that its ability to detect soft tissue masses and architectural
distortions is likely to exceed that of film but it is not quite as clear whether this holds true for
the detection of microcalcifications. Several studies have demonstrated that the presentation
of ductal carcinoma in situ (DCIS) mammographically is by microcalcifications alone in up to
72% of instances (2-5). Berg et al. (6) found that 20% of biopsies for amorphous calcifications
were malignant. These calcifications are at the threshold of visibility and any parameter that
increases their detection is important. The larger effective pixel size in digital mammography
and the resulting lower spatial resolution compared to SFM warrants particular attention for
the optimization of FFDM systems with respect to detectability of subtle microcalcifications.

Currently there is no consensus on the desirable pixel size or spatial resolution for digital
mammography systems. Clinical amorphous silicon (a-Si:H)-based FFDM systems have a
pixel size of 100 μm (7,8) and amorphous selenium (a-Se)-based clinical FFDM systems have
a pixel size of 70 μm (9). Smaller pixel sizes in digital mammography is offered by a slot-scan
system based on charge coupled device (CCD) technology (10) and a photon counting detector
system in a slot scan geometry (11,12). In addition, smaller spatial sampling is offered by
photostimulable storage phosphor technology (13).

Various studies point to the possible need for higher spatial resolution in digital mammography
(14–17). Yamada and colleagues (16) concluded that high spatial resolution is required in
digital mammography to successfully differentiate between microcalcifications. Ruschin et
al. (17) found improved performance in terms of microcalcification shape determination at
pixel sizes well below 100 μm. The pixel size of current large area flat-panel digital
mammography imagers has a range of 70–100 μm, but knowledge on the performance of
smaller pixels is limited. However, current flat panel-based systems using a-Si:H or amorphous
selenium (a-Se) detectors cannot be used to study the effect of small pixel because pixel sizes
of about or below 50 μm are currently not available. The purpose of our study was to evaluate
the effect of pixel size on the detection of simulated microcalcifications in digital
mammography using a phantom.

MATERIALS AND METHODS
Clinical FFDM System

A clinical full-field digital mammography system (Senographe 2000D, GE Medical Systems,
Milwaukee, WI) was used to acquire the 100 μm images for this study (7,8). The system
comprises a columnar cesium iodide (CsI:Tl) scintillator coupled to an a-Si:H photodiode array
with a pixel size of 100 μm providing a field of view of 19 × 23 cm.

Prototype FFDM System
A 16 × 24-cm laboratory prototype FFDM imager was developed based on CCD technology
(Fairchild Imaging Inc., Milpitas, CA) (18,19). The imager was constructed by assembling 6
solid-state monolithic CCD modules of size 8 × 8-cm where each monolithic CCD module
was designed to be 3-side buttable with each module comprising 2048 × 2048 pixels. The
imaging device could be operated at 39 and 78 μm pixel modes with unity fill factor. The CCD
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design incorporated a full-frame architecture. Each CCD module was directly coupled to a
non-tapering fiber optic faceplate (Schott North America Inc., Southbridge, MA). A CsI:Tl
scintillator of dimension ~16 × 24 cm with a thickness of 150-μm deposited on an amorphous
carbon substrate (Hamamatsu Corporation, Bridgewater, NJ) was placed on the fiber optic face
plate. A foam-type material was placed over the scintillator substrate and the complete
assembly was pressure bonded with a detector cover plate. The detector and electronics were
enclosed in a cassette like format and operated without liquid circulation for cooling.

Contrast Detail Phantom
A contrast-detail (CD) phantom (CDMAM 3.2, Fluke Biomedical, Cleveland, OH), originally
developed by Thijssen and colleagues was used as the test object in this study (20). This
phantom has been widely used for image quality assessment in mammography. The phantom
consists of a thin aluminum base that contains circular gold disks that are logarithmically sized
from 0.10 to 3.2 mm in diameter and 0.05 to 1.6 μm in thickness. The disks are arranged in a
matrix of squares such that, within each square, one disk is centrally placed and an additional
disk is randomly placed at one of the four corners. Within each square, the central and corner
disks have the same diameter and thickness. Along a row of squares, the disk thickness is
constant while logarithmically varying in diameter and along a column the diameter remains
constant while the thickness varies logarithmically (21). For the purpose of this study additional
polymethyl-methacrylate (PMMA) was added such that the total physical thickness of the
phantom was 45 and 58 mm respectively. The main advantage of this phantom is the presence
of a randomly spaced corner disk in each square that facilitates alternative forced choice
experiments. It has recently been shown that for mammographic features smaller than 1 mm
in size, such as microcalcifications, the quantum and electronic noise characteristics of the
imaging system are overwhelmingly dominant compared to the anatomic structural noise of
the breast (22). Therefore, it is appropriate to perform CD analysis using a phantom without
the anatomic noise that is encountered in a mammographic image. This phantom has been used
previously to compare CD characteristics of a SFM and FFDM system (23).

Image Acquisition
Images of the CDMAM phantom were first acquired using the clinical FFDM system
(Senographe 2000D, GE Medical Systems, Milwaukee, WI) in the “contrast auto” mode for
emphasis on image contrast. The compression paddle and the anti-scatter grid were used to
simulate a clinical situation. The mammography system automatically selected kVp, mAs,
target/filter for both phantom thickness conditions. For each phantom thickness condition 12
images were acquired at 100 μm pixel resolution and the raw images were selected for this
study. The raw images were automatically bad-pixel and flat-field corrected by the clinical
FFDM system. The prototype FFDM imager was used with an older mammography unit
(Senographe DMR, GE Medical Systems, WI) with a source-to-detector distance (SID) of 66
cm identical to the clinical FFDM system. A reciprocating anti-scatter grid with a grid ratio of
5:1 was used during image acquisition. The images were acquired with both mammography
units under nearly identical exposure conditions (Table 1). As with the clinical system, 12
images were acquired for each phantom thickness (45 and 58 mm) and pixel condition (39 and
78 μm). The images were dark subtracted, flat-field, and bad-pixel corrected by one of the
authors (S.S.) by implementing a computer program. Disk diameters between 0.13 to 0.31 mm
were used in this study. For each disk diameter, six disk thickness levels were selected such
that disk perception ranged from ‘marginally’ to ‘easily’ perceivable.

Image Processing and Display
A graphical user interface (GUI) program was developed by author S.S. using Interactive Data
Language (IDL 6.0, Research Systems Inc, Boulder, CO). The squares in the phantom images
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that corresponded to the disk diameters and thickness of interest were cropped before display
using a computer program by one of the authors (S.S.). The dimensions of the region of interest
(ROI) for the 100 μm, 78 μm, and 39 μm pixel sizes were 100 ×100, 130 × 130, and 260 × 260
pixels respectively. All image ROIs were displayed in the center of a DICOM calibrated clinical
gray scale flat-panel display system (DOME C5i, Beaverton, OR). No zooming was performed
to match the ROI sizes. Since there were 5 disk diameters, 6 disk thickness, and 12 images per
condition, 360 image ROIs were displayed to the observer for each phantom thickness and
pixel condition. Visual cues were generated by the display program at each of the four corners
of the square where one of the corners contained the disk. Each displayed ROI was adjusted
using an automatic contrast enhancement technique. In order to achieve this, histogram analysis
was performed to compute the density function of each ROI with maximum value set to the
maximum digital value in that ROI image. The digital value corresponding to the peak of the
histogram (also in digital units) was obtained and the look-up table of the image display was
scaled such that threshold was set to be greater than half this value (Fig 1). A reference image
ROI that contained a high contrast version of the disk in the center was displayed above the
image ROI in order to provide the observer with information related to the detection task. The
diameter of the disk in reference image always matched the diameter of the disk in the image
ROI. However, none of the observers were aware of the disk diameters and the type of image
ROI being displayed during the observation sessions. An automated messaging feature was
implemented that indicated to the observer when 25, 50, 75, and 100% of the observation
session was completed.

Observer Study
A total of 6 observers that included four board certified radiologists with specialization in
mammography and two graduate students with experience in medical imaging participated in
this study. The experience of the four radiologists in mammography was 4, 7, 14, and 34 years.
The two graduate students had 3 and 4 years of experience in medical physics and radiology
research. Two of the authors (C.J.D. and I.S.) participated as observers in the study. The study
was divided into six sessions in random order. On a given day each observer was expected to
complete two sessions. It took three visits per observer to complete the whole study. In each
session, observers had to independently review 360 image ROIs which on average took about
25–30 min. For the complete study across all six sessions each observer reviewed 360 × 6 =
2160 image ROIs. Before commencing each session, observers were trained with a small
random subset of ROI images (~15–20 ROIs for each condition) extracted from the acquire
images until they felt comfortable with the task. Since the type of image ROI, display sequence,
and position of the disk in each ROI were all random the chances of learning or memory effects
were virtually eliminated. No restrictions on viewing distance were placed but the observers
were not allowed to window/level the image ROIs. All observations were conducted in a
dedicated darkened radiologic image perception room and randomized between observers to
minimize any systematic effects. Since this was a forced choice study, an observer had to
indicate the location of the corner disk with a mouse click and was encouraged to arrive at the
best estimate in cases where the disk was not perceivable. Observer responses were
automatically recorded as true positive (TP) or false positive (FP) events and used to compute
‘percent correct detection’.

Data Analysis
Based on the recorded observer responses, ‘percent correct detection’, Pc (sensitivity) values
were computed for each observer, disk diameter, and thickness. To analyze the ‘percent correct
detection’ data, a signal detection model was used that hypothesizes a continuous decision
variable internal to the observer with Gaussian probability density functions for the presence
or absence of the disk (24,25). A maximum-likelihood algorithm was implemented as described
in detail by Ohara et al (24) to fit the detection data. The CD characteristics were obtained at
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the 62.5% detection threshold level as this provided a threshold between ‘chance’ (25%) and
100% correct detection. For each observer and diameter the perceived disk thickness
corresponding to the 62.5% correct detection threshold point in the detection curve was
computed. Linear interpolation of adjacent points was performed wherever applicable.
Contrast-detail characteristics were derived for all diameters, observers, and phantom thickness
conditions. Finally, the corresponding CD data from individual observers were averaged in
order to obtain average CD characteristics.

Statistical Analysis
Repeated-measures analyses using mixed effects linear models were performed for the
perceived disk thickness outcome as measured by each of the 6 observers. A saturated model
was fit that included the fixed main effects (phantom thickness, pixel size, and diameter), the
two-way statistical interaction including thickness by pixel size, thickness by diameter, pixel
size by diameter, and the three-way interaction including thickness by pixel size by diameter.
The analyses were performed using a means model by using SAS Proc Mixed (version 8, SAS
Institute, Cary, NC), providing separate estimates of perceived mean disk depth by thickness,
pixel size and disk diameter. A compound-symmetry variance-covariance form in observer
measurements was assumed for perceived disk depth and robust estimates of the standard errors
of parameters were used to perform statistical tests and construct 95% confidence intervals.
All statistical tests were 2-sided and unadjusted for multiple comparisons. A P value of 0.05
or less was considered to indicate statistical significance.

RESULTS
Overall, the computed Pc characteristics indicated degradation in detection with increasing
pixel size (Figs 2a and 2b) under the conditions investigated. The mean perceived disk thickness
for the 45 and 58 mm thick phantom changed in significantly different ways across pixel size
and disk diameter (P < 0.0001, for the 3-way interaction thickness X pixel size X disk diameter;
the 2-way interactions were P = 0.30 for thickness X pixel size, P < 0.0001 for pixel size X
disk diameter, and P < 0.0001 for thickness X disk diameter). For the 45 mm thick phantom,
perceived disk thickness for both 39 and 78 μm pixel sizes was statistically significant (better
threshold contrast) compared to the 100 μm pixel at each disk diameter (Fig 3a, Table 2). The
perceived disk thickness was worse for the 78 μm pixel size compared to the 39 μm pixel at
disk diameters of 0.13 and 0.16 mm but not for disk diameters of 0.20, 0.25, and 0.31 mm (Fig
3a), indicating superior performance of the 39 μm pixel at 0.13 and 0.16 mm disk diameters
(Table 2). For the 58 mm thick phantom, the perceived disk thickness at 39 and 78 μm pixel
sizes were statistically significant compared to the 100 μm pixel (Fig 3b, Table 3). The
perceived disk thickness was worse for the 78 μm pixel size compared to the 39 μm pixel size
(Fig 3b) at disk diameter 0.13 mm, the perceived disk thickness was statistically significant
for the 78 μm pixel size compared to the 39 μm pixel at disk diameter 0.16 mm (P = 0.04) and
the mean perceived disk thickness was similar for the 78 μm and 39 μm pixel sizes at disk
diameters 0.20 and 0.25 mm (Table 3). However, the difference between the mean perceived
disk thickness at disk diameter 0.16 mm is statistically significant but the magnitude of this
difference is small. On average, perceived disk thickness for all pixel sizes was statistically
better for the 45 mm phantom compared to the 58 mm thick phantom (Fig 4) at each of the
five disk diameters (Table 4).

DISCUSSION
The use of CD methodology for the evaluation of clinical imaging systems is widely accepted
and such psychophysical characterization of imaging systems provides information on the
image quality and diagnostic value of a modality (26,27). The methodology described in our
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study provides a means to quantitatively assess perception data and characterize imaging
performance. Various investigators have successfully used similar approaches to assess image
quality in x-ray imaging (21,26–34). An important factor that motivates CD analysis is the
inclusion of the human observer as part of the imaging chain, which is a critical consideration
in all medical imaging systems (35). Contrast-detail methodology can be extremely useful as
a precursor study before clinical trials, to determine system performance or compare the
performance among different systems in a controlled manner. Contrast-detail analysis may
reveal strengths or deficiencies in a system that may need correction before the onset of
comprehensive clinical studies. The logistics and cost considerations present significant
barriers in the evaluation of specific parameters through clinical trials. Hence, studies such as
this can be very instructive in gaining a quantitative understanding of performance before
embarking on redesign of mammography systems or on comprehensive clinical trials. Other
automated methods (36,37) can also be used in combination with human observers to analyze
system performance.

We focused on obtaining a quantitative comparison of imaging performance for detection of
simulated microcalcifications between two systems at various pixel sizes. However, a
combination of pixel size and system noise is likely to have had an effect on the CD
characteristics. The alternative forced choice (AFC) method used here provides an effective
means of conducting psychophysical measurements (38). In our investigation, the random
signal location is likely to have mitigated observer learning bias to a great extent compared to
more simplistic CD experiments where the location of the signal is fixed. The superior CD
performance of the prototype system at 39 and 78 μm pixel sizes compared to the clinical
FFDM system at 100 μm can be attributed to the better MTF(f) and DQE(f) characteristics of
the prototype imager especially at higher spatial frequencies (18). However, there are other
means of improving the conspicuity of small high frequency structures such as
microcalcifications through post-acquisition image processing techniques. The CD
performance of the prototype at both 45 and 58 mm phantom thickness conditions demonstrates
the viability of such imaging architectures for digital mammography.

The significantly better CD performance of the 39 μm pixel compared to the 78 μm pixel for
the 45 mm thick phantom at disk diameters 0.13 and 0.16 mm demonstrates the resolving
capability of small pixel sizes under the image noise conditions investigated. Similar rationale
holds good for the better performance of the 39 μm pixel for the 58 mm thick phantom at disk
diameter 0.13 mm. The unexpected reversal of performance at disk diameter 0.16 mm for the
58 mm thick phantom wherein the 78 μm pixel performed better is primarily due to one observer
who exhibited a much higher (poorer) detection threshold for the 39 μm pixel. However, the
magnitude of this difference is small. At larger disk diameters, under similar system noise
conditions, it appears that the benefit of having small pixel size is reduced. The degradation in
detection and CD characteristics between the 45 and 58 mm thick phantom could be attributed
to the differences in spectra and possible increase in x-ray scatter that could have potentially
impacted the visualization of small low contrast objects irrespective of pixel size.

Our study has limitations. Although ours was not a clinical study with human subjects, the
results demonstrate the viability and provide insights into the perceptual performance
characteristics of large-area high-resolution imagers for microcalcification detection in the
breast. Further, since the effect of breast anatomic noise on microcalcification detection is
minor (22), the general trends obtained in this study are clinically relevant. However, a carefully
designed clinical study may be required before making a decision on a final pixel size for a
specific imaging technology for mammography. The CCD imager in this study was used as a
convenient platform to demonstrate the potential of high-resolution and low noise digital
mammography for microcalcification detection. Ideally, using the same imager with multiple
pixel sizes would have been preferred but such an imager was not available. It should also be
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noted that the results of our study are applicable to 2D projections as presently practiced in
mammography and studies need to be conducted to explore the resolution and noise effects for
applications such as tomosynthesis and dedicated computed tomography of the breast.

Practical application
Based on the conditions of this study, reducing pixel size below 100 μm with low imaging
system noise enhances the visual perception of small objects that correspond to typical
microcalcification sizes. Alternatively, enhancement of the system modulation transfer
function through improved scintillator and detector technologies can enhance
microcalcification visualization. We believe our results can help in assessing the performance
of similar imaging modalities for x-ray imaging. The CD analysis provides a means to compare
and identify key parameters that influence system performance using human observers. The
methodology described here can be used before the onset of clinical trials to obtain insights
into an imaging system’s performance capability for a specific task.
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Figure 1.
Image ROI (a) before and (b) after automatic contrast enhancement. Improved visibility of the
corner disk is observed after enhancement.
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Figure 2.
Examples of percent correct detection (Pc) characteristics obtained from a single observer for
disk diameters (a) 0.31 and (b) 0.20 mm at various pixel sizes for a phantom thickness of 45
mm. Degradation in detection with increasing pixel size is observed. The lines are maximum
likelihood estimated detection characteristics.
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Figure 3.
Contrast-detail (CD) characteristics obtained at 62.5% detection threshold after averaging data
from six observers for (a) 45 mm and (b) 58 mm phantom thickness conditions at 39, 78, and
100 μm pixel sizes. Lower (better) threshold CD characteristics at 39 and 78 μm pixel sizes is
observed. The error bars indicate 95% confidence interval.
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Figure 4.
Contrast-detail (CD) characteristics obtained at 62.5% detection threshold after averaging data
from six observers for (a) 100 (b) 78, and (c) 39 μm pixel sizes at 45 and 58 mm phantom
thickness conditions. Degradation in CD characteristics irrespective of pixel size is observed.
The error bars indicate 95% confidence interval.
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TABLE 1
X-ray technique factors and measured imager entrance exposures at 66 cm with no phantom in the beam path for clinical
and laboratory mammography units

kVp Target/filter Exposure (C/Kg) Clinical x-ray unit Laboratoty x-ray unit

28 Mo/Mo 0.0006 0.00057
31 Rh/Rh 0.00037 0.00036
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TABLE 2
Comparison of the effect of pixel size for a phantom thickness of 45 mm at various disk diameters

Disk diameter (mm) 100 vs. 78 Pixel size (μm) 100 vs. 39 78 vs. 39

0.13 P < 0.0001 P < 0.0001 P < 0.0001
0.16 P < 0.0001 P < 0.0001 P < 0.0001
0.20 P = 0.0003 P = 0.0003 P = 0.10
0.25 P < 0.0001 P < 0.0001 P = 0.77
0.31 P < 0.0001 P < 0.0001 P = 0.19
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TABLE 3
Comparison of the effect of pixel size for a phantom thickness of 58 mm at various disk diameters

Disk diameter (mm) 100 vs. 78 Pixel size (μm) 100 vs. 39 78 vs. 39

0.13 P = 0.0045 P = 0.0017 P = 0.003
0.16 P < 0.0001 P < 0.0001 P = 0.04
0.20 P < 0.0001 P < 0.0001 P = 0.09
0.25 P < 0.0001 P < 0.0001 P = 0.59
0.31 P < 0.0001 P < 0.0001 P = 0.05
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TABLE 4
Comparison of the effect of phantom thickness (45 vs. 58 mm) for each pixel size at various disk diameters

Disk diameter (mm) 39 Pixel size (μm) 78 100

0.13 P < 0.0001 P < 0.0001 P = 0.026
0.16 P < 0.0001 P = 0.0002 P < 0.0001
0.20 P < 0.0001 P < 0.0001 P < 0.0001
0.25 P < 0.0001 P < 0.0001 P < 0.0001
0.31 P < 0.0001 P < 0.0001 P < 0.0001
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