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Abstract
The crystal structure of PCB 77 (3,3′,4,4′-tetrachlorobiphenyl, C12H6Cl4), a dioxin-like PCB
congener, is described. The dihedral angle of PCB 77 is 43.94(6)°, which is slightly larger than
calculated or experimental dihedral angles of biphenyl derivatives in solution but smaller than
experimental dihedral angles in the gas phase.
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1. Introduction
Polychlorinated biphenyls (PCBs) are a class of persistent organic chemicals that were
manufactured on an industrial scale until the late 70s (Hansen, 1999; Robertson and Hansen,
2001). Due to their high chemical stability, low flammability and other desirable physical
properties, such as electrical insulation properties, they were used for technical applications
such as hydraulic fluids, lubricants and as additives in paint, pesticides, sealants and plastics.
In the United States, PCBs are still used as dielectric fluids in closed systems such as
transformers and capacitors. Although their production is banned worldwide, PCBs continue
to be a health concern due to their persistence in the environment, their tendency to
bioaccumulate and to biomagnify, and their adverse effects in animal and epidemiological
studies.

Technical PCB products are complex mixtures containing over 50 individual PCB congeners
with different chemical structures and physicochemical properties. Depending on their three-
dimensional structure, PCB congeners bind to different cellular target sites, and thus cause
adverse effects by different mechanisms. For example, PCB congeners with ortho chlorine
substituents can bind to the constitutive androstane (CAR) (Denomme et al., 1983) and/or the
pregnane X receptor (PXR) (Schuetz et al., 1998). Other ortho substituted PCB congeners
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interact with both the aryl hydrocarbon (Ah receptor) and the CAR receptor (Parkinson et al.,
1983). PCB congeners with zero or one ortho-chlorine substituent can bind to the aryl
hydrocarbon receptor (Ah receptor), thus mimicking the action of 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD) (Goldstein et al., 1978; Safe, 1994). These dioxin-like PCB congeners, for
example PCBs 77 and 126, are of particular regulatory interest because of their mammalian
and human toxicity, which appears to be mediated primarily via the Ah receptor.

Efforts to elucidate the molecular structure of individual PCB congeners are highly desirable
because of the relationship between their three dimensional structure and their toxicity. Indeed,
the crystal structures of several ortho substituted PCB congeners have been published (Kania-
Korwel et al., 2004; Lehmler et al., 2001; Lehmler et al., 2005; Miao et al., 1997; Singh and
McKinney, 1979; Singh et al., 1986; Vyas et al., 2006). However, despite the environmental
importance of dioxin-like PCB congeners, no crystal structure of such a dioxin-like PCB
congener has been reported to date. We herein report the first X-ray crystal structure of such
a dioxin-like PCB congener, PCB 77 (3,3′,4,4′-tetrachlorobiphenyl).

2. Results and discussion
We were able to obtain crystals of PCB 77 suitable for crystal structure analysis by
recrystallization from hot methanol. Crystal data and other relevant parameters are summarized
in Table 1 and selected bond lengths and angles are given in Table 2. The molecular structure
with the atom numbering scheme and a crystal packing diagram are shown in Fig. 1 and Fig.
2, respectively. PCB 77 crystallizes in an orthorhombic space group (P21 21 2) with a = 11.1458
(2) Å, b = 13.5539(3) Å, c = 3.7735(1) Å and α = β = γ; = 90°, with half a molecule per
asymmetric unit. The closest Cl-Cl intermolecular interactions are 3.492(2) Å between Cl1 and
a 2-fold screw related Cl2 (symmetry operation is x − 0.5, 0.5 − y, 1 − z).

The dihedral angle between the two phenyl rings of PCB congeners is an important determinant
to describe the conformation of PCBs, and, therefore, their binding activity with cellular target
molecules (Lehmler et al., 2002; McKinney and Singh, 1988). The experimental dihedral angle
for PCB 77 in the solid state is 43.94(6)° (Figure 1B). As shown in Table 3, this dihedral angle
is larger than the dihedral angle of 3,3′,5′-trichloro-4-methoxybiphenyl (Lehmler et al., 2002)
and of axially substituted biphenyls such as 4,4′-dichlorobiphenyl (Brock et al., 1978). This
value is also larger than the dihedral angles reported for biphenyl in different solvents (reported
dihedral angels of biphenyl in solution range from approximately 30° to 40° depending on the
solvent and the experimental approach used for its determination (Akiyama et al., 1986)) and
the caldulated dihedral angle of 41.2°. However, the solid state dihedral angle of PCB 77 is
smaller compared to experimental gas phase dihedral angles of biphenyl, 4-chlorobiphenyl and
4,4′-dichlorobiphenyl, which are approximately 44-45° (Almenningen et al., 1985a and
Almenningen et al., 1985b.

To date 3,3′,5,5′-tetrachloro-4,4′-dihydroxybiphenyl is the only reported crystal structure of a
non-ortho substituted PCB derivative (McKinney and Singh, 1988). This compound is a
metabolite of PCB 77 (Doi et al., 2006; Koga et al., 1989) and has a strong affinity to both
human estrogen sulfotransferase (Shevtsov et al., 2003) and thyroxine (McKinney et al.,
1987). 3,3′,5,5′-tetrachloro-4,4′-dihydroxybiphenyl, like chlorinated dioxins (Boer and North,
1972; Boer et al., 1972; Cantrell et al., 1989; Cantrell et al., 1969; Koester et al., 1988), is
essentially coplanar in the solid state, and thus adopts a conformation that is significantly
different from that of PCB 77. The tendency of this dihydroxylated PCB derivative to adopt a
more planar conformation in the solid state is due to the stabilizing intermolecular interactions
resulting, in part, from a stacking arrangement of the benzene rings (McKinney and Singh,
1988). Although some stacking interactions are also present in PCB 77, the hypothetical energy
gain resulting from the packing of coplanar PCB 77 molecules does not offset the increase in
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intramolecular energy associated with such a coplanar conformation. Therefore, in contrast to
3,3′,5,5′-tetrachloro-4,4′-dihydroxybiphenyl, PCB 77 does not adopt a coplanar conformation
in its crystal structure.

The comparison of the solid state structure of PCB 77 and the structurally related 3,3′,5,5′-
tetrachloro-4,4′-dihydroxybiphenyl shows that intermolecular interactions may be important
determinants of the three-dimensional structure of PCBs. It has been proposed that similar
intermolecular interactions are also important in the binding interactions of PCB congeners
with target molecules such as the Ah receptor (Lehmler et al., 2002; McKinney and Singh,
1988). PCB molecules are likely to adopt a conformation that allows an energetically
favourable binding to the target site due to the unrestricted rotation between two phenyl rings
(i.e., the C1-C1′ bond). For example, crystallographic analysis of the binding of 3,3′,5,5′-
tetrachloro-4,4′-dihydroxybiphenyl to human estrogen sulfotransferase shows the dihedral
angle of the bound dihydroxy PCB was 30° (Shevtsov et al., 2003). For comparison, the solid
state dihedral angle is significantly smaller at 0°, whereas the calculated dihedral angle is larger.
This example suggests that the biologically relevant conformations of PCB congeners, such as
PCB 77, and PCB metabolites, such as 3,3′,5,5′-tetrachloro-4,4′-dihydroxybiphenyl, exist over
a range of dihedral angles, with the understanding that the dihedral angles may be greatly
influenced by the protein-binding sites in which they were accommodated. Further studies are
needed to determine the actual structure of PCB and other dioxin-like PCB congers in the
binding site of their target molecules.

3. Conclusions
We herein report the crystal structure of PCB 77, a dioxin-like PCB congener. The dihedral
angle between two phenyl rings of PCB 77 is 43.94(6)°, which is comparable to calculated or
experimental dihedral angles of biphenyl and other PCB congeners in solution or in the gas
phase. Overall, this X-ray crystallographic determination provides the first highly accurate
picture of the molecular geometry of a dioxin-like PCB congener in a specific solid-state
environment and gives some insight into the crystal packing arrangement which may help to
understand the intermolecular forces of importance for the interaction of PCB 77 with
biological binding sites.

4. Experimental
4.1. Synthesis of 3,3′,4,4′-tetrachlorobiphenyl (Shaikh et al., 2006)

3,3′,4,4′-tetrachloro-biphenyl was synthesized in 42% yield by copper bronze mediated
symmetrical Ullmann coupling reaction (at 230 °C, 7 d) and purified by column
chromatography over silica gel using a mixture of n-hexanes and ethyl acetate (10:1) as an
eluent. Recrystallization from hot methanol was carried out to obtain the crystals suitable for
X-ray analysis.

White solid. M.p. = 174–176 °C, 1H NMR (400 MHz, CDCl3): δ 7.36 (dd, J = 2.2 & J = 8.3
Hz, 2 × H-6), 7.51 (d, J = 8.3 Hz, 2 × H-5), 7.61 (d, J = 2.2 Hz, 2 × H-2). 13C NMR (400 MHz,
CDCl3): δ 126.15 (2 × C-6), 128.81 (2 × C-2), 130.97 (2 × C-5), 132.48 (2 × C-4), 133.25 (2
× C-3), 138.73 (2 × C-1). MS (EI): m/z (relative abundance %) 292 (M+, 100), 256 (M+-Cl,
5), 220 (M+-2Cl, 40), 184 (M+-3Cl, 10), 110 (12), 74 (5).

4.2. Molecular orbital computation of dihedral angle of PCB 77 with the SCF-MO method
The conformation of PCB 77 was calculated using semi-empirical SCF-MO calculations with
an Austin Model 1 (AM1) Hamiltonian (Dewar et al., 1985). This was contained in the Spartan
02 package and carried out on a Quad 2.5 GHz Power Mac G5 with a PCI express graphic card
as described previously (Luthe et al., 2007). The use of symmetry constraints enhanced the
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convergence compared with completely unconstrained runs. The calculated value of the
dihedral angle of PCB 77 of 41.2° is the average of the four torsion angles involving C1-C1′.

4.3. X-ray crystal structure analysis
X-ray diffraction data were collected at 120.0(2) K on a Bruker-Nonius X8 Proteum
diffractometer with graded-multilayer focusing optics from a rod-shaped crystal. Raw data
were integrated, scaled, merged and corrected for Lorentz-polarization effects using the
APEX2 package (Bruker-Nonius, 2004). The structure was solved by direct methods
(Sheldrick, 1997) and missing atoms were located in difference Fourier maps (Sheldrick,
1997). Refinement was carried out against F2 by weighted full-matrix least-squares (Sheldrick,
1997). Hydrogen atoms were found in difference maps but subsequently placed at calculated
positions and refined using a riding model. Non-hydrogen atoms were refined with anisotropic
displacement parameters. Atomic scattering factors were those of SHELXL (Sheldrick,
1997), as taken from the International Tables for Crystallography (Hahn, 1992). Crystal data
and relevant details of the structure determinations are summarized in Table 1 and selected
geometrical parameters are given in Table 2. Crystallographic data for the structure reported
in this paper have been deposited with the Cambridge Crystallographic Data Center as
Supplementary Publication No. CCDC-640770. Copies of the data can be obtained free of
charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. (fax, (+44)
1223-336- 033; e-mail, deposit@ccdc.cam.ac.uk).
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Figure 1.
(A) Molecular structure of PCB 77 showing the atom-labelling scheme and (B) view of PCB
77 along the C1-C1′ axis illustrating the non-planar conformation of the molecule.
Displacement ellipsoids are drawn at the 50% probability level. Unlabeled atoms are at the
symmetry position (1 − x; 1 − y; z).
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Figure 2.
View of the crystal packing of 3,3′,4,4′-tetrachloro-biphenyl molecules parallel to the c-axis.
Large circles are Cl atoms.
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Table 1
Crystal data and structure refinement for 3,3′,4,4′-tetrachlorobiphenyl.

Empirical formula C12 H6 Cl4
Formula weight 291.97
Temperature 120.0(2) K
Wavelength 1.54178 Å
Crystal system, space group Orthorhombic, P 21 21 2

a = 11.1458(2) Å
Unit cell dimensions b = 13.5539(3) Å

c = 3.7735(1) Å
Volume 570.06(2) Å3

Z, Calculated density 2, 1.701 Mg/m3

Absorption coefficient 9.137 mm−1

F(000) 292
Crystal size 0.18 × 0.08 × 0.08 mm
Theta range for data collection 5.14 to 67.49°
Limiting indices −13 ≤ h ≤ 9, −15 ≤ k ≤ 16, −4 ≤ l ≤ 2
Reflections collected/unique 2102/852 [R(int) = 0.0298]
Completeness to θ = 67.49 96 %
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.529 and 0.315
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 852/0/75
Goodness-of-fit on F2 1.108
Final R indices [I>2Σ(I)] R1 = 0.0253, wR2 = 0.0652
R indices (all data) R1 = 0.0254, wR2 = 0.0653
Extinction coefficient 0.0076(12)
Largest diff. peak and hole 0.301 and −0.280 eA−3

Chemosphere. Author manuscript; available in PMC 2009 February 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Shaikh et al. Page 10

Table 2
Selected bond lengths [Å] and angles [°] for 3,3′,4,4′-tetrachlorobiphenyl.

C-atoms Bond lengths [Å] C-atoms Bond angles [°]

Cl(1)-C(3) 1.733(2) C(6)-C(1)-C(2) 118.6(2)
Cl(2)-C(4) 1.731(2) C(6)-C(1)-C(1′) 120.9(2)
C(1)-C(6) 1.389(3) C(2)-C(1)-C(1′) 120.5(2)
C(1)-C(2) 1.397(3) C(3)-C(2)-C(1) 120.4(2)
C(1)-C(1′) 1.484(4) C(3)-C(2)-H(2) 119.8
C(2)-C(3) 1.380(3) C(1)-C(2)-H(2) 119.8
C(2)-H(2) 0.95 C(2)-C(3)-C(4) 120.6(2)
C(3)-C(4) 1.387(4) C(2)-C(3)-Cl(1) 118.95(2)
C(4)-C(5) 1.394(3) C(4)-C(3)-Cl(1) 120.49(2)
C(5)-C(6) 1.383(4) C(3)-C(4)-C(5) 119.5(2)
C(5)-H(5) 0.95 C(3)-C(4)-Cl(2) 121.29(2)
C(6)-H(6) 0.95 C(5)-C(4)-Cl(2) 119.2(2)

C(6)-C(5)-C(4) 119.6(2)
C(6)-C(5)-H(5) 120.2
C(4)-C(5)-H(5) 120.2
C(5)-C(6)-C(1) 121.3(2)
C(5)-C(6)-H(6) 119.4
C(1)-C(6)-H(6) 119.4

Symmetry transformations used to generate equivalent atoms: #1 −x+1,−y+1,z.
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Table 3
Comparison of the space group and solid state dihedral angle of selected chlorinated biphenyl derivatives without ortho
substituent.

Entry Molecular structures of biphenyl Space group Solid state dihedral angle [°] Reference

1 Orthorhombic, P 21 21 2 43.94(06) present work

2 Monoclinic, P21/c 41.31 (07) (Lehmler et al., 2002)

3 Monoclinic, P21/n 39.42 (Brock et al., 1978)

4 Monoclinic, P21/c coplanar (McKinney and Singh, 1988)
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