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Copper plays a fundamental role in regulating cell growth.
Many types of human cancer tissues have higher copper levels
than normal tissues. Copper can also induce gene expression.
However, transcription factors that mediate copper-induced
cell proliferation have not been identified inmammals. Here we
show that antioxidant-1 (Atox1), previously appreciated as a
copper chaperone, represents a novel copper-dependent tran-
scription factor thatmediates copper-induced cell proliferation.
Stimulation of mouse embryonic fibroblasts (MEFs) with cop-
per markedly increased cell proliferation, cyclin D1 expression,
and entry into S phase, which were completely abolished in
Atox1�/� MEFs. Promoter analysis and EMSA revealed that
copper stimulates the Atox1 binding to a previously unde-
scribed cis element in the cyclin D1 promoter. The ChIP assay
confirms that copper stimulates Atox1 binding to the DNA in
vivo. Transfection of Atox1 fused to the DNA-binding domain
of Gal4 demonstrated a copper-dependent transactivation in
various cell types, including endothelial and cancer cells. Fur-
thermore, Atox1 translocated to the nucleus in response to cop-
per through its highly conserved C-terminal KKTGKmotif and
N-terminal copper-binding sites. Finally, the functional role of
nuclear Atox1 is demonstrated by the observation that re-ex-
pression of nuclear-targeted Atox1 in Atox1�/� MEFs rescued
the defective copper-induced cell proliferation. Thus, Atox1
functions as a novel transcription factor that, when activated by
copper, undergoes nuclear translocation, DNA binding, and
transactivation, thereby contributing to cell proliferation.

Copper is an essential trace element in all living organisms
and serves as a cofactor of key metabolic enzymes that regulate

physiological processes, including cellular respiration, antioxi-
dant defense, and iron metabolism in eukaryocytes (1–3).
Accumulating evidence suggest that copper plays a fundamen-
tal role in regulating cell growth involved in physiological repair
processes such as wound healing and angiogenesis as well as in
various pathophysiologies including tumor growth, atheroscle-
rosis, and neuron degenerative diseases (1–12). Of note, hyper-
proliferative lesions in cancer and atherosclerosis have higher
copper levels in cell nuclei than normal tissues (13–15), while
copper chelation prevents tumor growth and neointimal thick-
ening after vascular injury (9–12). Furthermore, Phase I and II
clinical trials for the treatment of solid tumors by copper che-
lation showed its efficacy in disease stabilization (10, 11). These
observations strongly suggest that copper plays an essential role
in cell growth and proliferation; however, little is known about
underlying molecular mechanisms.
Antioxidant-1 (Atox1)3 is a copper-binding protein that con-

tains a single N-terminal copy of the conservedMXCXXC cop-
per-bindingmotif, and has been appreciated as a cytosolic cop-
per chaperone that delivers copper to the secretory
compartment, which includes the trans-Golgi network (TGN)
(2, 16, 17). Atox1-deficient mice failed to thrive immediately
after birth, and 45% of pups died before weaning. Surviving
animals exhibited growth failure (18). Recently, we found that
Atox1 is expressed in the nucleus in the intimal lesions of ath-
erosclerosis, which contain highly proliferating cells (19). Of
note, Atox1 protein has the conserved lysine-rich region
(KKTGK) at its C terminus, which may represent the nuclear
localization signal (20).
We thus performed the present study to test the hypothesis

that nuclear Atox1 may be involved in regulating copper-in-
duced cell proliferation. Here we show that copper stimulates
cell proliferation in an Atox1-dependent manner. We also
demonstrate that copper induces Atox1 nuclear translocation,
binding to a novel cis element of the cyclin D1 promoter and
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transactivation, thereby promoting cell proliferation. More-
over, we show the direct evidence that nuclear-targeted Atox1
plays an essential role in copper-stimulated cyclin D1 expres-
sion and cell proliferation.

EXPERIMENTAL PROCEDURES

Antibody Production—To generate Atox1 antibody, an oli-
gopeptide corresponding to amino acids 49–62 (DTL-
LATLKKTGKTV) of humanAtox1was used. The antibodywas
affinity-purified using the immobilized peptide. A rabbit poly-
clonal antiserum to Atox1 raised against purified recombinant
Atox1 protein (21) was a kind gift from Dr. Diane Cox.
Immunofluorescence Studies—For immunofluorescence

studies in cultured cells, cells on glass coverslipswere processed
as previously described (22). Briefly, after fixation in freshly
prepared 4% paraformaldehyde and permeabilization in 0.2%
Triton X-100, cells on coverslips were rinsed sequentially in
PBS, 50 mM NH4Cl, and PBS. After incubation in blocking
buffer (3% bovine serum albumin in PBS), the cells were incu-
bated with primary antibodies, rinsed in PBS/bovine serum
albumin, and incubated with the appropriate species-specific
secondary antibodies conjugated to fluorescein isothiocyanate
or rhodamine. Cryosections and cells were examined with a
Zeiss LSM 510 system, using argon and green helium/neon
laser excitation lines of 488 and 543 nm with emission filters of
BP 500–550 and LP 560.
Cell Culture and Nuclear Fractionation—Atox1�/� and

wild-type immortalized mouse embryonic fibroblast cells
(MEFs) were cultured in Dulbecco’s modified Eagle’s medium
with 10% fetal bovine serum as previously described (23). Cop-
per content in basal media was 158 nM asmeasured by ICP-MS.
Experiments were performed in medium containing 1% serum
with no additives. Human umbilical vein ECs (HUVECs) were
purchased from VEC Technologies, Inc. (Rensselaer, NY) and
were grown in endothelial cell growthmedium (EGMMV, Clo-
netics) containing 10% fetal bovine serum (FBS). All other cells
were grown in Dulbecco’s modified Eagle’s medium with 10%
FBS. Before stimulation, cells were serum-starved for 24 h.
Nuclear/cytoplasmic fractionation of MEFs was performed
using an NE-PER Nuclear and Cytoplasmic Extraction
Reagents kit (Pierce) according to the manufacturer’s protocol.
Cell CycleAnalysis—Wild-type andAtox1�/� cells in growth

phase were synchronized by exposing the culture to FBS-de-
prived basal medium for 24 h. Quiescent cells were stimulated
by the addition of 1% FBS with either 10 �M CuCl2 or 200 �M
BCS for 24 h. Cells were harvested, fixed, and stained with pro-
pidium iodide using the BD Cycle TESTTMPLUS Reagent kit
according to the manufacturer’s instructions (BD Biosciences).
Samples were analyzed by flow cytometry on a FACSort (Bec-
ton -Dickinson).
Quantitative Real-time PCR—Total RNA was isolated using

an RNeasymini kit and an RNase-free DNase set (Qiagen). 2�g
of RNA were reverse-transcribed using the RETROscript kit
(Ambion) as described by themanufacturer, using randomhex-
amers as primer. Quantitative real-time PCR analysis was per-
formed using the Light Cycler thermocycler (Roche Applied
Science). The 10-�l reactionmixtures contained 0.3mmol/liter
of forward and reverse primers for cyclin D1 (5�-CTGGCC-

ATGAACTACCTGGA-3� and 5�-ATCCGCCTCTGGCAT-
TTTGG-3�) or for glyceraldehyde-3-phosphate dehydro-
genase (5�-TTCACCACCATGGAGAAGGC-3� and 5�-GGCA-
TGGACTGTG GTCATGA-3�), 50 mmol/liter KCl, 250 �g/ml
bovine serum albumin, 200 �mol/liter dNTPs, 1:84,000 SYBR
Green I, and 0.05 units/�l TaqDNA polymerase (Invitrogen).
Amplification conditions included an initial denaturation at
95 °C for 60 s, followed by 45 cycles at 65 °C for 10 s, 72 °C for
10 s. Cumulative fluorescence was measured at the end of the
extension phase of each cycle. Product-specific amplification
was confirmedbymelting curve and agarose gel electrophoresis
analysis. Quantification was performed at the log-linear phase
of the reaction, and cycle numbers obtained at this point were
plotted against a standard curve prepared with serially diluted
control samples. Results were normalized by glyceraldehyde-3-
phosphate dehydrogenase expression levels.
Western Blot Analysis—Western blot analysis was performed

as previously described (19). The primary antibodies used
included a monoclonal antibody against human cyclin D1
(Santa Cruz Biotechnology) and two kinds of rabbit polyclonal
antisera to Atox1. For Atox1 detection, samples were separated
on 16.5% Tricine-SDS/PAGE gels (Bio-Rad). Equal loading of
proteins was confirmed by Ponceau staining.
Plasmids, Deletions, and Site-directed Mutagenesis—The

promoter-reporter constructs consist of 5� regions of the cyclin
D1 promoter inserted into the luciferase reporter vector pGL3-
Basic (pGL3-Cyclin D1–962/134). Other expression promoter-
reporter constructs (�735/104, �585/104, �495/104) were
generated by PCR and subcloned into the pGL3-Basic vector
(Promega).
For immunofluorescence studies in cultured mouse fibro-

blasts, the Atox1 coding region was amplified by PCR and sub-
cloned in-frame into pcDNA 3.0 with a Flag tag. The various
mutants of Flag-tagged Atox1 (Flag-Atox1-�CT, Flag-Atox1-
K56,60E, and Flag-Atox1-C12,15S) were generated by the
QuikChange II site-directed mutagenesis kit (Stratagene)
according to the manufacturer’s protocols.
To map the transactivation domain of Atox1, we used Atox1

fused to the GAL4 DNA-binding domain and a luciferase-re-
porter plasmid containing the Gal4-binding sites. Each Atox1
mutant as described in Fig. 5Awere amplified by PCR and sub-
cloned into pM-GAL4 DBD.
For nuclear-targeted Atox1 (Flag-Atox1-NLS) constructs, a

tripartite NLS sequence (PKKKRKVD) derived from the SV40
large T antigen was fused to the C terminus of Flag-tagged
WT-Atox1 (24, 25).
For the production of recombinant Atox1 protein, its coding

region was ligated into the pGEX-4T-1 expression vector
(AmershamBiosciences) andused to transformEscherichia coli
strain BL21 (DE3). Site-directed mutagenesis of Atox1 cDNA
was performed as mentioned above. Amplification and purifi-
cation of proteins were performed as previously described (16).
In all cases, the fidelity of the cDNA sequence as well as the
presence of the intendedmutations were confirmed by dideoxy
nucleotide sequencing.
Transient Transfection and Reporter Assay—Transfection

assays were carried out using the Polyfect reagent (Qiagen)
according to the manufacturer’s protocols. The pGL3-cyclin
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D1 constructs were transfected into cells along with pRL-TK
(Promega) according to the manufacturer’s protocol. Two days
after transfection, luciferase activity was assayed using a lumi-
nometer and normalized toRenilla luciferase activity produced
by the co-transfected control plasmid pRL-CMV. Results
shown are means � S.E. from at least three independent trans-
fection experiments, each performed in quadruplicate.
Electrophoretic Mobility Shift Assays (EMSAs)—DNA-pro-

tein binding assays were carried out with nuclear extracts from
mouse embryonic fibroblast cells. Nuclear extracts were pre-
pared using NE-PER nuclear extraction reagent (Pierce)
according to the manufacturer’s directions. Synthetic comple-
mentary oligonucleotides were 3�-biotinylated using biotin
3�-end DNA labeling kit (Pierce) according to the manufactur-
er’s instructions. After labeling, complementary strands were
mixed together in equimolar ratio and allowed to anneal for 1 h
at 37 °C to form the double-stranded probe. The sequences of
the oligonucleotides used were: 5�-GTCCTTGCATGCTAAA-
TTAGTTCTTGCAAT-3� (probe1 �585/�556), 5�-TTCTTG-
CAATTTACACGTGTTAATGAAAAT-3� (probe2 �565/�536),
5�-TAATGAAAATGAAAGAAGATGCAGTCGCTG-3� (probe3
�545/�516), and 5�-GCAGTCGCTGAGATTCTTTGGCC-
GTCTGTC-3� (probe4 �525/�496). For competition experi-
ments, 5�-TAATGAAAATGAAAGAAGATGCAGTCGCTG-3�
(probe3 �545/�516) or 5�-TAATGAAAATTCCCTCAGAT-
GCAGTCGCTG-3� (probe3 �545/�516 with mutation of
�535/�530) were used. Binding reactions were carried out for
20 min at room temperature in the presence of 50 ng/�l
poly(dI-dC), 0.05% Nonidet P-40, 5 mM MgCl2 , 10 mM EDTA,
and 2.5% glycerol in 1� binding buffer (LightShiftTM chemi-
luminescent EMSA kit, Pierce) using 20 fmol of biotin end-
labeled target DNA and 10 �g of nuclear extract. Unlabeled
target DNA (1 pmol or 2 pmol) or 1 �l of Atox1 antibody was
added per 20 �l of binding reaction. Reaction mixtures were
loaded onto native 4% polyacrylamide gels pre-electrophoresed
for 30 min in 0.5� Tris borate/EDTA, and electrophoresed at
100 V before being transferred to positively charged nylon
membranes (HybondTM-N�). Transferred DNAs were cross-
linked to the membrane at 120 mJ/cm2 and detected using
horseradish peroxidase-conjugated streptavidin (LightShiftTM
chemiluminescent EMSA kit) according to the manufacturer’s
instructions. Either nuclear extracts fromMEFs, purified GST-
Atox1, or GST alone were incubated with biotinylated cyclin
D1 promoter fragment in the presence of CuCl2 or BCS. Iden-
tification of the nuclear protein bound to the probe was per-
formed by preincubating nuclear extracts for 30 min with spe-
cific Atox1 antibody or with preimmune rabbit serum.
Competition was performed in the presence of 50- or 100-fold
molar excess of the unlabeled cyclin D1 promoter fragments or
mutated promoter fragments.
Chromatin Immunoprecipitation Assay (ChIP)—Identical

numbers of cells were allowed to adhere onto tissue culture
plates in basal medium. After 18 h, cells were incubated in the
presence of 200 �M BCS or 10 �M CuCl2. ChIP assays were
performed by following the Upstate Biotechnology ChIP assay
kit protocol. Cells were treated with formaldehyde (final con-
centration of 1%) for 15 min at 37 °C to cross-link proteins to
DNA before harvesting. Then cells were rinsed twice with ice-

cold PBS containing protease inhibitor, scraped into conical
tubes, and pelleted for 4 min at 2000 rpm at 4 °C. Cells were
resuspended in 150 �l of lysis buffer (1% SDS, 10mM EDTA, 50
mM Tris, pH 8.1, containing protease inhibitor) and incubated
for 10 min on ice. Resuspended cells were sonicated four times
for 10 s each on ice. After centrifugation, the supernatant was
diluted 1:10 with dilution buffer (0.01% SDS, 1.1% Triton
X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl, pH 8.1, 167 mM
NaCl). The cell lysate was precleared by incubation at 4 °C for
1 h with 45 �l of salmon sperm DNA/protein A-agarose beads.
The cleared lysates were incubatedwith anti-Atox1 antibody or
normal rabbit IgG overnight. Immunoprecipitated complexes
were collected by adding 45 �l of salmon sperm DNA/protein
A-agarose beads for 1 h at 4 °C. Immunoprecipitates were
washed once with low salt immune complex wash buffer (0.1%
SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.1,
150 mM NaCl), once with high salt immune complex wash
buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-
HCl, pH 8.1, 500 mMNaCl), and once in LiCl immune complex
wash buffer (250mM LiCl, 1% IGEPAL-CA630, 1% deoxycholic
acid, 1 mM EDTA, 10 mM Tris, pH 8.1). Then immunoprecipi-
tates were washed twice with TE buffer (10mMTris-HCl, 1 mM
EDTA, pH 8.0) and extracted two times with 50 �l of 1% SDS
and 0.1 MNaHCO3. Eluates were pooled and heated at 65 °C for
6 h to reverse the formaldehyde cross-linking. Then 2 �l of 0.5
M EDTA, 4 �l of 1 M Tris-HCl, pH 6.5, and 0.6 �l of 6 mg/ml
proteinase K were added to the eluates, followed by incuba-
tion for 1 h at 45 °C. DNA fragments were purified with the
PCR purification kit (Qiagen). Specific sequences of cyclin
D1 promoter in the immunoprecipitates were detected by
PCR. The following primers were used to amplify a 100-bp
region of the cyclin D1 promoter: 5�-GCTAAATTAGTTC-
TTGCATT-3� (sense) and 5�-CACGAGGGCACCCACGG-
GCG-3� (antisense).
Kinetics Study of Nuclear Localization of Atox1—MEFs were

first stimulated with 10�MCuCl2. They were then incubated at
37 °C for 5–60 min or incubated at 37 °C for 1 min and then
switched to coldmedium containing the same concentration of
10 �M CuCl2 for 5–60 min. The nuclear and the non-nuclear
fractions were then isolated and subjected to Western blotting
with anti-Atox1 antibody. The same membranes were also
probed with anti-tubulin (for the non-nuclear fraction) or anti-
histone H3 (for the nuclear fraction) as a loading control.
Statistical Analysis—All data are expressed as mean � S.E.

Comparisons were made by one-way analysis of variance fol-
lowed by the Tukey-Kramer post-hoc test. Values of p � 0.05
were considered statistically significant.

RESULTS

Copper-induced Cell Proliferation Requires Atox1—Stimula-
tion of MEFs with copper at physiological concentrations
markedly increased cell numbers in a dose-dependent manner
(Fig. 1A and supplemental Table S1). This copper-induced cell
proliferation was significantly inhibited in Atox1�/� MEFs
(Fig. 1A) as well as by siRNA knockdown of Atox1 in wild-type
(WT) MEFs (supplemental Fig. S1A). Re-expression of WT-
human Atox1 in Atox1�/� cells rescued the effect of copper on
cell proliferation (Fig. 1B). In contrast, iron, zinc, and silver
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(which is an electronic analogue of Cu(I) (26, 27)) hadmarginal
effects on cell proliferation (supplemental Fig. S2). Further-
more, addition of copper in Atox1�/� cells rescued specific
activities of secretory copper enzyme ceruloplasmin (Cp),
which is expressed in multiple extrahepatic tissues and cells
includingMEFs in addition to liver (28, 29). This result suggests
that copper addition in the cells lacking Atox1 bypassed the
copper chaperone activity of Atox1 (i.e. copper delivery to Cp
through ATP7A protein), and thus activated Cp (supplemental
Fig. S3). These findings indicate that copper-induced cell pro-
liferation requires Atox1, but it is independent of its chaperone
activity. Of note, polyethylene glycol (PEG)-SOD and PEG-cat-
alase at concentrationswhich block growth factor- and agonist-
induced ROS production (30, 31) had no effect on copper-in-
duced cell proliferation (data not shown), suggesting that
reactive oxygen species are not involved in this response.
Copper Stimulates Cell Proliferation by Increasing Cyclin D1

Expression through Atox1—To determine the mechanism by
whichAtox1 is involved in copper-stimulated cell proliferation,
we performed cell cycle analysis. We found that copper treat-
ment in WT cells significantly increased cell numbers in the S
phase from 22 � 3% to 34 � 4%, an effect, which was absent in
Atox1�/� cells (Fig. 2A). To determine the downstream target
genes of Atox1 involved in cell cycle progression, we performed
gene expression analysis inWTandAtox1�/�MEFs.We found
that the mRNA level of cyclin D1, a key regulator of G1-S pro-
gression (32), was dramatically down-regulated in Atox1�/�

cells compared withWT cells, which was further confirmed by
real-time PCR (Fig. 2B). Furthermore, copper treatment mark-
edly increased mRNA levels of cyclin D1 in a dose-dependent
manner in WT cells, but not in Atox1�/� MEFs (Fig. 2B). We
also confirmed that copper stimulation up-regulated cyclin D1
protein expression, a response which was abolished in

Atox1�/� MEFs (Fig. 2C), as well as by siRNA knockdown of
Atox1 in WT cells (supplemental Fig. S2B). Of note, this
response was specific to copper, because neither zinc nor iron
had any effect on cyclin D1 expression (data not shown).More-
over, this copper- andAtox1-dependent response did not occur
in other cyclins such as cyclin A and cyclin B1 (Fig. 2C). Cop-
per-induced cell proliferation was abolished by siRNA knock-
down of cyclin D1, but not cyclin B1 (Fig. 2D). By contrast, in
the absence of copper, the rate of proliferationwas decreased by
about 40% in wild-type MEFs by siRNA knockdown of either
cyclin D1 or cyclin B1 (data not shown). These findings suggest
that copper stimulates cell proliferation by inducing cyclin D1
expression through a mechanism dependent on Atox1.
Atox1 Binds to and Activates the Cyclin D1 Promoter in a

Copper-dependent Manner—We next examined whether
Atox1 is involved in cyclin D1 gene expression. Luciferase
reporter gene assays demonstrated that copper, but not silver,
stimulated the cyclin D1 promoter in a dose-dependent man-
ner in WT MEFs (Fig. 3A and supplemental Fig. S4A). This
response was abrogated in Atox1�/� cells and was rescued by
re-expression of Atox1-WT. A 5� deletion analysis of the cyclin
D1 promoter in WT cells identified the copper-responsive
region in�585/�495 (Fig. 3B, left panel).We confirmed that all
of the 5� deletion constructs of cyclin D1 promoter had no
response to copper in Atox1�/� cells (Fig. 3B, middle panel),
and that an Atox1-responsive region regulating cyclin D1 pro-
moter activity resides within the copper-responsive element
between �585 and �495 (Fig. 3B, right panel). To determine if
nuclear proteins could specifically bind to this region, we per-
formed EMSAs in WT cells. We found that specific DNA-pro-
tein-binding complexes were produced as a major slower
migrating band only by a biotinylated cyclin D1 promoter frag-
ment �545/�516 (Fig. 3C), but not by �585/�556,
�565/�536 or �525/�496 fragments (data not shown). The
DNA-protein complex formation was competed by 50-fold
molar excess of unlabeled �545/�516 (Fig. 3C, lanes 6 and 7).
Tomap the �545 to �516 binding area in greater detail, muta-
tions which spanned the regionwith sequential nucleotide sub-
stitutions were created. The major DNA-protein complexes
were competed by 100-fold molar excess of unlabeled mutants,
except for unlabeled mutants in the region �535/�530 (Fig.
3C, lane 8), suggesting that nuclear proteins bind to the region
�535 to �530 (5�-GAAAGA-3�) in the cyclin D1 promoter.
To determine if it is Atox1 that binds to the region �535 to

�530 in the cyclin D1 promoter, we performed supershift
assays on nuclear extracts of WT MEFs. Antibody specific for
Atox1, but not preimmune rabbit serum, supershifted DNA-
protein complexes, suggesting that the major slower migrating
band represents binding of Atox1 to the region �535 to �530
(Fig. 3C, lanes 4 and 5). Note that Atox1 binding to this region
requires copper in vitro (Fig. 3C, lanes 1, 2, and 3). To test if
Atox1 directly binds to the cyclin D1 promoter, we performed
EMSAusing recombinantGST-Atox1. The cyclinD1promoter
segment (�545/�516) directly associated with GST-Atox1,
but not with GST alone. This association was dependent on
copper and was competed by 50-fold molar excess of unlabeled
cyclin D1 (�545/�516), but not by 100-fold molar excess of
unlabeled cyclin D1 (�545/�516) with mutation of the region

FIGURE 1. Copper-induced cell proliferation requires Atox1. A, copper-
induced cell proliferation in wild-type and Atox1�/� MEFs. Cells (1.5 � 103

cells/cm2) were serum-starved for 24 h and treated with either the copper
chelator BCS (200 �M) or CuCl2 at the dose indicated for 72 h at 37 °C. The time
of addition was considered as the t � 0 h of the experiments. Cell numbers
were counted at 1-day intervals using a hemocytometer and expressed as %
of initial cell number at 0 h. The data are shown as mean � S.E. for three
separate experiments. *, p � 0.01; #, p � 0.001 versus Atox1�/� cells. B, effect
of copper on cell proliferation in Atox1�/� cells re-expressed with Atox1. Cell
numbers were counted 72 h after transfection with either pcDNA/Atox1 or its
empty vector (pcDNA) in the presence of either CuCl2 (10 �M) or BCS (200 �M).
Data are the mean � S.E. for three separate experiments. *, p � 0.01.
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�535 to �530 (Fig. 3D and supple-
mental Fig. S5). To test whether
endogenous Atox1 binds to the
cyclin D1 promoter in vivo, we per-
formed ChIP assays using Atox1
antibodies to precipitate Atox1 in
WT cells treated with copper (10
�M) or with the copper chelator
BCS. The promoter region of cyclin
D1, but not those of cyclin B1 or
cyclin A that lack Atox1-binding
sites, was immunoprecipitated from
cell extracts by Atox1 antibodies,
but not by normal IgG, in the pres-
ence of copper (Fig. 3E). Further-
more, mutation of the GA-rich
region �535 to �530 in the cyclin
D1 promoter abolished copper-in-
duced activation of the cyclin D1
promoter (Fig. 3F), suggesting that
this regionmay act as a core element
for Atox1 binding to target DNA.
These findings indicate that Atox1
binds to the cyclin D1 promoter at
�535 to �530 that is essential for
the copper-dependent expression of
cyclin D1.
Copper Stimulates Transactiva-

tion Activity of Atox1—We next
examined whether Atox1 exhibits
transactivation activity. Analysis
using various mutants of Atox1
fused to the Gal4 DNA-binding
domain (which contains its own
nuclear localizing domain, Ref. 33)
in MEFs revealed that the Gal4/WT
Atox1 (residues 1–68) and the
Gal4/Atox1-�CT (residues 1–55)
markedly activated the transcrip-
tion of a reporter gene (Fig. 4A). In
contrast, the GAL4/Atox1 (residues
1–15), Atox1 (residues 16–55), or
an internally deleted Atox1 (�16–
55) did not activate it. Atox1 trans-
activation was observed in all five
cell lines that we tested (Fig. 4B).
Note that transactivation activity of
Atox1 required copper, while silver
had no effect on transactivation of
Atox1 (supplemental Fig. S4B).
These findings indicate that Atox1
functions as a copper-dependent
DNA-binding transcription factor
to induce cyclin D1, which depends
on its residues 1–55.
Copper Stimulates Nuclear Trans-

location of Atox1—To examine
whether nuclear localization of
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FIGURE 2. Copper stimulates cell proliferation by increasing cyclin D1 expression through Atox1.
A, involvement of Atox1 in copper-dependent S-phase entry. Cells were treated either with BCS (200 �M) (�Cu)
or Cu (10 �M) (�Cu) for 24 h. DNA synthesis was assessed by fluorescent-activated cell sorting (FACS) analysis.
Copper-induced S-phase entry in WT and Atox1-KO cells is shown as the mean � S.E. from four separate
experiments (*, p � 0.01 versus BCS-treated cells; NS, not significant). B and C, effect of copper on cyclin D1
mRNA (B) and cyclin D1 (A), and B1 protein (C) levels in WT and Atox1-KO MEFs. Cells were exposed to either BCS
(200 �M) or CuCl2 at the dose indicated for 12 h. *, p � 0.01; #, p � 0.001 versus BCS-treated cells. The data depict
the mean � S.E. for four separate experiments. D, effects of cyclin D1 or cyclin B1 siRNAs on copper-induced cell
proliferation in wild-type MEFs. Cells were transfected with cyclin D1, cyclin B1, or control siRNAs in the pres-
ence of either CuCl2 (10 �M) or BCS (200 �M). 48 or 72 h after transfection, cell numbers were counted. Copper-
induced increases in cell number were expressed as % increase over the increase in cell number in BCS-treated
cells. The data are shown as the mean � S.E. for three separate experiments (*, p � 0.01 versus control siRNA-
treated cells). Lysates prepared 72 h after transfection were immunoblotted with anti-cyclin D1 or anti-cyclin
B1 antibody. Results are representative of three separate experiments.
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Atox1 is copper-dependent, we performed biochemical cell
fractionation and immunofluorescence analysis. Cell fraction-
ation analysis revealed that copper treatment ofWTMEFs rap-

idly promoted translocation of Atox1 to the nucleus within 5
min, peaking at about 60min (Fig. 5A, left top and supplemental
Fig. S6A). Copper-induced nuclear translocation of Atox1 was

Atox1 and Cell Proliferation

9162 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 283 • NUMBER 14 • APRIL 4, 2008

http://www.jbc.org/cgi/content/full/M709463200/DC1


completely abolished in the cold medium (Fig. 5A, left bottom),
suggesting that it is an active process. In contrast, the level of
Atox1 in the non-nuclear fraction remained unchanged (Fig.
5A, right) or slightly decreased (supplemental Fig. S6B) during
this time period. To further confirm this result, we performed
Western blot and immunofluorescence analysis in Atox1�/�

MEFs transfected with Flag-Atox1-WT cDNA in the presence

and absence of copper. Western blot analysis in nuclear and
non-nuclear fractions showed that Flag-Atox1 expression in
the nuclear fraction was very low in the absence of copper, was
markedly increased in the nuclear fraction, and significantly
decreased in the non-nuclear fraction in response to copper
(supplemental Fig. S6, C and D). In contrast, immunofluores-
cence analysis in Atox1�/� MEFs transfected with various

FIGURE 3. Atox1 binds to and activates the cyclin D1 promoter in a copper-dependent manner. A, effect of copper on transactivation of the cyclin D1 gene
promoter in WT and Atox1-KO MEFs. Cells were transiently transfected with cyclin D1 promoter luciferase reporter constructs (pGL3-cyclin D1 (�962/�134))
or empty reporter constructs (pGL3-Basic) along with either pcDNA/Atox1 or pcDNA. Cells were treated with either BCS (200 �M) or CuCl2 at the dose indicated.
Two days after transfection, the luciferase activity was assayed and normalized to the Renilla luciferase activity produced by the co-transfected control plasmid
pRL-CMV. Results shown are means � S.E. from at least three independent transfection experiments, each performed in quadruplicate (*, p � 0.01; #, p � 0.001
versus BCS-treated WT cells, or BCS-treated Atox1�/� cells transfected with pcDNA/Atox1). B, identification of copper/Atox1-responsive elements in a proximal
90-bp cyclin D1 promoter element. WT and Atox1-KO MEFs were transiently transfected with 5� deletion constructs of cyclin D1 in the presence of either CuCl2
(10 �M, �Cu) or BCS (200 �M, �Cu). Left and middle panels, relative luciferase activity in WT or Atox1-KO MEFs in the presence of either CuCl2 (10 �M, �Cu) or
the copper chelator BCS (200 �M, �Cu). Right panel, relative luciferase activity in wild-type and Atox1�/� cells in the presence of CuCl2 (10 �M). Results shown
are means � S.E. from at least three independent transfection experiments, each performed in quadruplicate (*, p � 0.01 versus BCS-treated WT (left panel), or
CuCl2-treated Atox1�/� cells (right panel)). C and D, EMSA, showing the binding of Atox1 to the region �535 to �530 in the cyclin D1 promoter in a
copper-dependent manner. C, nuclear extracts from MEFs were incubated with the biotinylated cyclin D1 promoter fragment with indicated treatments. D, left
panel shows purified GST and GST-Atox1. Right panel, purified GST or GST-Atox1 was incubated with the DNA probe with indicated treatments. E, ChIP assay
showing association of Atox1 with the cyclin D1 promoter in a copper-dependent manner in vivo. Cells were treated with either indicated treatments (upper
panel) or CuCl2 (10 �M) (lower panel) and cross-linked with 1% formaldehyde. Nuclear lysates were immunoprecipitated (IP) with anti-Atox1 antibody or normal
IgG, and the promoter region of either cyclin D1, cyclin B1, or cyclin A was amplified by PCR. A small aliquot of lysates before IP were used for PCR amplification
as the input control (Input). Results are representative of three independent experiments. F, region �535 to �530 is required for copper-induced activation of
the cyclin D1 promoter. MEFs were transfected with a cyclin D1 promoter luciferase reporter construct (pGL3-cyclin D1 (�962/�134)) with or without mutation
of the copper/Atox1-responsive element (�535 to �530 region). *, p � 0.01 versus BCS-treated cells.

FIGURE 4. Copper stimulates transactivation activity of Atox1. Activation of gene expression by Atox1 in MEFs (A) and other cell types (B). Different
GAL4-Atox1 hybrid constructs were cotransfected into the indicated cells along with the luciferase reporter vector containing GAL4-binding sites in the
presence of either CuCl2 (10 �M, �Cu) or BCS (200 �M, �Cu). Results shown are means � S.E. from at least three independent transfection experiments, each
performed in quadruplicate (*, p � 0.01 versus BCS-treated cells).
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mutant Atox1 constructs revealed that copper-induced nuclear
translocation of Atox1 depends on its C-terminal highly con-
served 56KKTGK60 motif and its conserved copper-binding
sites Cys-12/Cys-15 (Fig. 5B). Of note, total protein levels of
Atox1 mutants are not different from those of Atox1-WT (Fig.
5B). Furthermore, re-expression of Atox1-WT, but not Atox1
mutants inwhich its nuclear localization is blocked, rescued the
copper-stimulated cyclin D1 promoter activity and cell prolif-
eration in Atox1�/� MEFs (supplemental Fig. S7). Moreover,
EMSAsusingGST-taggedAtox1protein showed that the cyclin
D1 promoter segment (�545/�516) directly bound to GST-
Atox1-WT, but not to either GST alone or to GST-Atox1

mutants (supplemental Fig. S5).
These findings further support our
conclusion thatAtox1 functions as a
copper-dependent transcription
factor to regulate cyclin D1 pro-
moter activity, thereby promoting
cell proliferation.
Nuclear Atox1 Is Essential for Cop-

per-induced Cell Proliferation—To
determine specifically the function
of nuclear Atox1, we examined the
effect of re-expression of nuclear-
targeted Atox1 (Atox1-NLS) on
cyclin D1 promoter activity and cell
proliferation in Atox1�/� MEFs
(Fig. 6). We confirmed that Atox1-
NLS protein was expressed exclu-
sively in the nucleus (Fig. 6A). Both
Atox1-NLS and Atox1-WT
increased cell proliferation aswell as
cyclin D1 promoter activity (Fig. 6,
B and C). These findings suggest
that nuclear Atox1 functions as a
copper-dependent transcription
factor to increase cyclin D1 pro-
moter activity, thereby promoting
cell proliferation.

DISCUSSION

Copper has been shown to stimu-
late cell proliferation; however,
underlying mechanisms have not
been demonstrated. The present
study provides the first evidence
that Atox1 functions as a novel
transcription factor that, when
activated by copper, undergoes
nuclear translocation, binding to
the novel cis element of the cyclin
D1 promoter, and transactivation,
thereby mediating effects of cop-
per on cell proliferation.
The present study demonstrates

that nuclear translocation of Atox1
is copper-dependent. We previ-
ously reported that Atox1 is

expressed in the nucleus in the intimal lesions of atherosclero-
sis, which contain highly proliferating cells (19). Furthermore,
higher levels of copper are located in the nuclei in highly pro-
liferating tumors, whereas copper is located predominantly
within the cytoplasm in normal tissue (13–15). In addition,
nuclear accumulation of copper is strongly associated with
proliferation of hepatocytes in Atp7b�/� mice, an animal
model of Wilson disease (34). Thus, nuclear Atox1 may be
positively correlated with the proliferation status of cells. In
contrast, the yeast homolog of Atox1 localizes exclusively in
the cytosol (17). This may suggest that mammalian Atox1
might have acquired nuclear function in addition to its cop-

FIGURE 5. Copper stimulates nuclear translocation of Atox1. A, copper-induced nuclear translocation of
Atox1 is an active process. MEFs were stimulated with copper (10 �M) at either 37 °C or 4 °C for 1– 60 min.
The nuclear extract (left panel) and non-nuclear fraction (right panel) were subjected to Western blotting
with anti-Atox1, anti-histone H3 (a marker for nuclear fraction), or anti-tubulin (a marker for cytosolic
fraction). The fold change in Atox1 protein levels is normalized to histone-H3 or tubulin as a loading
control for each fraction. The bottom panel shows the mean � S.E. for four separate experiments (*, p � 0.01
versus control cells). B, identification of the region responsible for the nuclear localization of Atox1. Atox1�/�

MEFs were transiently transfected with pcDNA containing wild-type, truncated, or mutant forms of Atox1 with
the Flag tag. After transfection, cells were cultured for 12 h in the presence of CuCl2 (10 �M). Immunofluores-
cence was performed using a Flag-M2 antibody followed by a fluorescein isothiocyanate-conjugated goat
anti-mouse IgG. Arrow shows the absence of Atox1 in the nucleus. Immunoblotting was performed using a
Flag-M2 antibody. Equal amounts of protein (20 �g) were loaded in each lane.
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per chaperone function for the secretory compartment dur-
ing the course of evolution.
The present study with re-expression of nuclear-targeted

Atox1 in Atox1�/� cells strongly suggests that it is nuclear

Atox1 that plays an essential role in copper-stimulated
increases in cyclin D1 expression and cell proliferation. To pro-
tect cells from copper toxicity, cells extraordinarily restrict the
level of intracellular free copper by a wide variety of copper

FIGURE 6. Nuclear Atox1 is essential for copper-induced cell proliferation. A, right panel, generation of subcellular targeting Atox1 fusion constructs.
Nuclear-targeted Atox1 (Flag-Atox1-NLS) was created by fusing a tripartite NLS sequence derived from SV40 large T antigen (NLS) to the C terminus of
Flag-tagged WT-Atox1 (24, 25). Left panel, subcellular localization of Atox1-WT and Atox1-NLS fusion proteins. Atox1�/� mouse fibroblasts were transfected
with Flag-Atox1-WT or Flag-Atox1 mutants, immunolabeled with antibodies for Flag tag (left panels, green) and nuclear marker, 4�,6-diamidino-2-phenylindole
(DAPI) (middle panel, blue). Upper panel, WT Atox1 was found in both the nucleus and cytoplasm. Lower panel, Atox1-NLS was mainly localized at the nucleus.
B, effect of re-expression of Atox1-WT and Atox1-NLS on transactivation of the cyclin D1 promoter in Atox1�/� MEFs. Cells were transiently transfected with
cyclin D1 promoter luciferase reporter constructs along with Atox1-WT or Atox1-NLS in the presence of either BCS (200 �M) or CuCl2 at the dose indicated. Bars
are the mean � S.E. from at least three independent transfection experiments, each performed in quadruplicate (*, p � 0.01 versus BCS-treated wild-type cells
or BCS-treated Atox1�/� cells transfected with pcDNA). C, effect of re-expression of Atox1-WT or Atox1-NLS on cell proliferation in Atox1�/� MEFs. Atox1�/�

MEFs were transfected with Atox1-WT or Atox1-NLS in the presence of either CuCl2 (10 �M) or BCS (200 �M). 72 h after transfection, cell numbers were counted.
The data are the means � S.E. from three separate experiments. (*, p � 0.01 versus BCS-treated WT cells or Atox1�/� cells transfected with either
pcDNA/Atox1-WT or pcDNA/Atox1-NLS).
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detoxification systems such as metallothioneins (35, 36). Thus,
genetic studies in yeast andmammals have shown that Atox1 in
the cytoplasm functions as a copper chaperone to shuttle cyto-
solic copper to the secretory pathway for the copper loading of
secretory copper enzymes such as lysyl oxidase (18), ceruloplas-
min, and extracellular superoxide dismutase (19). This is for
their full activation via the copper transporters ATP7A or
ATP7B at the trans-Golgi network (2, 16, 17). Taken together
with the results of our study, Atox1 may coordinate both
nuclear transcription factor and cytosolic copper chaperone
functions, thereby orchestrating the complex events of cell
growth and assembly of tissue architecture, including extracel-
lularmatrix, in physiological and pathophysiological settings in
multicellular organisms. It has been shown that tumor cell
growth and neovascularization during ischemia, which depend
on copper (9, 11), involve cell proliferation, interaction of cells
with extracellular matrix, and appropriate redox states (37, 38).
Thus, nuclear Atox1 may sense the presence of copper for cell
proliferation, whereas non-nuclear Atox1may play a role in the
assembly of extracellularmatrix and controlling the redox state
by regulating activities of secretory copper enzymes.
Our findings indicate that copper regulates the nuclear func-

tion of Atox1 at multiple steps: nuclear transport, DNA bind-
ing, and transcriptional activity. There are several possible
mechanisms for this copper-dependent modulation of Atox1
function. The 1H NMR solution structure of Atox1 demon-
strated that copper binding to Atox1 through its two conserved
cysteine residues promotes a conformational change in its basic
patch (39). The 1.8-A resolution x-ray crystal structure of
Atox1 revealed that arginine (Arg-21) and a number of con-
served lysines, including Lys-56 and Lys-60, generate a posi-
tively charged patch located on or near its two �-helices, which
is proposed to dock to a negatively charged surface of theMen-
kes protein (40). These structural considerations suggest that
copper binding to Atox1 may induce conformational changes
in the basic patch of Atox1, thereby facilitating Atox1 binding
to negatively charged DNA. This copper-induced conforma-
tional change of Atox1 also appears to be essential to its trans-
activation and nuclear translocation. Indeed, we found that
either mutation or truncation of the copper-binding domain of
Atox1 completely blocks both transcriptional activation and
nuclear translocation. Mutation of conserved lysines (Lys-56
and Lys-60) in the basic patch of Atox1 also prevents its nuclear
translocation.
Copper is absolutely required for aerobic life and yet, para-

doxically, is highly toxic. Thus, it is essential that copper is
maintained at a level sufficient for, but not toxic to, cell growth.
Given that copper tightly regulates the transcriptional function
ofAtox1, it is intriguing to speculate thatAtox1may function as
sensors of intracellular copper concentrations, thereby regulat-
ing various copper-mediated biological effects such as cell pro-
liferation, angiogenesis, hemoglobin synthesis, nerve myelina-
tion, endorphin action, extracellular matrix stabilization,
leukocyte differentiation, and neutrophils and granulocyte
maturation (3, 41, 42). In yeast, copper homeostasis ismediated
by copper-responsive transcription factors such as Ace1 and
Mac1 that regulate expression of genes involved in copper ion
uptake, copper sequestration, and defense against reactive oxy-

gen intermediates (43). However, mammalian genomes do not
contain the ortholog of Ace1 andMac1, and a functional hom-
olog has not been identified thus far.
In conclusion, we uncovered a novel function of Atox1 as a

transcription factor that translates copper availability into gene
expression and cell proliferation. This nuclear function of
Atox1 may contribute to hyperproliferative conditions such as
cancer, angiogenesis, and atherosclerosis. AsAtox1 seems to be
regulated at multiple steps, such as nuclear transport, DNA
binding, and transcriptional activity, each of the steps repre-
sents a potential point of intervention to modulate its function.
Copper deficiency therapies prevent tumor progression in clin-
ical trials (44, 45). Atox1 might contribute to this beneficial
effect of anti-copper therapy. Thus, these findings provide
insight into Atox1 as a novel potential therapeutic target for
copper-dependent hyperproliferative disorders such as cancer
and atherosclerosis.
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