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Experimental designs that efficiently embed a fixed effects treatment structure within a random effects design structure typically
require a mixed-model approach to data analyses. Although mixed model software tailored for the analysis of two-color microarray
data is increasingly available, much of this software is generally not capable of correctly analyzing the elaborate incomplete block
designs that are being increasingly proposed and used for factorial treatment structures. That is, optimized designs are generally
unbalanced as it pertains to various treatment comparisons, with different specifications of experimental variability often required
for different treatment factors. This paper uses a publicly available microarray dataset, as based upon an efficient experimental
design, to demonstrate a proper mixed model analysis of a typical unbalanced factorial design characterized by incomplete blocks
and hierarchical levels of variability.
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1. INTRODUCTION

The choice and optimization of experimental designs for
two-color microarrays have been receiving increasing atten-
tion [1–13]. Interest has been particularly directed towards
optimizing experiments that involve a factorial design con-
struction [7, 9, 14] in order to study the joint effects of
several factors such as, for example, genotypes, pathogens,
and herbicides. It is well known by plant scientists that
factorial designs are more efficient than one-factor-at-a-time
studies and allow the investigation of potentially interesting
interactions between two or more factors. For example,
investigators may study how herbicide effects (i.e., mean
differences) depend upon plant genotypes or times after
application.

Two-color systems such as spotted cDNA or long
oligonucleotide microarrays involve hybridizations of two
different mRNA samples to the same microarray, each of the
two samples being labeled with a different dye (e.g., Cy3 or
Cy5; Alexa555 or Alexa647). These microarrays, also simply
referred to as arrays or slides, generally contain thousands
of probes with generally a few (≤4) spots per probe, and

most often just one spot per probe. Each probe specifically
hybridizes to a matching mRNA transcript of interest within
each sample. After hybridization, microarray images are
scanned at two different wavelengths as appropriate for each
dye, thereby providing two different fluorescence intensity
measurements for each probe. Upon further preprocessing
or normalization [15], these dye-specific intensities for each
probe are believed to reflect the relative mRNA abundance
for the corresponding transcript within the respectively
labeled samples. The normalized intensities, or the Cy3/Cy5
ratio thereof, for each spot are typically logarithmically
transformed to render data that is generally characterized to
be approximately normally distributed.

An increasingly unifying and indisputable message is that
the heavily used common reference design is statistically
inefficient [1, 9, 10, 12, 13]. Here, the same common
reference sample or pool is reused as one of the two
samples on every microarray, the other sample deriving
from a treatment group of interest. Hence, inferences on
differential expression are based only on indirect connections
across arrays as samples from different treatments of interest
are never directly connected or hybridized together on the
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same microarray. In contrast, most of the alternatively
proposed efficient designs are incomplete block designs, the
most popular being various deviations of the loop design
as first proposed for microarrays by Kerr and Churchill
[16]. In these designs, direct connections or hybridizations
are typically reserved for the most important treatment
comparisons with inference on other comparisons being
generally as efficient as any based on the common reference
design.

The intent of this review is to reemphasize the use
of mixed models as the foundation for statistical anal-
ysis of efficient factorial designs for microarrays. Mixed
model analysis for microarray data was first proposed by
Wolfinger et al. [17]. However, this and other previous expo-
sitions on the use of mixed model analysis for microarray
data have been primarily directed towards the analysis of
completely balanced designs [18, 19] whereas many recently
proposed designs for microarray studies are unbalanced with
respect to, for example, different standard errors on all
pairwise comparisons between treatment groups [10, 13].
We will review various aspects of mixed model analysis for
unbalanced designs, including a demonstration on publicly
available data from a recent plant genomics study [20].

2. THE CONNECTION BETWEEN MIXED MODELS
AND EFFICIENT DESIGNS

Efficient experimental designs are typically constructed such
that their factors can be broadly partitioned into two
categories: treatment structure factors and design structure
factors [21]. The treatment structure naturally includes
the factors of greatest interest; for example, herbicides,
genotypes, tissues, and so forth, whose effects are deemed to
be fixed. In other words, the levels of these fixed effects factors
are specifically chosen by the investigator such that mean
comparisons between such levels, for example, different
treatments, are of primary interest. These factors also include
any of whose levels are consistently reused over different
experiments, such as dye labels, for example, Cy3 versus
Cy5, for two-color microarrays. On the other hand, the
design structure primarily includes random effects factors,
whereby the levels of each such factor are considered to
be randomly chosen from a conceptually infinite set of
such levels [22]. For example, the specific arrays used for a
microarray study are considered to be a random sample from
a large, perhaps hypothetically infinite, population of arrays;
similar claims would be made regarding biological replicates,
for example, plants, pools thereof, or even field plots as
dependent upon the experimental design [14]. Within each
random-effects factor, the effects are typically specified to be
normally, independently, and identically distributed (NIID)
with variability in effects formally quantified by a variance
component (VC).

These design structure or random effects factors are
typically further partitioned into two subcategories: blocking
factors and experimental error factors. In two-color microar-
ray experiments, arrays are typically blocking factors as
treatments can be directly compared within arrays, although
this is not true for the common reference design as previously

noted. Blocking represents a longstanding and efficient
experimental design strategy for improving precision of
inference on treatment comparisons. Experimental error
factors, such as plants or pooled samples thereof within treat-
ments, are often necessary to be included as random effects
in order to properly specify true experimental replication at
the biological level rather than merely at the measurement or
technical level. Such specifications are particularly required
when multiple aliquots are derived from the same biological
specimen for use in multiple arrays [20, 23] or when probes
for each gene transcript are spotted more than once on
each array. Of course, plants may also alternatively serve
as blocking factors in some designs if different tissues are
compared within plants.

Currently, there is much software available for microar-
ray data analysis, some of which is only suited for studies hav-
ing only a treatment structure but no pure design structure.
Common examples include the analysis of data generated
from single channel systems (e.g., Affymetrix) or of log
ratios generated from common reference designs. When
no random effects are specified, other than the residuals,
the corresponding statistical models are then simply fixed-
effects models. Ordinary least squares (OLS) inference is then
typically used to infer upon the treatment effects in these
studies. OLS is appropriate if the assumption is valid that
there is only one composite residual source of variability such
that the residuals unique to each observation are NIID.

Conversely, statistical analysis of efficient two-color
experiments having a fully integrated treatment and design
structure needs to account for fixed and random effects as
typical of a mixed effects model, more often simply referred to
as a mixed model. Generalized least squares (GLS) analysis,
also referred to as mixed-model analysis, has been recognized
as optimal in terms of minimizing variance of estimates for
inference on treatment comparisons. This is true not only
for efficient microarray designs [10, 17, 19, 24] but even
for general plant science and agronomy research [25–27],
including recent applications in plant genomics research [20,
23, 28]. Some of the more recently popular microarray data
analysis software has some mixed model analysis capabilities
[29, 30].

Recall that some designs may be characterized by
different levels of variability thereby requiring particular
care in order to properly separate biological from technical
replication, for example. Hence, it is imperative for the data
analyst to know how to correctly construct the hypothesis test
statistics, including the determination or, in some cases, the
estimation of the appropriate degrees of freedom. Although,
some of these issues have been discussed for balanced designs
by Rosa et al. [19], they have not generally been carefully
addressed for the analysis of microarray data generated from
unbalanced designs. Optimally constructed experimental
designs are often unbalanced with respect to inference on
all pairwise treatment comparisons, such that even greater
care for statistical inference is required than in completely
balanced designs. For example, Wit et al. [13] proposed a
method for optimizing two-color microarray designs to
compare any number of treatment groups. Suppose that
9 different treatment groups are to be compared. Using
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Figure 1: Optimized interwoven loop design for 9 treatments
using R package SMIDA (Wit et al., 2005). Each circle represents
a different treatment group. Each arrow represents a single array
hybridization with circle base representing the Cy3 labeled sample
and tail end representing the Cy5 labeled sample.

the methods and software developed by Wit et al. [13], the
recommended interwoven loop design that is optimized for
A-optimality (lowest average squared standard errors for a
particular arrangement of treatment comparisons) is pro-
vided in Figure 1. Although Figure 1 appears to be visually
symmetric with respect to the treatment labels, including
that all treatment groups are dye balanced, not all treatment
groups are directly hybridized against each other. Hence,
inferences on all pairwise comparisons between treatment
groups will not be equally precise. For example, the standard
errors for the inference on treatments R2 versus R8 or R8
versus R24 will not be the same as that for treatments R8
versus S24 or R8 versus M2 due to the differences in the
number and/or degree of direct and indirect connections for
these two sets of comparisons in Figure 1.

Even for some balanced factorial designs, where the
standard errors for comparing mean differences for levels of
a certain factor are the same for all pairwise comparisons,
the experimental error structure can vary substantially for
different factors. That is, substantial care is required in
deriving the correct test statistics, particularly with split
plot arrangements [14]. Of course, even when a completely
balanced design is intended, data editing procedures that
delete poor quality spots for certain genes would naturally
result in unbalanced designs.

3. CASE STUDY

3.1. Design

Zou et al. [20] present an experiment where three different
inoculate treatments were applied to soybean (Glycine max.)
plants 14 days after planting. The three different inoculates
included bacteria inoculation along with the avirulence gene
avrB thereby conferring resistance (R), bacteria inoculation
without avrB thereby conferring susceptibility (S), and a
control group whereby the inoculate simply contained an
MgCl2 solution (M). Unfoliated leaves from three to four
plants were drawn and pooled for each treatment at each
of three different times after postinoculation; 2, 8, and

24 hours. Hence, the treatment structure was comprised
of a 3 × 3 factorial, that is, 3 inoculates ×3 times, for a
total of 9 groups. A 10th group involving a fourth null
inoculate with leaves harvested at 2 hours postinoculation,
N2, was additionally studied by Zou et al. [20]. The com-
plete dataset on gene expression data for all 27 684 genes
represented on a set of three microarray platforms as used
by Zou et al. [20] is available as accession number GSE 2961
from the NCBI gene expression omnibus (GEO) repository
(http://www.ncbi.nlm.nih.gov/geo/). The vast majority of
the corresponding probes were spotted only once per array
or slide for each platform.

A graphical depiction of the 13 hybridizations that
superimposes the design structure upon one replicate of the
3 × 3 factorial treatment structure plus the additional 14th
hybridization involving the 10th group N2 is illustrated in
Figure 2. Note that at least two aliquots per each pooled
sample are used, each aliquot being labeled with different
dyes such that each replicate pool is used in at least
two different hybridizations or arrays with opposite dye
assignments. In other words, this design is characterized by
technical replication such that it is imperative to explicitly
model samples within inoculate by time combination as
the biological replicates, that is, a set of random effects for
modeling experimental error. Failing to do so would confuse
pseudoreplication with true replication in the statistical
analysis as each of the 2+ aliquots per each pool would
then be incorrectly counted as 2+ different experimental
replicates. The design in Figure 2 was replicated twice by
Zou et al. [20], the second replication being of the exact same
dye assignment and hybridization orientation as the first, for
a total of 28 hybridizations. Hence, there were 20 samples
(pools of leaves) utilized in the experiment, 2 per each of the
9 inoculate by time treatment groups plus 2 samples for the
N2 control.

We arbitrarily consider gene expression measurements
for just one particular gene based on the GEO submission
from Zou et al. [20]: ID REF #30 located in the metarow-
metacolumn-row-column location 1-1-2-14 of each array
from microarray platform GPL 1013, one of three different
platforms used by Zou et al. [20] and further described in
GEO. The statistical analysis of any of the remaining 27 683
genes that were spotted once on each slide across the three
different platforms would be exactly the same as that for
ID REF #30, at least for those genes where no observations
would be edited out for poor data quality. We use the
normalized Cy3 and Cy5 data, provided as fields S532N and
S635N in accession number GSE 2961 for ID REF #30 from
GEO. Hence, for the 28 hybridizations considered for two
replications of Figure 2, there were 56 fluorescence intensities
(28 Cy3 and 28 Cy5) for each gene. The 56 fluorescence
intensities for ID REF #30, as retrieved from GSE 2961 in
GEO, are reproduced in Table 4.

3.2. Statistical model

For the purposes of this review, we concentrate our attention
just on the subdesign characterized by the solid arrows in
Figure 2 that connect the three primary inoculates (R,S, and
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Figure 2: Experimental design for one replicate from Zou et al.
(2005). Treatments included a full 3 × 3 factorial of inoculate and
time effects plus a 10th null control group at time 2 (N2). Samples
indicated by circles with letters indicating inoculate assignment:
bacteria resistant (R), a bacteria susceptible (S), and MgCl2 (M)
control inoculate and numbers indicating time (2, 8, or 24 hours)
after inoculation. Each arrow represents a single array hybridization
with circle base representing the Cy3 labeled sample and tail end
representing the Cy5 labeled sample. Solid arrows refer to the A-
loop design of Landgrebe et al. (2006).

M) together within each of the 3 different times (2, 8, and
24 hours). The remaining dashed lines in Figure 2 involve
either the 10th group (N2) or connect adjacent times (2
with 8 and 8 with 24) within each of two inoculates (R and
S); note that no hybridizations connecting any of the three
times within inoculate M were provided with GSE 2961 on
GEO. Labeling inoculate type as Factor A and time after
inoculation as Factor B, the resulting subdesign is an example
of the “A-loop” design presented by Landgrebe et al. [9] as
illustrated in their Figure 2 (B), albeit for a 3 × 2 factorial
treatment structure in their case. In other words, the only
direct connections between the 9 treatment groups within
arrays involve comparisons of levels of Factor A within levels
of Factor B. Using the log intensities as the response variables
for further statistical analysis, an appropriate linear mixed
model to specify for this A-loop design would be as follows:

yi jklm = μ + αi + βj + αβi j + δk + r(αβ)l:i j + s(β)m: j + ei jklm,

(1)

where yi jklm is the log fluorescence intensity pertaining to
the lth biological replicate assigned to the ith inoculate (i =
1, 2, 3) and jth time ( j = 1, 2, 3) labeled with the kth dye
(k = 1 or 2), and hybridized to array m(m = 1, 2, . . . , 6)
within the jth time. Here, μ is the overall mean, αi is the
effect of the ith inoculate, βj is the effect of the jth time,
αβi j is the interaction effect between the ith inoculate and
jth time, and δk is the effect of the kth dye, all of which are
defined to be fixed effects. The design structure component
of (1) is defined by the random effects of r(αβ)l:i j for the
lth pool or biological replicate (l = 1, 2) within the ijth
inoculate-time combination, s(β)m: j for the mth array (m =
1, 2, . . . , 6) or slide within the jth time, and the residual ei jklm
unique to the same subscript identifiers as that for yi jklm.
The typical distributional assumptions in mixed models

are such that each of the three sets of random effects are
NIID with their own VC; that is, r(αβ)l:i j ∼NIID(0, σ2

R(AB)),

s(β)m: j ∼NIID(0, σ2
S(B)), and ei jklm∼NIID(0, σ2

E). As clearly
demonstrated by Dobbin et al. [31] and based on our
experiences, dye effects should be modeled in (1), even after
using global normalization procedures such as loess [15],
as gene-specific dye effects are common. Nevertheless, one
would not normally anticipate interaction effects between
dye and other treatment factors (e.g., inoculate or time), and
hence these effects are not specified in (1).

It should be somewhat apparent from the A-loop design
of Figure 2 why the nesting or hierarchical specifications
are specified as such for the random effects. For example,
although each pool or replicate is labeled twice, once with
each dye, each pool is still part of or nested within the
same inoculate by time combination such that samples or
replicates are specified to be nested within inoculate by time.
Similarly, arrays are nested within times since each array is
associated with only one particular level of time; that is,
different times are never directly compared or connected
within arrays. Hence, one should intuitively recognize from
Figure 2 that there would be greater precision for inferring
upon inoculate effects than for time effects using the A-loop
design. That is, the variability due to arrays is completely
confounded with time differences such that it partly defines
the experimental unit or replicate for time.

3.3. Classical ANOVA

The complex nature of different levels of replication in
the A-loop this design is further confirmed in the classical
analysis of variance or ANOVA [21] for this design in
Table 1. However, as demonstrated later, classical ANOVA
is not necessarily equivalent to a more optimal GLS or
mixed model analysis [32]; in fact, estimates of treatment
effects based on classical ANOVA are simply equivalent
to OLS estimates where all factors are treated as fixed.
Nevertheless, the classical ANOVA table, when extended
to include expected mean squares (EMS), is instructive in
terms of identifying different levels of replication and hence
experimental error.

Classical ANOVA is based on equating sums of squares
(SS), also called quadratic forms, to their expectations;
typically this involves equating mean squares (MS), being
SS divided by their degrees of freedom (ν), to their EMS.
For completely balanced designs, there is generally one
universal manner in which these quadratic forms, and hence
the ANOVA table, are constructed [19, 22]. However, for
unbalanced designs, such as all of or even just the A-loop
component of Figure 2, there are a number of ways of
constructing different quadratic forms and hence different
ways of constructing ANOVA tables for the same set of data
[21, 32]. The most common ANOVA strategy is based on the
use of type III quadratic forms as in Table 1 whereby the SS
for each factor is adjusted for every other factor in the model.
More details on type III and alternative ANOVA quadratic
forms for unbalanced data can be found in Milliken and
Johnson [21] and Searle [33].
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Table 1: Classical ANOVA of log intensities for duplicated A-loop design component of Figure 2 for any particular gene using (1).

Source SS∗ df † Mean square Expected mean square

Inoculate SSA vA MSA = SSA/vA σ2
E + 1.5σ2

R(A·B) + φA
‡

Time SSB vB MSB = SSB/vB σ2
E + 2σ2

R(A·B) + 2σ2
S(B) + φB

Inoculate∗time SSAB vAB MSAB = SSAB/vAB σ2
E + 1.5σ2

R(A·B) + φAB

Dye SSD vD MSD = SSD/vD σ2
E + φD

Rep(inoculate∗time) SSR(AB) vR(AB) MSR(AB) = SSR(AB)/vR(AB) σ2
E + 1.5σ2

R(A·B)

Array(time) SSS(B) vS(B) MSS(B) = SSS(B)/vS(B) σ2
E + 1.5σ2

S(B)

Error SSE vE MSE = SSE/vE σ2
E

∗
Sums of squares.

†Degrees of freedom.
‡φX is the noncentrality parameter for factor X . For example, when φA = 0, there are no overall mean inoculate differences such that inoculate and
Rep(inoculate∗time) have the same expected mean square and FA = MSA/MSR(AB) is a random draw from an F distribution with vA numerator and vR(AB)

denominator degrees of freedom.

Table 1 conceptually illustrates the basic components of
an ANOVA table; again, for every term, say X, in a statistical
model like (1), there is a sum of squares (SSX), degrees of
freedom (vX), mean square (MSX = SSX/vX), and expected
mean square (EMSX). Generally, ANOVA tests on fixed
effects are of greatest interest; for example, inoculate, time,
and inoculate by time interaction. The correct F ratio test
statistic for any fixed effects term in the ANOVA table is
constructed such that its MS and a denominator MS have
the same EMS if the null hypothesis is true; that is, that
there are truly no effects for that particular term. In statistical
parlance, no effects for a term X , whether that pertains to
the main effects of a factor or the interaction effects between
two or more factors, is synonymous with its corresponding
noncentrality parameter (φX) being equal to zero; that is,
there is no signal due to that model term [32].

Consider, for example, the test for the main effects of
inoculate denoted as Factor A in Table 1. If the main effects
of inoculate are nonexistent, that is, there are no overall or
marginal mean differences between any of the inoculates,
then φA = 0. It should be clearly noted that when φA = 0,
the EMS for inoculate matches with the EMS for replicate
within inoculate and time, denoted as rep(inoculate∗time)
in Table 1. In other words, rep(inoculate∗time) is said to
be the denominator or error term for the main effects of
inoculate such that rep(inoculate∗time) defines the experi-
mental unit or the biological replicate for inoculate effects.
Hence, the correct F statistic for testing inoculate effects, as
demonstrated from Table 1, is FA = MSA/MSR(AB) based on
vA numerator and vR(AB) denominator degrees of freedom.
It should also be observed that this same error term or
experimental unit would be specified as the denominator MS
term for the ANOVA F-test on inoculate by time interaction
effects, denoted as inoculate∗time in Table 1. That is, when
the corresponding noncentrality parameter φAB = 0, both
inoculate∗time and rep(inoculate∗time) share the same EMS
such that the correct F statistic for testing this interaction is
FAB = MSAB/MSR(AB) based on vAB numerator and vR(AB)

denominator degrees of freedom.
It was previously noted from the A-loop design of

Figure 2 that inference on the main effects of time (Factor
B) should be less precise than that for the main effects

of inoculate. In other words, the size of the experimental
unit should be larger for time effects since arrays are
nested within levels of time whereas levels of inoculate
treatments are directly compared within arrays. This is
further demonstrated in Table 1 by the EMS for time with
φB = 0, being larger than that for inoculate effects with
φA = 0, under the corresponding true null hypotheses of no
main effects for either factor. In fact, the experimental error
term for time is composite of both rep(inoculate∗time) and
arrays(time) such that marginal mean comparisons between
the three times, 2, 8, and 24 hours, will be affected by
more noise than marginal mean comparisons between the
three inoculates which were directly and indirectly connected
within arrays.

Note that under the null hypothesis of no time effects
(φB = 0), there is no one other MS that shares the same
EMS σ2

E + 2σ2
R(AB) + 2σ2

S(B) that would allow one to readily
construct an ANOVA F-statistic for the main effects of time.
Satterthwaite [34] provided a solution to this problem by
proposing the “synthesis” of a denominator MS, call it MS∗,
as being a linear combination of q random effects MS:

MS∗ = a1MS1 + a2MS2 + a3MS3 + · · · + aqMSq, (2)

where a1, a2, . . . , aq are known coefficients such that MS∗

has the same expectation as that for a certain model term X
having mean square MSx under the null hypothesis (φX =
0). Then F = MSX/MS∗ is approximately distributed as
a random variable from a central F distribution with vX
numerator and v∗ denominator degrees of freedom, where

v∗ =
(
MS∗

)2

θ
, (3)

with θ denoting (a1MS1)2/v1 + (a2MS2)2/v2 + (a3MS3)2/v3 +
· · · + (aqMSq)2/vq.

In our example, consider the synthesized MS∗ =
4/3MSR(AB) + 4/3MSS(B) − 5/3MSE as being a linear combi-
nation of the MS for rep(inoculate∗time), array(time), and
residual. With reference to (2), MS∗ is then a linear function
of q = 3 different MS with a1 = 4/3, a2 = 4/3, and
a3 = −5/3. Using the EMS for these three MS provided from
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Table 2: Classical ANOVA of log intensities for duplicated A-loop design component of Figure 2 on ID REF #30 from Zou et al. (2005)
using output from SAS PROC MIXED (code in Figure 3).

Type 3 analysis of variance

Source DF† Sum of
squares

Mean
square Expected mean square Error term Error

DF F value Pr > F‡

Trt 2 0.7123 0.3561
Var(Residual) + 1.5
Var(sample(inoc∗time)) +
Q(inoc,inoc∗time)

MS(sample(inoc∗time)) 6 3.13 0.1172

Time 2 3.7737 1.8868

Var(Residual) + 2
Var(sample(inoc∗time)) +
2Var(array(time)) +
Q(time,inoc∗time)

1.3333 MS(array(time)) +
1.3333
MS(sample(inoc∗time)) −
1.6667 MS(Residual)

13.969 3.27 0.0683

Inoc∗time 4 0.6294 0.1573
Var(Residual) + 1.5
Var(sample(inoc∗time)) +
Q(inoc∗time)

MS(sample(inoc∗time)) 6 1.38 0.3435

Dye 1 0.0744 0.0744 Var(Residual) + Q(dye) MS(Residual) 5 2.19 0.1989

Rep(inoc∗time) 6 0.6826 0.1137 Var(Residual) + 1.5
Var(sample(inoc∗time)) MS(Residual) 5 3.35 0.1030

Array(time) 12 4.3330 0.3610 Var(Residual) + 1.5
Var(array(time)) MS(Residual) 5 10.63 0.0085

Residual 5 0.1699 0.0339 Var(Residual) . . . .
†

Degrees of freedom.
‡ P-value.

Table 1 as (σ2
E+1.5σ2

R(AB)), (σ2
E+1.5σ2

S(B)), and σ2
E , respectively,

it should be readily seen that the expectation of MS∗ is then

EMS∗ = 4
3

(
σ2
E + 1.5σ2

R(AB)

)
+

4
3

(
σ2
E + 1.5σ2

S(B)

)− 5
3
σ2
E

= σ2
E + 2σ2

R(AB) + 2σ2
S(B).

(4)

That is, MS∗ shares the same EMS as that for time in Table 1
when φB = 0. Hence, a suitable F statistic for inferring upon
the main effects of time would be FB = MSB/MS∗.

To help further illustrate these concepts, let us con-
duct the ANOVA on the data generated from the A-
loop design of Figure 2 for ID REF #30 from Zou et al.
[20]; that is, using data from arrays 1–9 and 15–23 as
provided in Table 4. The classical ANOVA table using
the method=type3 option of the popular mixed-model
software SAS PROC MIXED [35] for that particular
gene is provided in Table 2; SAS code for all statistical
analysis presented in this paper is provided in Figure 3
and also available for download, along with the data in
Table 4, from http://www.msu.edu/∼tempelma/ijpg2008.sas.
As noted previously, the correct denominator MS term
for testing the main effects of inoculate is replicate within
inoculate by time. Hence, the corresponding F statistic =
MSA/MS(R(AB)) = FA = 0.356/0.114 = 3.13, with vA =
2 numerator and vR(AB) = 6 denominator degrees of
freedom leading to a P-value of 0.1172. Similarly, for the
inoculate∗time interaction, the appropriate F-test statistic is
MSAB/MS(R(AB)) = FAB = 0.157/0.114 = 1.38, with vAB = 6
numerator and vR(AB) = 6 denominator degrees of freedom
leading to a P-value of 0.3435. Even without considering
the control of false discovery rates (FDRs) that involve the
joint control of type I errors with respect to the remaining

27 683 genes, it seems apparent that neither the main effects
of inoculate nor the interaction between inoculate and time
would be statistically significant for gene ID REF #30.

The synthesized denominator MS∗ for time effects is
MS∗ = 4/3MSR(AB) + 4/3MSS(B) − 5/3MSE = 4/3(0.114) +
4/3(0.361) − 5/3(0.034) = 0.576. The estimated degrees of
freedom for this synthesized MS using (3) is then

v∗

=
(
MS∗

)2

(
a1MSR(AB)

)2
/vR(AB) +

(
a2MSS(B)

)2
/vS(B) +

(
a3MSE

)2
/vE

= (0.576)2

(
(4/3)·0.114

)2
/6+

(
(4/3)·0.361

)2
/12+

(− (5/3)·0.034
)2
/5

=13.97.
(5)

Hence, the main effects of time, appropriate F-test statistic is
MSB/MS∗ = FB = 1.88/0.576 = 3.27, with vB = 2 numerator
and v∗ = 13.97 denominator degrees of freedom leading
to a P-value of 0.0683 as also reported in the SAS output
provided in Table 2.

3.4. Mixed model analysis

Although the classical ANOVA table is indeed instructive
in terms of illustrating the different levels of variability
and experimental error, it is not the optimal statistical
analysis method for a mixed effects model, especially when
the design is unbalanced. A mixed-model or GLS analysis
more efficiently uses information on the design structure
(i.e., random effects) for inferring upon the fixed treatment
structure effects [27, 32].

http://www.msu.edu/~tempelma/ijpg2008.sas
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Table 3: EGLS inference on overall importance of fixed effects for ID REF #30 based on REML versus ANOVA (type III quadratic forms)
for estimation of variance components using output from SAS PROC MIXED (code in Figure 3).

Type 3 tests of fixed effects using REML Type 3 tests of fixed effects using ANOVA

Effect Num DF∗ Den DF∗ F value Pr > F† Den DF∗ F value Pr > F†

Inoc 2 5.28 3.12 0.1273 6.36 3.48 0.0954

Time 2 17.8 2.81 0.0870 22.8 3.27 0.0563

Inoc∗time 4 5.28 1.26 0.3893 6.36 1.38 0.3392

Dye 1 5.43 2.27 0.1879 5.15 2.19 0.1973
∗

Num Df = numerator degrees of freedom; Den DF = denominator degrees of freedom.
†P-value.

Unfortunately, GLS, in spite of its optimality prop-
erties, is generally not attainable with real data because
the VC (e.g., σ2

R(AB), σ
2
S(B), and σ2

E) must be known. Hence,
the VC must generally be estimated from the data at hand.
There are a number of different methods that are available for
estimating VC in mixed models [22]. The classical ANOVA
method is based on equating MS to their EMS in the ANOVA
table. For example, using the bottom row of Table 1, the
EMS of MSE is σ2

E . So then using the numerical results for
ID REF #30 from Table 2, the type III ANOVA estimate of
σ2
E is simply σ̂2

E = MSE = 0.034. Now work up one row
further in Table 1 to the term array(time). Equating MSS(B) =
0.361 from the same corresponding row in Table 2 to its
EMS of σ2

E + 1.5σ2
S(B) using σ̂2

E = 0.034 gives σ̂2
S(B) = 0.218.

Finally, work up one more (i.e., third to last) row in both
tables. Equating MSR(AB) = 0.114 from Table 2 to its EMS of
σ2
E + 1.5σ2

R(AB) using σ̂2
E = 0.034 leads to σ̂2

R(AB) = 0.053. So
array variability σ2

S(B) is estimated to be roughly four times
larger than the biological variability σ2

R(AB) which, in turn, is
estimated to be somewhat larger than residual variability σ2

E

for ID REF #30.
Recall that with unbalanced designs, quadratic forms are

not unique such that ANOVA estimators of VC will not
be unique either. Nevertheless, type III quadratic forms are
most commonly chosen as then the SS for each term is
adjusted for all other terms, as previously noted. Although
ANOVA estimates of VC are unbiased, they are not efficient
nor optimal in terms of estimates having minimum standard
error [25]. Restricted maximum likelihood (REML) is a
generally more preferred method of VC estimation [22,
36, 37] and is believed to have more desirable properties.
Nevertheless, the corresponding REML estimates σ̂2

E = 0.033,
σ̂2
S(B) = 0.258 and σ̂2

R(AB) = 0.061 for ID REF #30 are in some
qualitative agreement with the previously provided ANOVA
estimates.

Once the VCs are estimated, they are substituted for
the true unknown VCs to provide the “estimated” GLS
or EGLS of the fixed effects. It is important to note that
typically EGLS = GLS for balanced designs, such that
knowledge of VC is somewhat irrelevant for point estimation
of treatment effects. However, the same is generally not true
for unbalanced designs, such as either the A-loop design
derived from Figure 2 or even the interwoven loop design
from Figure 1. Hence, different methods of VC estimation
could lead to different EGLS estimates of treatment effects

as we demonstrate later. Suppose that it was of interest to
compare the various mean responses of various inoculate by
time group combinations in the duplicated A-loop design
example. Based on the effects defined in the statistical model
for this design in (1), the true mean response for the ith
inoculate at the jth time averaged across the two dye effects
(δ1 and δ2) can be written as

μi j· = μ + αi + βj + αβi j + 0.5δ1 + 0.5δ2. (6)

If the levels are, say, ordered alphanumerically, the mean
difference between inoculate i = 1(M) and i = 2(R) at time
j = 1 (2 hours) is specified as μ11. − μ21.. Using (6), this
difference written as a function of the model effects is then
μ11.−μ21. = (μ+α1 +β1 +αβ11 + 0.5δ1 + 0.5δ2)− (μ+α2 +β1 +
αβ21 + 0.5δ1 + 0.5δ2) = α1 − α2 + αβ11 − αβ21. Similarly, the
mean difference μ11. − μ12. between time j = 1 (2 hours) and
time j = 2 (8 hours) for inoculate i = 1(M) could be derived
as β1 − β2 + αβ11 − αβ12. Note that these two comparisons or
contrasts can be more elegantly written using matrix algebra
notation. A better understanding of contrasts is useful to
help determine the correct standard errors and statistics
used to test these contrasts, including how to write the
corresponding SAS code. Hence, a matrix algebra approach
to hypothesis testing on contrasts is provided in Appendix 5
that complements the SAS code provided in Figure 3. For
now, however, we simply use the “hat” notation ( ̂ ) in
referring to the EGLS estimates of these two contrasts as
μ̂11. − μ̂21. and μ̂11. − μ̂12., respectively.

As we already intuitively noted from the A-loop design of
Figure 2, inference on μ11.−μ21. should be much more precise
than that for μ11. − μ12. since inoculates are compared within
arrays whereas times are not. This distinction should then
be reflected in a larger standard error for μ̂11. − μ̂12. than for
μ̂11.− μ̂21.. Indeed, using the REML estimates of VC for EGLS
inference, this is demonstrated by ŝe (μ̂11. − μ̂21.) = 0.2871
whereas ŝe (μ̂11. − μ̂12.) = 0.4085 for ID REF #30. However,
these standard errors are actually slightly understated since
they do not take into account the uncertainty of the VC
estimates as discussed by Kackar and Harville [38]. Kenward
and Roger [39] derive a procedure to take this uncertainty
into account which is part of the SAS PROC MIXED
implementation using the option ddfm=kr [35] as indicated
in Figure 3. Invoking this option raises the two standard
errors accordingly, albeit very slightly, to ŝe (μ̂11. − μ̂21.) =
0.2878 and ŝe (μ̂11. − μ̂12.) = 0.4088.
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Table 4: Dataset for ID REF #30 for all hybridizations (14 arrays/loop x2 loops) in Figure 1 for each of two replicates per 10 inoculate by
time groups, fluorescence intensities provided as y, log(base 2) intensities provided as ly.

Obs array inoculate time rep dye y ly

1 1 R 2 1R2 Cy3 16322.67 13.9946

2 1 M 2 1M2 Cy5 20612.48 14.3312

3 2 M 2 1M2 Cy3 10552.21 13.3653

4 2 S 2 1S2 Cy5 10640.89 13.3773

5 3 S 2 1S2 Cy3 24852.98 14.6011

6 3 R 2 1R2 Cy5 21975.92 14.4236

7 4 R 8 1R8 Cy3 30961.96 14.9182

8 4 M 8 1M8 Cy5 13405.08 13.7105

9 5 M 8 1M8 Cy3 13103.51 13.6777

10 5 S 8 1S8 Cy5 15659.44 13.9347

11 6 S 8 1S8 Cy3 20424.47 14.3180

12 6 R 8 1R8 Cy5 34244.92 15.0636

13 7 R 24 1R24 Cy3 15824.29 13.9499

14 7 M 24 1M24 Cy5 13014.05 13.6678

15 8 M 24 1M24 Cy3 17503.11 14.0953

16 8 S 24 1S24 Cy5 27418.99 14.7429

17 9 S 24 1S24 Cy3 37689.16 15.2019

18 9 R 24 1R24 Cy5 55821.64 15.7685

19 10 S 2 1S2 Cy3 28963.28 14.8219

20 10 S 8 1S8 Cy5 38659.44 15.2385

21 11 S 8 1S8 Cy3 41608.78 15.3446

22 11 S 24 1S24 Cy5 41844.79 15.3528

23 12 R 2 1R2 Cy3 12132.41 13.5666

24 12 R 8 1R8 Cy5 19131.53 14.2237

25 13 R 8 1R8 Cy3 31067.04 14.9231

26 13 R 24 1R24 Cy5 26197.03 14.6771

27 14 N 2 1N2 Cy3 18540.91 14.1784

28 14 M 2 1M2 Cy5 24971.88 14.6080

29 15 R 2 2R2 Cy3 9612.25 13.2307

30 15 M 2 2M2 Cy5 9212.11 13.1693

31 16 M 2 2M2 Cy3 10322.23 13.3335

32 16 S 2 2S2 Cy5 10979.19 13.4225

33 17 S 2 2S2 Cy3 8061.40 12.9768

34 17 R 2 2R2 Cy5 6737.37 12.7180

35 18 R 8 2R8 Cy3 8807.09 13.1044

36 18 M 8 2M8 Cy5 8696.95 13.0863

37 19 M 8 2M8 Cy3 15186.20 13.8905

38 19 S 8 2S8 Cy5 23477.49 14.5190

39 20 S 8 2S8 Cy3 19424.30 14.2456

40 20 R 8 2R8 Cy5 18198.99 14.1516

41 21 R 24 2R24 Cy3 19630.00 14.2608

42 21 M 24 2M24 Cy5 15629.14 13.9320

43 22 M 24 2M24 Cy3 10875.49 13.4088

44 22 S 24 2S24 Cy5 20816.21 14.3454

45 23 S 24 2S24 Cy3 24647.70 14.5892

46 23 R 24 2R24 Cy5 22148.96 14.4350

47 24 S 2 2S2 Cy3 17795.09 14.1192

48 24 S 8 2S8 Cy5 34569.11 15.0772

49 25 S 8 2S8 Cy3 44175.28 15.4310

50 25 S 24 2S24 Cy5 38020.46 15.2145



Robert J. Tempelman 9

Table 4: Continued.

Obs array inoculate time rep dye y ly

51 26 R 2 2R2 Cy3 34689.07 15.0822

52 26 R 8 2R8 Cy5 62219.10 15.9251

53 27 R 8 2R8 Cy3 22724.21 14.4719

54 27 R 24 2R24 Cy5 19594.71 14.2582

55 28 N 2 2N2 Cy3 11755.32 13.5210

56 28 M 2 2M2 Cy5 12599.55 13.6211

Now, the denominator degrees of freedom for inference
on these two contrasts should also differ given that the
nature of experimental error variability somewhat differs
for inoculate comparisons as opposed to time comparisons
as noted previously from Figure 2. However, with EGLS,
there are no SS and hence no corresponding MS or EMS
expression for each main effects or interaction term in
the model, such that determining the correct test statistic
and degrees of freedom is somewhat less obvious than
with the previously described classical ANOVA approach
[32]. Giesbrecht and Burns [40] introduced a procedure
for estimating the denominator degrees of freedom for
EGLS inference which, again, is invoked with the ddfm=kr
option of SAS PROC MIXED. Using this option along with
REML estimation of VC for the analysis of ID REF #30, the
estimated degrees of freedom for μ̂11. − μ̂21. is 5.28 whereas
that for μ̂11. − μ̂12. is 17.0.

Contrasts are also used in EGLS to provide ANOVA-like
F tests for the overall importance of various fixed effects;
more details based on the specification of contrast matrices
to test these effects are provided in Appendix 5. For example,
denote the marginal or overall mean of inoculate i averaged
across the 3 times and 2 dyes as μi.. = (1/3)

∑3
j=1μi j.. The

vA = 2 numerator degrees of freedom hypothesis test for the
main effects of inoculates can be written as a combination
of two complementary contrasts (A1) H0 : μ1.. − μ3.. = 0
and (A2) H0 : μ2.. − μ3.. = 0; that is, if both contrasts are 0,
then obviously H0 : μ2.. − μ3.. = 0 is also true such that then
H0 : μ1.. = μ2.. = μ3.. is true. Similarly, let us suppose that
one wished to test the main effects of times (Factor B). Then,
it could be readily demonstrated that the corresponding
hypothesis test can also be written as a combination of vB = 2
complementary contrasts: (B1) H0 : μ.1. − μ.3. = 0 and (B2)
H0 : μ.2. − μ.3. = 0, where μ. j. = (1/3)

∑3
i=1μi j. denotes

the marginal mean for the jth level of Factor B; that is, the
jth time. If both component hypotheses (B1) and (B2) are
true, then H0 : μ.1. = μ.2. = μ.3. = 0 is also true thereby
defining the composite vB = 2 numerator degrees of freedom
hypothesis test for the main effects of Factor B.

Now the interaction between inoculate and time is a
vAB = vAvB = 2∗2 = 4 numerator degrees of freedom
test as previously noted from Tables 1 and 2, suggesting
that there are 4 complementary contrasts that jointly test for
the interaction of the two factors. Of course, it is also well
known that the interaction degrees of freedom is typically
the product of the main effects degrees of freedom for the
two factors considered. Two of the four degrees of freedom

for the interaction involve testing whether or not the mean
difference between inoculates 1 and 3 is the same within time
1 as it is within time 3, that is, (AB1) H0 : μ11.− μ31.− (μ13.−
μ33.) = 0, and whether or not the mean difference between
inoculates 2 and 3 is the same within time 1 as it is within
time 3; that is, (AB2) H0 : μ21. − μ31. − (μ23. − μ33.) = 0.
If both hypotheses (AB1) and (AB2) are true then it should
be apparent that H0 : μ11. − μ21. − (μ13. − μ23.) = 0 is also
true; that is, the mean difference between inoculates 1 and 2
is the same within time 1 as it is within time 3. The remaining
two degrees of freedom for the interaction involve testing
whether or not the mean difference between inoculates 1
and 3 is the same within time 2 as it is within time 3; that
is, (AB3) H0 : μ12. − μ32. − (μ13. − μ33.) = 0, and whether
or not the mean difference between inoculates 2 and 3 is
the same within time 2 as it is within time 3; that is, (AB4)
H0 : μ22. − μ32. − (μ23. − μ33.) = 0. If both hypotheses
(AB3) and (AB4) are true then H0 : μ12. − μ22. − (μ13. −
μ23.) = 0 is also true. Hence, contrasts AB1, AB2, AB3, and
AB4 completely define the four components or numerator
degrees of freedom for the interaction between Factors A and
B. That is, the test for determining whether or not the mean
differences between all levels of A are the same within each
level of B, and vice versa, can be fully characterized by these
four complementary contrasts.

The EGLS statistics used for testing the overall impor-
tance of these main effects or interactions are approximately
distributed as F-random variables with the numerator
degrees of freedom defined by the number of complementary
components or contrasts as previously described; refer to
Appendix 5 and elsewhere [27, 32, 35] for more details. Now,
the denominator degrees of freedom for each contrast are
dependent upon the design and can be determined based on
that using classical ANOVA as in Table 1 or by a multivariate
extension of the Satterthwaite-based procedure proposed by
Fai and Cornelius [41]; again this option is available as
ddfm=kr using SAS PROC MIXED (Figure 3).

Unfortunately, much available software used for mixed
model analysis of microarray data does not carefully take
into consideration that various fixed effects terms of interest
may have different denominator degrees of freedom when
constructing F test statistics. In fact, a typical strategy of
such software is to assume that vE (i.e., the residual degrees
of freedom) is the denominator degrees of freedom for all
tests. This strategy is denoted as the “residual” method for
determining denominator degrees of freedom by Spilke et al.
[36] who demonstrated using simulation work that the use
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title “Mixed model analysis of log fluorescence intensity data from gene 30”;
proc mixed

data=gene30 /∗ name of data as provided in Table 4 ∗/
method = type3;
/∗ Provides classical ANOVA table and EGLS based on ANOVA estimates of VC ∗/
/∗ If REML estimates of VC are desired, change above line to method = reml; ∗/
where ((array <= 9) or (15 <=array <= 23));

/∗ Using A-loop component (arrays 1-9, 15-23) of Table 4 data only ∗/
class rep array inoc time dye;

/∗ name of fixed and random classification factors in design ∗/
model ly = inoc time inoc∗time dye

/∗ Specify response variable and fixed effects here ∗/
/ddfm = kr
/∗ Use Kenward-Roger’s procedure to estimate denominator degrees of freedom ∗/

e3;
/∗ e3 will print the contrast matrices KA, KB and KAB (see (A.8), (A.9) and

(A.10) of Appendix 5) used to provide the EGLS ANOVA F-test statistics (optional) ∗/
random array(time) rep(inoc∗time) ; /∗ Specify random effects ∗/
estimate “k1 contrast”

int 0 inoc 1 − 1 0 time 0 0 0 inoc∗time 1 0 0 − 1 0 0 0 0 0 dye 0 0;
/∗ contrast coefficients as specified for k1 in (A.6) of Appendix 5 ∗/

estimate “k2 contrast”
int 0 inoc 0 0 0 time 1 − 1 0 inoc∗time 1 − 1 0 0 0 0 0 0 0 dye 0 0;
/∗ contrast coefficients as specified for k2 in (A.7) of Appendix 5 ∗/

run;

Figure 3: SAS code for classical ANOVA and EGLS inference. Comments describing purpose immediately provided after corresponding
code between /∗ and ∗/ as with a regular SAS program. EGLS based on REML would simply involve substituting method = reml for method
= type3 in the third line of the code.

of the residual method can substantially inflate type I error
rate for EGLS inference on fixed effects; in other words, the
number of false-positive results or genes incorrectly declared
to be differentially expressed between treatments would be
unduly increased. Spilke et al. [36] further demonstrated
that use of the Kenward-Rogers’ method for degrees of
freedom estimation and control for uncertainty on VC
provided best control of the nominal confidence interval
coverage and type I error probabilities.

3.5. Impact of method of variance component
estimation on EGLS

It was previously noted that the estimated standard errors for
EGLS on two contrasts μ11.−μ21. and μ11.−μ12. were ŝe (μ̂11.−
μ̂21.) = 0.2878 and ŝe (μ̂11. − μ̂12.) = 0.4088, respectively,
when REML was used to estimate the variance components
for ID REF #30. If the VC estimates are computed using
type III ANOVA, then these estimated standard errors would
differ accordingly; that is, ŝe (μ̂11. − μ̂21.) = 0.2752 and
ŝe (μ̂11. − μ̂12.) = 0.3828, respectively. What perhaps is even
more disconcerting is that the estimates of μ11. − μ21. and
μ11. − μ12. also differ between the two EGLS inferences; for
example, using REML, μ̂11. − μ̂21. = 0.1328 and μ̂11. − μ̂12. =
−0.0881 whereas using ANOVA μ̂11. − μ̂21. = 0.1298 and
μ̂11. − μ̂12. = −0.0873.

The overall EGLS tests for ID REF #30 for testing the
main effects of inoculate, time and their interaction as based
on the previously characterized complementary contrasts
are provided separately for ANOVA versus REML estimates
of VC in Table 3; this output is generated as type III tests
using the SAS code provided in Figure 3. From here, it
should be clearly noted that conclusions upon the overall
importance of various fixed effects terms in (1) as derived
from EGLS inference subtly depend upon the method of
VC estimation; for example, the EGLS P-values in Table 3
tend to be several points smaller using ANOVA compared
to REML; furthermore, note the differences in the estimated
denominator degrees of freedom between the two sets.
Naturally, this begs the question as to which method of VC
estimation should be used?

In completely balanced designs, ANOVA and REML lead
to identical estimates of VC and identical EGLS inference,
provided that all ANOVA estimates of VC are positive.
ANOVA estimates of VC that are negative are generally
constrained by REML to be zero, thereby causing a “ripple”
effect on REML estimates of other VC and subsequently on
EGLS inference [42]. As noted previously, REML does tend
to outperform most other methods for various properties
of VC estimation [37]. Furthermore, there is evidence that
EGLS based on ANOVA leads to poorer control of type
I error rate for inference on fixed effects compared to
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EGLS based on REML in unbalanced data structures [36].
However, Stroup and Littell [42] concluded that EGLS using
REML may sometimes lead to inference on fixed effects
that is too conservative (i.e., actual error rates less than
nominal type I error rate) again due to the nonnegative
REML restrictions on the VC estimates and associated ripple
effects. This issue warrants further study given that it has
implications for control of FDR which are most commonly
used to control the rate of type I errors in microarray
studies [43]. Estimation of FDR inherently depends upon the
distribution of P-values for treatment effects across all genes
such that even mild perturbations on this distribution have
potential bias implications for control of false-positive rates.

4. OTHER ISSUES FOR THE DESIGN
ANALYSIS INTERFACE

4.1. Log ratio versus log intensity modeling

Recent work on the optimization and comparison of var-
ious efficient microarray designs have been based on the
assumption of OLS inference; that is, no random sources of
variability other than residuals are considered [2, 8, 9, 13].
While this observation may seem to be counterintuitive given
that the arguments laid out in this review for the need of
(E)GLS to analyze efficient designs, it is important to note
at least a couple of things. First, virtually all of the work
on design optimization has been based on the assumption
that a sample or pool is used only once; the corresponding
interwoven loop designs in such cases [13] have been referred
to as classical loop designs [10, 19]. However, sometimes
two or more aliquots from each sample are used in separate
hybridizations [20, 23] such as the A-loop design, example
used in this review; the corresponding designs are connected
loop designs [10, 19] that require the specification of random
biological replicate effects separate from residual effects as
previously noted.

Secondly, almost all of the design optimization work
has been based on the use of Cy3/Cy5 log ratios as the
response variables rather than dye-specific log intensities as
used in this review. This data reduction, that is, from two
fluorescence intensities to one ratio per spot on an array,
certainly eliminates array as a factor to specify in a linear
model. However, the use of log ratios can severely limit
estimability and inference efficiency of certain comparisons.
Suppose that instead of using the 36 log intensities from
the duplicated A-loop design from arrays 1–9 and 15–23
of Table 4, we used the derivative 18 Cy3/Cy5 log ratios as
the response variables. For example, the two corresponding
log2Cy3 and Cy5 fluorescence intensities for array 1 from
Table 4 are 13.9946 and 14.3312. The Cy3/Cy5 log ratio
is then the difference or −0.3316 corresponding to a fold
change of 2−0.3316 = 0.795. Using log ratios as their
response variables, Landgrebe et al. [9] concluded that it was
impossible to infer upon the main effects of Factor B (e.g.,
time) in the A-loop design. However, as we demonstrated
earlier, it is possible to infer upon these effects using ANOVA
or EGLS analysis on the log intensities. Jin et al. [18] similarly

illustrate the utility of log intensity analysis in a split plot
design that would not otherwise have been possible using
log ratios. Milliken et al. [14] provide much more extensive
mixed modeling details on the utility of log intensity analysis
in nested or split-plot microarray designs similar to the A-
loop design.

The relative efficiency of some designs may be seen to
depend upon the relative magnitude of biological to technical
variation [10, 44]; sometimes it is only possible to separately
estimate these two sources of variability using log intensities
rather than log ratios thereby requiring the use of (E)GLS
rather than OLS. In fact, analysis of log intensities using
mixed effects model appears to be not only more flexible
than log-ratio modeling but is statistically more efficient
in recovering more data information [1, 45]. That is, as
also noted by Milliken et al. [14], treatment effects are more
efficiently estimated by combining intraarray and interarray
information in a mixed model analysis when an incomplete
block design is used, and arrays are explicitly included as
random effects by analyzing log intensities rather than log
ratios.

4.2. Choosing between efficient experimental designs
using mixed models

There are a number of different criteria that might be used to
choose between different designs for two-color microarrays.
We have already noted that the interwoven loop design
in Figure 1 is A-optimal for pairwise comparisons between
9 treatment groups. A-optimality has been criticized for
microarray studies because it chooses designs with improved
efficiency for certain contrasts at the expense of other
perhaps more relevant contrasts and further depends upon
the parameterization of the linear model [1, 6, 9]; other com-
monly considered types of optimality criteria are possible
and further discussed by Wit et al. [13] and Landgrebe et al.
[9]. At any rate, it is somewhat possible to modify A-
optimality to explicitly take into account a particular set
of scientific questions [13]; furthermore, optimization with
respect to one criterion will generally be nearly optimal for
others.

For one particular type of optimality criterion,
Landgrebe et al. [9] demonstrated that the A-loop design
has the best relative efficiency compared to other designs for
inference on the main effects of Factor A and the interaction
effects between A and B although the main effects of Factor
B could not be inferred upon using an analysis of log ratios
as previously noted. How does the A-loop design of Figure 2
generally compare to the interwoven loop design of Figure 1
if a 3 × 3 factorial treatment structure is imposed on the 9
treatments as implied by the same labels as used in Figure 2?
Suppose that Figure 1 is a connected interwoven loop design
[10] in the sense that the outer loop of Figure 1 (dashed
arrows) connects one biological replicate for each of 9
groups whereas the inner loop of Figure 1 (solid arrows)
connects a second biological replicate for each of the 9
groups. Then this design would consume 18 biological
replicates and 18 arrays, thereby providing a fair comparison
with the duplicated A-loop design of Figure 2.
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Recall that Figure 1 is A-optimized for pairwise com-
parisons between all 9 groups. It is not quite clear what
implications this might have for statistical efficiency for
the constituent main effects of A(vA = 2), B(vB = 2),
and the effects of their interaction A∗B(vAB = 4); note,
incidentally, that these degrees of freedom independently
sum to 8 as required for 9 groups. As duly noted by Altman
and Hua [1], pairwise comparisons between all 9 groups may
be not as important as various main effects or interaction
contrasts with a factorial treatment structure arrangement.
Although, as noted earlier, Figure 1 is symmetric with respect
to the treatment labels, the classical ANOVA table for this
interwoven loop design would be even more complicated
(not shown) than that presented for the A-loop design since
there is not one single denominator MS that would serve as
the experimental error term for inoculate, time or inoculate
by time effects!

One should perhaps compare two alternative experimen-
tal designs having the same factorial treatment structure, but
a different design structure, for contrasts of highest priority,
choosing those designs where such contrasts have the smaller
standard error. Let us consider the following comparisons:
μ1.. − μ3.., μ.1. − μ.3., and μ11. − μ31. − (μ13. − μ33.); that is,
respectively, the overall mean difference between inoculates
1 and 3, the overall mean difference between times 1 and 3,
and the interaction component pertaining to the difference
between inoculates 1 and 3 within time 1 versus that same
difference within time 3. Recall that these contrasts were
components of the EGLS tests on the two sets of main effects
and the interaction and previously labeled as (A1), (B1), and
(AB1), respectively.

Now the comparison of efficient designs for the relative
precision of various contrasts will generally depend upon
the relative magnitude of the random effects VC as noted
recently by Hedayat et al. [44] and for various microarray
design comparisons [10]. Suppose the “true” variance com-
ponents for σ2

E , σ2
R(AB), and σ2

S(B) were 0.03, 0.06, and 0.25,
comparable to either set of estimates provided previously on
ID REF #30 from Zou et al. [20]. The linear mixed model for
analyzing data generated from Figure 1 would be identical to
that in (1) except that arrays would no longer be specified as
being nested within times. For the interwoven loop design of
Figure 1, the standard errors for each of the three contrasts
are se(μ̂1.. − μ̂3..) = 0.18, se(μ̂.1. − μ̂.3.) = 0.21, and se(μ̂11. −
μ̂31. − (μ̂13. − μ̂33.)) = 0.43 whereas for the A-loop subdesign

of Figure 2, the corresponding standard errors are se(μ̂1.. −
μ̂3..) = 0.16, se(μ̂.1. − μ̂.3.) = 0.33, and se(μ̂11. − μ̂31. − (μ̂13. −
μ̂33.)) = 0.40. So whereas the optimized design in Figure 1
using Wit et al. [13] provided a substantial improvement for
the estimation of overall mean time differences, the A-loop
design is indeed more efficient for inferring upon the main
effects of inoculate and the interaction between inoculate
and time. Hence, the choice between the two designs would
reflect a matter of priority for inference on the various
main effects and their interactions. It should be carefully
noted as demonstrated by Tempelman [10], that designs

leading to lower standard errors for certain comparisons do
not necessarily translate to greater statistical power as the

denominator degrees of freedom for various tests may be
substantially different between the two designs.

4.3. Unbalanced designs and shrinkage estimation

Shrinkage or empirical Bayes (EB) estimation is known to
improve statistical power for inference on differential gene
expression between treatments in microarray experiments
[46]. Shrinkage-based estimation is based on the well-
established hierarchical modeling concept that more reliable
inferences on gene-specific treatment differences are to be
attained by borrowing information across all genes [47,
48]. Typically, such strategies have involved improving
estimation of standard errors of gene-specific treatment
differences by “shrinking” gene-specific variances towards
an overall mean or other measure of central tendency.
However, most shrinkage estimation procedures have been
developed for fixed effects models, that is, for simple
experimental designs having a treatment structure but no
or very limited design structure, or even treating all design
structure factors as fixed [30]. Currently popular shrinkage
estimation procedures [49–51] are certainly appropriate for
many designs based on one-color Affymetrix systems or
for common reference designs. Other proposed shrinkage
procedures have facilitated extensions to very special cases
of nested designs [47], including some based on rather
strong modeling assumptions such as a constant correlation
of within-array replicate spots across all genes [52] or a
design structure facilitating the use of permutation testing
[29]. However, virtually none of the procedures proposed
thus far are well adapted to handle unbalanced designs such
as the A-loop design where different sizes of experimental
units need to be specified for different treatment factors;
hence investigators should proceed with caution when using
shrinkage estimation for unbalanced mixed-model designs.

5. CONCLUSIONS

We have provided an overview of the use of mixed linear
model analysis for the processing of unbalanced microarray
designs, given that most efficient incomplete block designs
for microarrays are unbalanced with respect to various
comparisons. We strongly believe that much mixed-model
software currently available for the analysis of microarrays
does not adequately address the proper determination of
error terms and/or denominator degrees of freedom for
various tests. This would be particularly true if we had
chosen to analyze all of the data for ID REF #30 in
Table 4 from Zou et al. [20] based on all of the 2 × 14
hybridizations depicted in Figure 2. Even then, the size of
the standard errors and estimated degrees of freedom would
still be seen to be somewhat different for estimating the
main effects of times compared to estimating the main
effects of inoculates given the lower degree of within-array
connectivity between the various levels of time as illustrated
in Figure 2. If inferences on various comparisons of interest
are not conducted correctly in defining a list of differ-
ently expressed genes, all subsequent microarray analysis
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(e.g., FDR estimates, gene clustering, gene class analysis, etc.)
are absolutely futile.

We believe that it is useful to choose proven mixed-model
software (e.g., SAS) to properly conduct these tests and, if
necessary, to work with an experienced statistician in order
to do so. We have concentrated our attention on the analysis
of a particular gene. It is, nevertheless, straightforward to use
SAS to serially conduct mixed-model analysis for all genes
on a microarray [53]; furthermore, SAS JMP GENOMICS
(http://www.jmp.com/software/genomics/) provides an even
more powerful user interface to the mixed model analysis of
microarray data.

APPENDIX

MATRIX REPRESENTATION OF THE MIXED MODEL
ANALYSIS OF THE A-LOOP DESIGN OF ZOU ET AL.

Any mixed model, including that specified in (1), can be
written in matrix algebra form:

y = Xβ + Zu + e. (A.1)

Here y = {yi jklm} is the vector of all data, β is the vector
of all fixed effects (e.g., inoculate, time, dye, and inoculate
by time interaction effects), u is the vector of all random
effects (e.g., arrays and sample within inoculate by time
effects), and e = {ei jklm} is the vector of random residual
effects. Furthermore, X and Z are corresponding incidence
matrices that specify the treatment and design structure of
the experiment, thereby linking the treatment and design
effects, β and u, respectively, to y. Note that y has a dimension
of 36× 1 for the duplicated A-loop design of Zou et al. [20].
Now β and u can be further partitioned into the effects as
specified in (1); for our example,

β = [μ α1 α2 α3 β1 β2 β3 αβ11 αβ12 αβ13,

αβ21 αβ22 αβ23 αβ31 αβ32 αβ33 δ1 δ2]′,
(A.2)

such that β is a 18× 1 vector of fixed effects; that is, there are
18 elements in (A.2). Furthermore, u = [u′R(AB) u′S(B)]

′ can
be similarly partitioned into a 18×1 vector of random effects,
uR(AB), for replicates within inoculate by time and another
18× 1 vector of random effects, uS(B), for arrays within time;
that is, there are a total of 18 biological replicates and 18
arrays in the study, each characterized by a random effect.
Note that it is coincidence that the row dimensions of β,
uR(AB), and uS(B) are all 18 for this particular example design.

Again, the distributional assumptions on the ran-
dom and residual effects are specified the same as in
the paper but now written in matrix algebra notation:
uR(AB)∼N(018×1, I18σ

2
R(AB)), uS(B)∼N(018×1, I18σ

2
S(B)), and

e∼N(036×1,R = I36σ
2
E) with 0t×1 denoting a t × 1 vector

of zeros and It denoting an identity matrix of dimension
t. Reasonably assuming that uR(AB) and uS(B) are pairwise
independent of each other (i.e., biological sample effects
are not influenced by array effects and vice versa), then the
variance-covariance matrix G of u is a 36 × 36 diagonal
matrix with the first 18 diagonal elements being σ2

R(AB) and

the remaining 18 diagonal elements being σ2
S(B). The GLS

estimator, β̂, of β can be written [22, 32] as

β̂ = (X′V−1X
)−

X′V−1y, (A.3)

with its variance-covariance matrix defined by

var
(
β̂
) = (X′V−1X

)−
, (A.4)

such that (X′V−1X)− denotes the generalized inverse of
(X′V−1X).

Once the VC are estimated, they are substituted for the
true unknown VC in V to produce V̂ which are then used to
provide the “estimated” GLS or EGLS β̃, of β:

β̃ = (X′V̂−1X
)−

X′V̂−1y. (A.5)

As noted in the text, typically β̃ = β̂ (i.e., EGLS = GLS) for
balanced designs but not necessarily for unbalanced designs,
such as those depicted in Figures 1 or 2.

It was previously noted in the paper that the mean
difference μ11.−μ21. between inoculate i = 1 and i = 2 at time
j = 1 as could be written as a function of the model effects
in (1) as α1−α2 +αβ11−αβ21. Similarly, the mean difference
μ12. − μ12. between time j = 1 and time j = 2 for inoculate i
could be written as β1−β2 +αβ11−αβ12. These two contrasts
written in matrix notation as k′1β and k′2β, respectively, where

k′1 = [ 0 1 −1 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 ],
(A.6)

k′2 = [ 0 0 0 0 1 −1 0 1 −1 0 0 0 0 0 0 0 0 0 ]
(A.7)

are contrast vectors whose coefficients align in order with the
elements of β in (A.2). For example, note from (A.6) that
the nonzero coefficients of 1, −1, 1, and −1 occur within the
2nd, 3rd, 8th, and 11th positions of k′1, respectively. When
these coefficients are multiplied in the same order with the
2nd, 3rd, 8th, and 11th elements of β provided in (A.2), one
gets (1)α1+(−1)α2+(1)αβ11+(−1)αβ21 which is indeed k′1β =
α1−α2+αβ11−αβ21 as specified previously. The reader should
be able to make a similar observation for k′2β in considering
how the nonzero elements of (A.7) align in position with
elements of β in (A.2) to produce β1 − β2 + αβ11 − αβ12. In
Figure 3, SAS PROC MIXED is used to provide the estimates,
standard errors, and test statistics for these two contrasts.
That is, note how all of the elements from (A.6) and (A.7)
are completely reproduced in the estimate statements as “k1
contrast” and “k2 contrast,” respectively, in Figure 3.

Now, when the VC are known, these two contrasts can
be estimated by their GLS, k′1β̂, and k′2β̂. Furthermore, using
(A.4), the true standard errors of these two estimates can be

determined as se(k′1β̂) =
√

k′1(X′V−1X)−k1 and se(k′2β̂) =
√

k′2(X′V−1X)−k2, respectively. However, as previously
noted, the VC are generally not known but must be
estimated from the data such that the two contrasts are
typically estimated using k′1β̃ and k′2β̃ with approximate

http://www.jmp.com/software/genomics/
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standard errors determined by ̂

se(k′1β̃) =
√

k′1(X′V̂−1X)
−

k1

and ̂

se(k′2β̃) =
√

k′2(X′V̂−1X)
−

k2. Using the REML estimates

of VC as provided in the paper, the code from Figure 3

can be executed to provide ̂

se(k′1β̃) = 0.2871 whereas
̂

se(k′2β̃) = 0.4085 for ID REF #30 by simply changing
method = type3 to method = reml and by deleting ddfm
= kr. However, these standard errors are actually slightly
understated since they do not take into account the
uncertainty of the VC or V̂ as an estimate of V as discussed
by Kackar and Harville [38].

Kenward and Roger [39] derive a procedure to take
this uncertainty into account and which is part of the SAS
PROC MIXED implementation using the ddfm=kr option
[35] as specified in Figure 3. Invoking this option raises
the two standard errors accordingly, albeit very slightly, to
̂

se(k′1β̃) = 0.2878 and ̂

se(k′2β̃) = 0.4088. Furthermore,
the ddfm=kr option invokes the procedure of Giesbrecht
and Burns [40] to estimate the denominator degrees of
freedom for EGLS inference. Using this option and REML,

the estimated degrees of freedom for k′1β̃ is 5.28 whereas

that for k′2β̃ is 17.0 as would be noted from executing the
SAS code in Figure 3. The corresponding SAS output will
furthermore include the t-test statistics for the two contrasts

as t1 = k′1β̃/
̂

se(k′1β̃) = 0.1328/0.2878 = 0.46 and t2 =
k′2β̃/

̂

se(k′2β̃) = −0.3799/0.4088 = −0.93. These statistics
when compared to their Student t distributions with their
respective estimated degrees of freedom, 5.28 and 17.0, lead
to P-values of 0.66 and 0.37, respectively; that is, there is no
evidence that either contrast is statistically significant.

Contrast matrices on β can be used to derive ANOVA-
like F tests for the overall importance of various fixed effects
using EGLS. Recall from the paper that the test for the main
effects of inoculates can be written as a joint function of vA =
2 contrasts μ1..− μ3.. and μ2..− μ3.., where μi.. = (1/3)

∑3
j=1μi j.

with μi j. is defined as in (6). These two contrasts, labeled as
(A1) and (A2) in the paper, can be jointly written together as
a linear function K′

Aβ of the elements of β in (A.2), where

K′
A

=

⎡

⎢
⎢
⎢
⎣

0 1 0 −1 0 0 0
1
3

1
3

1
3

0 0 0 −1
3
−1

3
−1

3
0 0

0 0 1 −1 0 0 0 0 0 0
1
3

1
3

1
3
−1

3
−1

3
−1

3
0 0

⎤

⎥
⎥
⎥
⎦
.

(A.8)

For example, the first row of K′
A specifies the coefficients for

testing μ1..−μ3.. = (1/3)(μ11. +μ12. +μ13.)− (1/3)(μ31. +μ32. +
μ33.) as a function of the elements of β using (6). In other
words, matching up, in order, the first row of K′

A in (A.8)
with the elements of β in (A.2), the corresponding contrast
μ1..−μ3.. can be rewritten as α1−α3 +(1/3)αβ11 +(1/3)αβ12 +
(1/3)αβ13− (1/3)αβ31− (1/3)αβ32− (1/3)αβ33. Similarly, the
second row of K′

A in (A.8) specifies the contrast coefficients
for μ2.. − μ3.. as a function of the elements of β.

Recall that the main effects of times (Factor B) involves a
joint test of vB = 2 contrasts μ.1. − μ.3. and μ.2. − μ.3. labeled
as (B1) and (B2) in the paper, where μ. j. = (1/3)

∑3
i=1μi j.. In

terms of the elements of β in (A.2), these two contrasts are
jointly specified as K′

Bβ with

K′
B

=

⎡

⎢
⎢
⎢
⎣

0 0 0 0 1 0 −1
1
3

0 −1
3

1
3

0 −1
3

1
3

0 −1
3

0 0

0 0 0 0 0 1 −1 0
1
3
−1

3
0

1
3
−1

3
0

1
3
−1

3
0 0

⎤

⎥
⎥
⎥
⎦
.

(A.9)

That is, (A.9) is another 2 × 18 contrast matrix, just like
K′
A, where the two rows of K′

B specify the coefficients for the
contrasts μ.1. − μ.3. and μ.2. − μ.3., respectively, as a function
of the elements of β in (6).

Recall that the interaction between the effects of inoc-
ulates and times was vAB = 4 numerator degrees of
freedom test based on jointly testing four complementary
and independent contrasts, suggesting that there are four
rows that determine the corresponding contrast matrix. The
complete interaction contrast can then be written as K′

ABβ,
where

K′
AB

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 1 0 −1 0 0 0 −1 0 1 0 0

0 0 0 0 0 0 0 0 1 −1 0 0 0 0 −1 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 −1 −1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 1 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦
.

(A.10)

Note that the 4 rows in (A.10) specify contrast coefficients
on the model effects for each of the 4 constituent component
hypotheses, (AB1), (AB2), (AB3), and (AB4) as defined in
the paper, when aligned with the coefficients of β in (A.2).
As a sidenote, the somewhat uninteresting contrast for dye
effects could be written using a contrast vector k′D (not
shown) in order to test the overall mean difference between
the two dyes.

The EGLS test statistic for testing the overall importance
of any fixed effects term, say X , is specified as FX =
β̃
′
KX(X′V̂−1X)−K′

X β̃. Here FX is distributed as an F-random
variable under H0 : K′

Xβ = 0 with the numerator
degrees of freedom being defined by the number of rows
of the contrast matrix K′

X [27, 32, 35]. The denominator
degrees of freedom for each contrast is dependent upon the
design and can be determined based on that using classical
ANOVA as in Table 1 or a multivariate extension of the
Satterthwaite-based procedure from Giesbrecht and Burns
[40] as proposed by Fai and Cornelius [41]; again this option
is available as ddfm=kr using SAS PROC MIXED (Figure 3).
The corresponding EGLS ANOVA output for ID REF #30,
based on either ANOVA or REML estimation of VC, is
provided in Table 3.
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