Skip to main content
. 2008 Jun 18;2008:584360. doi: 10.1155/2008/584360

Table 1.

Classical ANOVA of log intensities for duplicated A-loop design component of Figure 2 for any particular gene using (1).

Source SS* d f Mean square Expected mean square
Inoculate SSA v A MSA = SSA/v A σ E 2 + 1.5σ R(A·B) 2 + φA
Time SSB v B MSB = SSB/v B σ E 2 + 2σ R(A·B) 2 + 2σ S(B) 2 + φB
Inoculate*time SSAB v AB MSAB = SSAB/v AB σ E 2 + 1.5σ R(A·B) 2 + φAB
Dye SSD v D MSD = SSD/v D σ E 2 + φD
Rep(inoculate*time) SSR(AB) v R(AB) MSR(AB) = SSR(AB)/v R(AB) σ E 2 + 1.5σ R(A·B) 2
Array(time) SSS(B) v S(B) MSS(B) = SSS(B)/v S(B) σ E 2 + 1.5σ S(B) 2
Error SSE v E MSE = SSE/v E σ E 2

*Sums of squares.

Degrees of freedom.

φ X is the noncentrality parameter for factor X. For example, when φA=0 , there are no overall mean inoculate differences such that inoculate and Rep(inoculate*time) have the same expected mean square and F A = MSA/MSR(AB) is a random draw from an F distribution with v A numerator and v R(AB) denominator degrees of freedom.