
Progenitor cells isolated from the human
heart: a potential cell source for regenerative
therapy 

Background. In recent years, resident cardiac
progenitor cells have been identified in, and
isolated from the rodent heart. These cells show the
potential to form cardiomyocytes, smooth muscle
cells, and endothelial cells in vitro and in vivo and
could potentially be used as a source for cardiac
repair. However, previously described cardiac
progenitor cell populations show immature
development and need co-culture with neonatal
rat cardiomyocytes in order to differentiate in vitro.
Here we describe the localisation, isolation,
characterisation, and differentiation of cardio-
myocyte progenitor cells (CMPCs) isolated from
the human heart. 
Methods. hCMPCs were identified in human hearts
based on Sca-1 expression. These cells were isolated,
and FACS, RT-PCR and immunocytochemistry
were used to determine their baseline character-
istics. Cardiomyogenic differentiation was induced
by stimulation with 5-azacytidine. 

Results. hCMPCs were localised within the atria,
atrioventricular region, and epicardial layer of the
foetal and adult human heart. In vitro, hCMPCs
could be induced to differentiate into cardio-
myocytes and formed spontaneously beating
aggregates, without the need for co-culture with
neonatal cardiomyocytes. 
Conclusion. The human heart harbours a pool of
resident cardiomyocyte progenitor cells, which can
be expanded and differentiated in vitro. These cells
may provide a suitable source for cardiac re-
generation cell therapy. (Neth Heart J 2008;16:
163-9.)
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C ardiovascular disease is an important cause of
mortality in the Western world.1 The central

cellular mechanism underlying the development of
myocardial dysfunction is a decrease in the number of
viable cardiomyocytes as a result of ischaemic injury or
ongoing apoptosis, and the inability of remaining
cardiomyocytes to compensate the cell loss by cardio-
myocyte regeneration. Stem cells have been studied
intensively as a source of new cardiomyocytes to
ameliorate injured myocardium and improve cardiac
function.2-4 The potential therapeutic benefit of stem
cell transplantation has been investigated in animal
models using bone marrow-derived cells,5-8 cardiac
stem cells,5 embryonic stem (ES) cells9,10 and foetal
cardiomyocytes11,12 by injecting them at the site of car-
diac injury. The encouraging results reported in these
animal studies led to the initiation of several clinical trials
in which bone marrow derived cells and skeletal myo-
blasts were investigated.4,13-16 However, the develop-
mental plasticity of bone marrow cells to differentiate
into cardiomyocytes has been questioned17,18 and the
predominant in vivo effect of bone marrow injection
may be neoangiogenesis instead of muscle regeneration.
Furthermore, autologous transplantation of skeletal
myoblasts isconfounded by the possible induction of
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life-threatening arrhythmias despite partial integration,
survival and contribution to cardiac contractility.15

Another source of transplantable cardiomyocytes is
human embryonic stem cell (hES) derived cardio-
myocytes. Although hES cells can be directed into the
cardiomyocyte lineage, with a foetal phenotype,19 their
differentiation is not homogenous despite recent
improvements in culture methods.20,21 Furthermore,
immunogenic, arrhythmogenic and especially ethical
problems will limit their clinical use. These obstacles
underscore the need to search for new sources of
autologous adult cells to generate cardiomyocytes for
regeneration of the failing myocardium.

Among the potential candidates are several different
cardiomyocyte progenitor cell populations that have
been identified in the rodent and human heart.22 Cells
expressing stem cell factor receptor c-Kit,5 stem cell
antigen-1 (Sca-1),23 homeodomain transcription factor
islet-1 (isl-1),24 side population cells (SP),25 and cells
able to grow in cardiospheres26 have been suggested
to be capable of differentiation into cardiomyocytes,
either in vivo, or in vitro. However, recent reports in-
dicate that in vivo, fusion of transplanted progenitor
cells with resident adult cardiomyocytes can occur,
which may lead to a misinterpretation of the cardio-
myogenic differentiation of the stem cells.23 Until now,
in vitro differentiation of stem cells into cardiomyocytes
has only been achieved by co-culturing the cells with
neonatal cardiomyocytes. To avoid misreading the in
vitro differentiation capacity, other culture methods
are needed to identify true cardiomyocyte generation
in vitro.

In the present study, we isolated cardiomyocyte
progenitor cells (CMPCs) from human heart tissue
using an anti-Sca-1 antibody. Although an Sca-1
epitope in human cells is disputed, the cells we selected
using the Sca-1 antibody from both foetal and adult
human heart consistently proved to be a homogenous
population and amenable to expansion in culture. We
show that CMPCs are able to differentiate into mature
cardiomyocytes in vitro after 5-azacytidine treatment,
even after prolonged passage, thereby excluding
artefacts that may result from co-culture. This report
demonstrates the existence of human CMPCs in
prenatal and postnatal human hearts and their capacity
for cardiomyocyte differentiation in vitro.

Material and methods

Isolation and culture of cardiomyocyte progenitor
cells from human hearts
To collect human foetal tissue and atrial biopsies,
individual permission was obtained using standard
informed consent procedures and prior approval of the
ethics committee of the University Medical Center
Utrecht. Foetal hearts were collected after elective
abortion followed by Langendorff perfusion with
Tyrode’s solution containing collagenase and protease.
Atrial biopsies were minced into small pieces followed

by collagenase treatment. After cardiomyocyte
depletion of the cell suspension, cardiomyocyte
progenitor cells were isolated by magnetic cell sorting
(MACS, Miltenyl Biotec, Sunnyvale, CA) using 
Sca-1-coupled magnetic beads, according to the
manufacturer’s protocol. Sca-1+ cells were eluted from
the column by washing with PBS supplemented with
2% foetal calf serum (FCS) and cultured on 0.1%
gelatin-coated dishes in M199 (Gibco)/EGM (3:1)
supplemented with 10% FCS (Gibco), 10 ng/ml basic
fibroblast growth factor (bFGF), 5 ng/ml epithelial
growth factor (EGF), 5 ng/ml insulin-like growth
factor (IGF-1) and 5 ng/ml hepatocyte growth factor
(HGF). 

To induce differentiation, cells were treated with
5 µM 5-azacytidine (Sigma) for 72 hours in differen-
tiation medium (Iscove’s Modified Dulbecco’s
Medium/Ham’s F12 (1:1) (Gibco)) supplemented
with L-glutamine (Gibco), 2% horse serum, non-
essential amino acids, insulin-transferrin-selenium
supplement, and 10-4 M ascorbic acid (Sigma). After
induction, the medium was changed every three days.

RNA isolation and RT-PCR
RNA was isolated using TriPure (Roche) as described
by the manufacturer. cDNA was synthesised with the
iScript cDNA synthesis kit (Biorad). Primers for
quantitative reverse transcriptase polymerase chain
reaction (RT-PCR) were designed with Beacon
Designer 4.0 (Premier Biosoft International). Primer
sequences and annealing temperatures are available on
request. Quantitative expression of genes was normal-
ised for expression of β-actin. Results were analysed
on 10% acrylamide gel stained with ethidium bromide. 

Flow cytometric analysis
Cultured CMPCs (passage 7) were trypsinised and
200,000 cells per sample were used for fluorescence-
activated cell sorting (FACS) analysis. The cells were
washed twice in wash-buffer (wb: 1% FCS/PBS/
0.05M azide) and resuspended in 100 µl wb con-
taining antibody. The cells were incubated on ice in the
dark for 30 minutes, washed four times with cold wb,
resuspended in 250 µl wb and analysed using a
Beckman Coulter Cytomics FC500 FACS. Antibodies
used were fluorescein isothiocyanate (FITC) or phyco-
erthrin conjugated against CD14, CD34, CD45,
CD133, CD105 (endoglin), Sca-1, and isotype control
IgGs, all from Pharmingen BD. 

Immunocytochemistry
For immunocytochemistry, coverslips with cultured
cells were fixed in 4% paraformaldehyde at room
temperature or methyl alcohol at -20 °C. Cells were
permeabilised (0.2% Triton X-100/PBS) and blocked
(2% bovine serum albumin (BSA), 15-30 minutes).
Subsequently, coverslips were incubated overnight at
4 °C with primary antibody in PBS/10% normal goat
serum (NGS). The antibodies used recognised Cx40
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(Chemicon), Cx43 (Zymed), α-actinin (Sigma),
troponin I (Chemicon), and phospho-histone 3
(Abcam). The following day, coverslips were blocked
again and incubated with secondary antibody in
PBS/10% NGS for two hours. Immunolabelling was
performed using Texas Red (TR)- or FITC-conjugated
secondary antibodies (Jackson Laboratories). Hoechst
dye was used to localise nuclei. All incubation steps
were performed at room temperature and in between
all incubation steps cells were washed with PBS. Finally,
coverslips were mounted in Vectashield (Vector
Laboratories) and examined with a Nikon Optiphot-
2 light microscope equipped for epifluorescence. 

Immunohistochemistry
Cryo sections (7 µm) were blocked with 1.2% hydro-
gen peroxide in methanol for 15 min, air dried, and
after washing with PBS, blocked with 2% BSA in PBS
for 30 minutes. The sections were incubated with the
anti-Sca-1 antibody (Pharmingen), diluted 1:100 in
blocking solution, o/n at 4°C. PowerVision Poly-
HRP-Conjugates (ImmunoVision Technologies) was
used as secondary antibody with the Fast 3,3’-

diaminobenzidine tablet set (DAB, SIGMA). The
sections were counterstained with Meyer’s haema-
toxylin and mounted in Entellan.

Western blot analysis
Western blot analysis was performed as described
previously.27 Detection was by ECL (Amersham). 
P-H3 and H3 antibodies that specifically recognise
phosphorylated histone 3 or total histone 3, respective-
ly, were used 1:5000. Beta-actin detection (1:10,000,
Chemicon) was used as a loading control. 

Results

Localisation and characterisation of human
cardiomyocyte progenitor cells
To identify CMPCs in foetal and adult human heart,
we used an anti-Sca-1 antibody that has been shown
to recognise mouse cardiac progenitor cells.23 Human
CMPCs identified on this basis were found within the
atrium, the intra-atrial septum, the atrium-ventricular
boundary, and scattered within the epicardial layer
(figure 1). To isolate CMPCs, cardiac tissue was
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Figure 1. hCMPC in the human heart. (A-G) Immunohistochemistry for Sca-1 in foetal and adult heart. (B, C) High power magnification
of areas in A. (D) Atrial ventricular boundary. (E) High power magnification of area in D. (F, H) hCMPCs in biopsy from adult patient.
(G) High power magnification of area in F. (I) IgG control. Arrows designate some of the hCMPCs. Magnification: A, D, F, H, I: 100x,
B, C, E, G: 200x.
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enzymatically dissociated, followed by cardiomyocyte
depletion. Using a Ferro coupled anti Sca-1 antibody,
a cell fraction with a diameter of <50 µm was isolated
and subsequently characterised by flow cytometry
(figure 2). Foetal CMPCs were negative for CD45,
CD34, CD133, and CD14, and positive for CD105
and Sca-1. After isolation, foetal and adult progenitor
cells were able to proliferate in vitro as spindle-shaped
cells with a high nucleus-to-cytoplasm ratio (figure 3A
and B). RT-PCR analysis of foetal progenitor cells
revealed that they do not express Oct4, a marker for
pluripotent ES cells (figure 3C). However, they did
show expression of early cardiac transcription factors
Gata4 and Nkx 2.5, while cardiomyocyte-specific genes
were not expressed. Adult progenitor cells showed a
similar expression pattern (not shown). 

Cardiomyogenic differentiation of human CMPCs
To initiate differentiation of hCMPCs towards a
cardiomyogenic lineage, the proliferation of the cells
should be arrested. In P19 embryonal carcinoma cells
and mouse Sca-1+ cardiac progenitor cells, cardio-
myogenic differentiation can be induced by stimulation

with the demethylating agent 5-azacytidine.23,28

5-azacytidine inhibited cell proliferation of CMPCs,
as shown by the reduced number of mitotic figures,
staining positive for phospho-histone 3 (ser10) (figure
4A), and by Western blot of the same samples (figure
4B). We subsequently found a strongly increased
expression of the cardiomyogenic transcription factors
Gata4 and Nkx 2.5 (figure 4C). 

After stimulation with 5-azacytidine and culture in
differentiation medium for several weeks, hCMPCs
developed into spontaneously beating aggregates. 
RT-PCR showed increased expression of several
cardiomyocyte-specific genes (figure 5A). Differen-
tiated cells also showed expression of troponin I and
α-actinin (figure 5B), indicating that they had
become cardiomyocytes. The gap junctional proteins
connexin 40 and 43 were expressed at the cell
membrane border of hCMPC-derived cardiomyo-
cytes (figure 5C and D), suggesting that these cells
are able to functionally couple with each other and
other cardiomyocytes, which is necessary to form a
functional syncytium.
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Figure 2. Flow cytometric analysis of (stem) cell marker expression on cultured foetal hCMPCs. Histogram plots are shown with the isotype
control in black and the specific signal in white. 
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Figure 3. Bright field images of
foetal (A) and adult (B) hCMPCs.
(C) Semiquantitative RT-PCR on
RNA isolated from undifferentiated
hCMPCs probed for the expression of
the indicated genes. 
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Figure 4. (A) Immunocytochemistry
on hCMPCs before (left) and after
(right) 5-azacytidine stimulation.
Phosphorylated-histone 3 is indicated
in red, nuclei in blue. (B) Western
blot analysis for phospho-H3 and
total H3 on protein from hCMPCs
with or without 5-azacytidine
stimulation. (C) Quantitative RT-
PCR on RNA from hCMPCs with
(striped bars) or without (black bars)
5-azacytidine stimulation. Expres-
sion was normalised for β-actin and
fold expression was calculated com-
pared with control. 
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Discussion
In this study, we report the isolation and cardiomyo-
genic differentiation of resident cardiac progenitor cells.
We show that, upon isolation, these human CMPCs
are already committed to the cardiac lineage, as shown
by their expression of early cardiac transcription factors.
These cells can be efficiently propagated in vitro and
differentiated into spontaneously beating cardiomyo-
cytes after 5-azacytidine stimulation, excluding the
need for co-culture with neonatal cardiomyocytes. 

In the past years, several groups have reported the
identification of rodent and human cardiac progenitor
cells.29 Due to different methods for isolation and
subsequent culture it is difficult to make a direct com-
parison between these progenitor cell populations. It
is very likely, however, that they have been derived from
a common mesodermal precursor,30,31 and that current
isolation methods result in cell populations that are at
a different developmental stage. These cells were shown
to differentiate in vitro into cardiomyocytes; however,
none of these populations showed spontaneous beating
without co-culture with rat neonatal cardiomyocytes.
Moreover, they were shown to differentiate towards
the endothelial and smooth muscle lineage. In vivo,
cardiac progenitor cells also show the capacity to form

different cardiac cell types. It still remains unknown,
however, which signals are required to drive differen-
tiation. Furthermore, in vivo differentiation remains
inefficient, indicating the need to elucidate the fate of
cardiac progenitor cells under normal and pathological
circumstances. Possibly, the reactivation of the foetal
gene expression programme after myocardial infarction
or the release of growth factors play an important role
in guiding these cells towards their optimal potential.
In a separate study, we show that growth factor
addition during differentiation greatly enhances cardio-
myocyte formation and maturation in vitro.32 The
potential of hCMPCs to differentiate into endothelial
cells and smooth muscle cells as well, greatly enhances
their putative clinical application.

The unexpectedly high frequency with which we
were able to isolate and culture hCMPCs from atrial
biopsies of adult patients undergoing cardiac surgery
opens perspectives for autologous transplantation at a
later date than the initial surgery if cultures were carried
out under clinically compatible conditions. 

Analysis of the differentiation potential of the foetal-
derived hCMPCs showed that addition of the de-
methylating agent 5-azacytidine induced the expres-
sion of cardiac and contractile genes and spontaneous
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Figure 5. (A) Semiquantitative
RT-PCR on RNA isolated from
differentiated hCMPCs. (B) Im-
munolabelling against troponin I
(green) and α-actinin (red) in
hCMPCs differentiated into
cardiomyocytes after 5-azacytidine
stimulation. (C and D) Immuno-
labelling against the connexin
isoforms Cx40 and Cx43 (green)
and α-actinin (red). Arrows in-
dicate cell membrane localisation
of connexin isoforms. 
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beating. Expression of gap junctional proteins is almost
exclusively found on the sarcolemma of CMPC-
derived cardiomyocytes. It should, however, be con-
firmed whether these gap junction channels are
functional, e.g. by testing metabolic and electrical
coupling. Especially since transplantation of poorly
coupled skeletal myoblasts in human hearts in a clinical
trial resulted in ventricular tachyarrhythmias in some
patients.15 Proper intercellular coupling with host heart
cells will therefore be necessary in order to preserve
conduction characteristics and will be among the most
important criteria for determining whether hCMPCs
can be taken forward to clinical trials. A detailed electro-
physiological characterisation of hCMPC-derived
cardiomyocytes may be required to predict their
behaviour after transplantation and integration into
host tissue. Human CMPCs, characterised in this
study, provide a useful tool to study human cardio-
myocyte differentiation and could be used for drug
screening. Eventually they may serve as a suitable
source for cellular therapy in failing hearts.
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