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Abstract
The prevalence of obesity, an established risk factor for several chronic diseases including cancer,
has risen dramatically over the past four decades. Dietary change and/or increased physical activity
are the most commonly recommended lifestyle-based strategies for preventing or reversing obesity.
One of several physiological systems that may be enhanced by dietary change and exercise is the
immune system. This study examines the effects of energy restriction (ER; 30% reduction relative
to control energy intake) and/or EX (voluntary-wheel running) on systemic and mucosal immune
function. Female C57BL/6 mice were randomized into four treatment conditions: 1) controls
consuming food ad libitum (AL); 2) AL with access to running wheels (AL+EX); 3) 30% ER; and
4) 30% ER with access to running wheels (ER+EX). Both ER and EX reduced spleen weight and
the number of splenic T and B lymphocytes (P<0.05). ER enhanced NK cell function, but
significantly reduced Con A-induced T cell proliferation (P<0.05). In contrast, EX significantly
enhanced Con A-induced proliferation and cytokine production from Peyer’s patch cells (P<0.05).
These data suggest that ER and EX enhance some, but not all components of the immune system,
and are likely working via different biological mechanisms to regulate NK and T cell function.

Introduction
Considerable evidence from both human and animal studies indicates that changes in energy
balance can influence the risk of cancer and other chronic diseases (1,2). In humans, diverse
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epidemiological studies have found that obesity and sedentary behavior increase the risk of
cancer at numerous sites, particularly in the colon (3-6). In animal studies, energy restriction
(ER)8 and exercise (EX) interventions delay tumorigenesis in spontaneous and chemically
induced intestinal tumor models (7-10). The beneficial effects of ER and EX are likely to occur
through a variety of mechanisms; however, the extent to which these overlap and the specific
pathways associated with cancer prevention are poorly understood. Thus, gaining a better
understanding of the effects of ER and EX, individually and combined, on a number of
physiological systems is critical to elucidating the underlying biological mechanisms by which
ER and EX reduce the risk of tumor formation.

One of several physiological systems that may be enhanced by ER and EX is the immune
system (11-13), including both systemic and mucosal immunity. Improved systemic immune
function correlates with a reduction in tumor growth in several transplantable tumor models
(14,15), as well as reduced intestinal polyp number and increased survival in a spontaneous
intestinal tumor model (16). The mucosal immune system provides protection along the
epithelial mucosal surfaces (i.e. respiratory, urogenital, and gastrointestinal tracts). The
immune cells found in the Peyer’s patches, as well as other immunological sites in the gut, are
in close proximity to the epithelial cells in the small intestine that become transformed during
carcinogenesis. Thus, enhancement of mucosal immunity may provide selective protection
from the growth and development of intestinal tumors (17). One study exploring the efficacy

8Abbreviations used:

AL  
consumed food ad libitum

AL+EX  
consumed food ad libitum plus given access to voluntary running wheels

Con A  
concanavalin A

E:T  
effector:target

ER  
30% energy restriction

EX  
exercise

ER+EX  
30% energy restriction plus given access to voluntary running wheels

IL  
interleukin

km  
kilometer

mAb  
monoclonal antibodies

MCP-1  
monocyte chemoattractant protein-1

NK  
natural killer

NKCC  
NK cell cytotoxicity

SI  
stimulation index
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of probiotics on gut physiology has demonstrated a correlation between enhanced mucosal
cytokine production, and a reduction in chemically-induced colon carcinogenesis (18).
Together, these data suggest that improved immune function, either systemic or mucosal, is
beneficial in the therapy of some established tumors and more importantly, can prevent the
formation of neoplastic lesions in both spontaneous and carcinogen-induced models.

Changes in energy balance, ER and moderate EX enhance some components of systemic
immunity such as T cell function in aged animals (19,20) and NK cell function (21-28).
However, the age of the animal at the onset, the duration and severity of ER influence immune
responsiveness, reviewed in (29). Thus, additional studies are needed to fully characterize the
effect of ER on immunity.

The impact of moderate, regular EX on immunity has not been well studied. Many studies have
either examined the effect of an acute bout of EX or have studied the effect of high intensity,
exhaustive EX on systemic immune function (30), both of which are important in understanding
the physiological and immunological effects of training in athletes. However, these studies are
less relevant to understanding the mechanism(s) by which moderate EX may impact immunity,
and potentially serve as a cancer prevention strategy. Even less is known about the influence
of ER and EX on mucosal immune function. To date, only two studies in humans have
examined salivary IgA and both have demonstrated that salivary IgA is elevated with regular
EX training (31,32).

The purpose of this study was to investigate the effects of ER (30% energy restriction relative
to control intake) and EX (6 weeks of voluntary running) on systemic and mucosal immune
function in normal, non-tumor bearing mice. We hypothesized that negative energy balance
induced by ER, EX, or the combination of both would enhance systemic and mucosal immune
function. We chose to initially test this hypothesis in normal mice to characterize the effects
of these interventions on immune function in the absence of tumor since it is well documented
that tumors produce immunosuppressive factors (33) that may mask the relationship between
ER, EX and immunity. The establishment of an ER- and/or EX-induced enhancement of
immunity would provide the foundation for future studies to determine the role of immune
function in the anti-cancer effects of ER and/or EX.

Materials and Methods
Animals and treatment regimens

Forty-eight 6-week-old female C57BL/6 mice were obtained from Charles River Breeding
Laboratory (Frederick, MD). Upon receipt, mice were randomized to one of four treatment
groups and housed individually at the National Cancer Institute-Frederick specific pathogen-
free animal facility (Frederick, MD). Animal care was provided in accordance with the
procedures outlined in the “Guide for the Care and Use of Laboratory Animals.” The four
treatment groups included: 1) controls consuming food ad libitum (AL) (n=12); 2) AL-fed with
access to running wheels (AL+EX) (n=11); 3) 30% ER (n=11); and 4) 30% ER with access to
running wheels (ER+EX) (n=12). Mice were maintained on the ER and/or EX regimens for 6
weeks and then killed for collection of lymphoid organs. The AL control group was fed
AIN-76A diet (34). The ER diet was formulated such that the reduction in calories was entirely
from carbohydrates (35). All other components of the ER diet were isonutrient relative to the
AL control group when administered in daily aliquots equivalent to 70% of the average daily
intake of the AL control mice. Diets were manufactured by Bio-Serv, Inc. Access to running
wheels was facilitated by fitting individual cages with a mouse running wheel apparatus
(MiniMitter Co.). Wheel revolutions of individual mice were recorded and analyzed using the
Vital View software (MiniMitter Co.). Movement was not monitored in mice that did not have
access to running wheels. All mice were kept on a reverse 12 h dark (10:00-22:00)/light
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(22:00-10:00) cycle and provided with access to acidified distilled water ad libitum. Food
intake and body weights were monitored weekly, and mice were observed daily for signs of
ill health.

Body composition analysis
Mouse carcasses were scanned using a GE Lunar PIXImus Dual-Energy X-ray Absorptiometer
(DEXA) to assess bone mineral density, lean mass, fat mass, and percent body fat, as previously
described (35,36).

Isolation of immune cells
Single cell suspensions of splenocytes were prepared from individual mice by mechanical
dispersion as previously described (37). Peyer’s patches were excised from the wall of the
small intestine and the lymphoid cells were dissociated as previously described (38). The
number of Peyer’s patches per intestine from individual mice was counted and recorded. Single
cell suspensions of splenocytes and Peyer’s patch cells were counted and the viability
determined via trypan blue exclusion. The viability of splenocytes and Peyer’s patch cells from
all treatment groups was greater than 95%. The lymphoid cells from the Peyer’s patches of
three mice per treatment were pooled for use in the functional assays.

Lymphocyte proliferation assays
1 × 106 lymphocytes from the spleen or Peyer’s patches were incubated in the presence of Con
A as previously described (16). To adjust for potential ER and/or EX-induced changes in the
percentage of T cells, the number of T cells per well was calculated based on the total number
of cells per well (1 × 106) multiplied by the percentage of CD3+ cells in each tissue compartment
as determined by flow cytometry in an effort to report changes in proliferation on a per T cell
basis. Proliferation data are reported as stimulation indices (SI) per 1 × 106 T cells. SI were
calculated by dividing the 3H-thymidine uptake in Becquerel (Bq) from lymphocytes incubated
with Con A by the 3H-thymidine uptake from lymphocytes incubated with media alone. The
efficiency of the beta counter was 57% for 3H. Data are reported as SI rather than Bq because
immune experiments were performed on different experimental days and inter-assay variation
by day existed. The proliferation of lymphocytes incubated with media alone ranged from
25-204 Bq. The proliferation of lymphocytes with 0.25, 0.5, 1.0, and 2.0 mg/L of Con A ranged
from 0.1-2.3 kBq, 0.1-3.4 kBq, 0.6-3.8 kBq, and 0.7-3.6 kBq, respectively. Each assay was
performed in triplicate.

Cytokine production assays
1 × 106 lymphocytes from the spleen or Peyer’s patch were incubated in flat-bottomed, 96-
well plates in the presence of increasing concentrations of Con A. Supernatants were harvested
after 48 h of incubation with Con A. TNFα, IL-6, IL-10, IL-12p70, and MCP-1 were measured
using the Inflammation Cytokine Cytometric Bead Array kit (BD Biosciences) as per
manufacturer instructions. IFNγ, IL-2, IL-4, and IL-5 were measured using the Th1/Th2
Cytokine Cytometric Bead Array kit (BD Biosciences) as per manufacturer instructions.
Cytokine concentrations were adjusted per 5 × 106 cells in the spleen and 2 × 105 cells in the
Peyer’s patches. Each assay was performed in triplicate.

Cytotoxicity assays
NKCC was assessed in standard 4 h chromium release assay as previously described (39), using
100:1, 50:1, 25:1, 12.5:1 E:T ratios. NKCC experiments were performed using 51Cr-labeled
YAC-1 target cells. All NKCC measures were adjusted based on the percentage of NK cells
(NK1.1+) in the spleen as quantified via flow cytometry. All experiments were performed in
triplicate.
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Flow cytometric analyses
Single cell suspensions of splenocytes and Peyer’s patch cells were washed once in PBS at 4°
C. 1 × 106 cells were stained with saturating concentrations of conjugated antibodies for 30
min at 4° C as previously described (37). Following incubation with the conjugated antibodies,
cells were washed twice in PBS and then fixed in 1% paraformaldehyde for flow cytometric
analyses. Lymphoid and myeloid cells were gated on forward vs. side scatter and a total of
10,000 events were analyzed on a Becton Dickinson FACScan. Histograms of flow cytometric
analyses were plotted and analyzed using Cell Quest software (BD Biosciences).

Statistical analyses
All data are presented as the mean ± SEM. Differences in the mean kilometers run per day
between AL and ER mice were tested using Student’s t-test. Effects of ER and EX on body
composition (e.g., body weight, lean mass, fat mass, percent body fat, and bone mineral
density); lymphocyte proliferation; cytokine production and flow cytometric analyses were
examined using two-way ANOVA. Body weight was included as a covariate in the analysis
of bone mineral density and spleen weight; lean mass was included as a covariate for fat mass;
and Con A level was included as a covariate for SI in the proliferation assays. The variances
were unequal for fat mass and body weight. These data were log transformed which eliminated
the unequal variances. Using the log transformed data and the untransformed data resulted in
qualitatively identical results where diet had as strong effect and exercise had a moderate effect
on fat mass and body weight. Therefore the untransformed data were presented to be consistent
with the other 8 variables in Tables 1 and 2. Following determination of the ER and/or EX
effects using two-way ANOVA, Tukey’s HSD post-hoc test was used to compare individual
means among treatment groups. Statistical analyses were performed using SAS JMP. Statistical
significance was accepted at the P ≤ 0.05 level.

Results
Energy restriction impacts body composition to a greater extent than EX

ER significantly reduced body weight, fat mass, lean mass, percent body fat (Table 1; P
<0.001), and bone mineral density (P=0.002). In contrast, EX only significantly increased bone
mineral density (P=0.004). There were no interactive effects of ER and EX on any of the body
composition measures shown in Table 1. There was heterogeneity in running activity among
mice in both the AL+EX and ER+EX groups, with the distance run by individual mice ranging
from 1.1 to 7.7 km/day in the AL+EX group and 0 to 5.2 km/day the ER + EX group.

Energy restriction and EX reduce spleen weight and cellularity
Both ER and EX significantly reduced spleen weight (Table 2; P<0.001 and P=0.009,
respectively) and total splenocyte number (Table 2; P<0.001 and P=0.001, respectively). Body
weight was significantly reduced by ER but not EX (Table 1); therefore, spleen weight was
divided by body weight to adjust for differences in body size among mice in each of the
treatment groups (Table 2). EX reduced spleen weight as a percentage of body weight
(P=0.029), whereas ER was close but did not reach statistical significance (P=0.070). Although
there were robust, statistically significant effects of either ER or EX on splenic weight and
splenocyte number, there were no interactive effects of ER plus EX on these parameters
(P=0.237 and P=0.478, respectively). In contrast to the splenic measurements, neither ER nor
EX altered the number of Peyer’s patches per small intestine or the total number of cells in the
Peyer’s patches (Table 2).

Since the total number of splenocytes was significantly reduced by both ER and EX (Table 2),
we explored the distribution of leukocytes in the spleen among mice on each of the four
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treatment groups in an effort to identify the cell types most affected by each treatment (Table
3). ER significantly reduced the number of cells in the lymphoid compartment, including a
reduction in the total number of T cells (CD3+) and B cells (CD19+) (P<0.001 and P=0.003,
respectively). Within the T cell compartment, ER significantly reduced both the number of
CD3+CD4+ (helper) and CD3+CD8+ (cytolytic) T cells (P<0.001 and P=0.019, respectively).
However, ER did not alter the number of NK cells (NK1.1+), macrophages (CD11b+I-Ab+),
or dendritic cells (CD11c+I-Ab+). In contrast, EX reduced the number of T cells (P=0.022),
and in particular the number of CD3+CD8+ cytolytic T cells (P=0.028); but had no effect on
the number of CD3+CD4+ helper T cells (P=0.133). There was a reduction in B cell number
with EX; however, this effect did not reach statistical significance (P=0.069). EX reduced the
number of macrophages in the spleen (P=0.019), but not the number of NK or dendritic cells.

Unlike the robust effects of both ER and EX on the distribution of leukocytes in the spleen,
neither ER nor EX significantly altered the number of T cells, B cells or macrophages in the
Peyer’s patches (Table 4). ER, but not EX, significantly reduced the number of dendritic cells
in the Peyer’s patches (P=0.021). Finally, there were no interactive effects of ER or EX on the
distribution of leukocytes in the spleen (Table 3) or Peyer’s patches (Table 4).

EX significantly enhances T cell proliferation and cytokine production in Peyer’s patch cells
In splenocytes, ER had a significant inhibitory effect on Con A-induced T cell proliferation
(Fig. 1A; P=0.003); however, EX had no effect on T cell proliferation (Fig. 1A; P=0.352). In
contrast, there were significant main effects of both ER (P<0.001) and EX (P<0.001) on Con
A-induced T cell proliferation in Peyer’s patch cells (Fig 1B), as well as a significant interaction
between ER and EX on Peyer’s patch T cell proliferation (Fig. 1B; P=0.011). EX resulted in
a much greater enhancement of T cell proliferation in Peyer’s patch cells in AL mice (AL+EX)
than in mice that were energy restricted (ER+EX).

EX (P=0.014) but not ER (P=0.948) significantly enhanced interferon-γ (IFNγ) production by
splenocytes in response to Con A stimulation (Fig. 2A). However, neither ER nor EX
significantly altered Con A-induced IL-6 (Fig. 2B) and IL-5 (Fig. 2C) production from cultured
splenocytes. Similar to the effects of EX on splenic IFNγ production, EX significantly
enhanced IFNγ production from Peyer’s patch cells (Fig. 3A; P<0.001). In contrast, ER lowered
IFNγ production in Peyer’s patch cells, although this did not reach statistical significance (Fig.
3A; P=0.064). There was a significant main effect of EX (P<0.001) on Con A-induced IL-6
production in Peyer’s patch cells, as well as a significant interaction between ER and EX on
Peyer’s patch T cell proliferation (Fig. 3B; P=0.010), with EX having a much greater effect in
AL-fed mice as compared to ER mice. Finally, there were significant main effects of both ER
(P<0.001) and EX (P<0.001) on Con A-induced IL-5 production in Peyer’s patch cells (Fig
3C), as well as a significant interaction between ER and EX on Peyer’s patch IL-5 production
(Fig. 3C; P<0.001), with EX having only a stimulatory effect on IL-5 production in AL fed
mice (Fig. 3C). No differences were observed in the production of IL-2, IL-4, IL-12, MCP-1
and TNFα in response to ER or EX from either splenocytes or cells collected from the Peyer’s
patches (data not shown).

Energy restriction enhances NK cell function
ER (P<0.001), but not EX (P=0.298), significantly enhanced splenic NK cell cytotoxicity over
a range of effector to target (E:T) ratios (12.5:1 to 100:1) using Cr51-labeled YAC-1 target
cells. There was no evidence of an interaction between ER and EX on NK cell function
(P=0.368).
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Discussion
To our knowledge, these results provide the first documentation of the differential effects of
ER and EX on systemic and mucosal immune function. Both ER and EX reduced the size and
cellularity of the spleen, which is comprised mainly of a loss of T and B lymphocytes. Despite
these phenotypic similarities, the effects of ER and EX on the functional capacity of splenic
and intestinal lymphocytes markedly differed. ER significantly impaired splenic and intestinal
T cell proliferation, and had an inhibitory effect on cytokine production by intestinal
lymphocytes. However, ER significantly enhanced splenic NK cell function. These data
suggest that ER may be an effective intervention when enhanced NK cell function is a desired
outcome. However, the inhibitory effects of ER on T cell proliferation and cytokine production
may limit its use as an intervention strategy since adequate T cell function is an important
component of anti-tumor immunity (40). In contrast to ER, EX enhanced both mucosal T cell
proliferation and cytokine production, as well as IFNγ production in the spleen. Therefore, EX
may be an effective intervention either alone, or potentially in combination with other cancer
prevention strategies, to enhance the functional capabilities of lymphocytes, particularly those
residing in the intestine.

Our study was designed to compare immunologic parameters in response to the two most
commonly recommended weight control strategies, specifically ER and increased physical
activity. ER significantly reduced body weight from both the lean and fat mass compartments;
lowered percent body fat; and reduced bone mineral density, as previously reported (35,41).
In contrast, 6 weeks of voluntary EX did not significantly alter body weight or composition,
but did signficantly increase bone mineral density, which is consistent with a moderate EX
regimen (42,43). The absence of a statistically significant effect of EX on body weight or
composition is likely due to a relatively short training period (6 weeks). Subsequent studies in
our laboratory have shown that 12 weeks of voluntary running results in signficant changes in
body weight and composition (data not shown). Nevertheless, significant changes in bone
mineral density in the sample of animals studied here clearly indicate that physiological
changes are occurring in response to 6 weeks of EX.

Previous studies have also documented that ER and EX reduce the size and cellularity of the
spleen (44-46). However, this study is the first to demonstrate that these effects are tissue
specific, as the size and cellularity of the Peyer’s patches were not affected by either ER or
EX. The reduction in the size of the spleen with both ER and EX can be explained by a loss of
T and B lymphocytes. One hypothesis to explain these findings is that ER and EX induce
apoptosis of lymphocytes in the spleen. ER has been shown to increase Fas/Fas-ligand
expression on lymphocytes (47) and render T cells more sensitive to apoptotic signals (48).
No studies to date have examined the role of regular, moderate EX on apoptosis of splenic
lymphocytes; however, an acute bout of treadmill EX has been shown to induce apopotosis of
lymphocytes in the thymus, spleen and intestine (49,50). The biological mediator(s) of ER-
and/or EX-mediated lymphocyte apoptosis is not known, but previous studies have shown that
serum glucocorticoids, one possible candidate, are elevated in response to both ER (41,51,
52) and EX (50,53) and can induce apopotsis of T cells both in vitro (54) and in vivo (55).

ER significantly decreased Con A-induced lymphocyte proliferation of cells from both the
spleen and intestine. We also found a statistically significant interaction between ER and EX
on cytokine production from intestinal lymphocytes with ER inhibiting the EX-induced
enhancement of IFNγ, IL-6, and IL-5 production from intestinal lymphocytes. The effects of
ER on immune function are influenced by the duration of exposure to ER, with shorter term
exposure (6-8 weeks) often resulting in impaired function and longer term exposure resulting
in immune enhancement, reviewed in (29). For example, short term ER has been shown to
reduce splenic T cell proliferation in normal mice (56). Additionally, in several rodent

Rogers et al. Page 7

J Nutr. Author manuscript; available in PMC 2009 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



autoimmunity models, short term ER has been shown to decrease antigen specific proliferation
of T cells, as well as decrease cytokine and autoantibody production (57-58). Together, these
data suggest short term ER can suppress a number of T lymphocyte functions and may be
beneficial in situations where T cell activation has induced a disease state. However, short term
ER may not be beneficial to T cell function in young, healthy mice, as evidenced by the
reduction in Con A proliferation following ER, as well as the diminution of the EX-induced
enhancement of cytokine production by intestinal lymphocytes in this study.

In contrast to the inhibitory effect of ER on lymphocyte proliferation, EX significantly
enhanced Con A-induced lymphocyte proliferation in intestinal lymphocytes, but had no effect
on splenocyte proliferation. Previous reports in the literature have been inconsistent with some
studies reporting an increase (59-62), a decrease (63), or no effect (53,64) of regular, moderate
EX training on T cell proliferative responses. This heterogeneity in proliferative responses may
be due to timing of lymphocyte collection with respect to the last EX bout, and varying intensity
and duration of EX interventions. Finally, it appears that lymphocytes isolated from different
lymphoid tissue may be differentially impacted by EX training. For example, moderate EX
has been shown to enhance the Con A-induced proliferation of T cells collected from the
peripheral blood but not the spleen of hamsters (53). Additionally, treadmill EX in rats resulted
in an increase in Con A-induced lymphocyte proliferation in the mesenteric lymph nodes, but
not the spleen (65). These results are consistent with our findings in which proliferative
responses were increased following EX in intestinal lymphocytes but not splenocytes. These
data suggest that EX selectively enhances T cell proliferation in some, but not all lymphoid
organs.

In addition to documenting the EX-induced enhancement of intestinal T cell proliferation, this
study is the first to demonstrate an EX-induced enhancement of mucosal cytokine production,
which may improve cellular and humoral immune responses in the mucosa. To date, the only
mucosal immune endpoint examined in response to moderate EX has been the humoral
response, specifically the mucosal-associated antibody, IgA. Several studies in humans have
shown that salivary secretory IgA levels were enhanced with moderate EX training (31,32).
However, no studies have examined the effect of EX on cell-mediated immunity in the mucosal
compartment. In the present study, the novel findings that EX led to an increase in Con A-
stimulated lymphocyte proliferation in conjuction with an increase in the in vitro production
of IL-5, IL-6, and IFNγ from Peyer’s patch cells suggest that regular, moderate EX enhances
cell-mediated and potentially, downstream humoral responses in the mucosal immune system.
Since the Peyer’s patches are the inductive site in the mucosal immune system where immune
cells first encounter antigen and initiate IgA production and mucosal T cell responses (66), an
EX-induced enhancement of T cell reponses in the Peyer’s patches may result in improved
immunosurveillance aganst ingested pathogens and preneoplastic and/or neoplastic cell growth
in the gastrointestinal tract. However, additional studies in appropriate animal models are
needed to address this question.

Finally, in our study ER significantly enhanced NK cell cytotoxicity, as previously reported
(58). NK cells are important in controlling viral infections (67) and some neoplasias (39,68).
The increase in NK cell cytotoxicity as a result of ER may be one mechanism by which ER
may reduce tumor formation in spontaneous and chemically-induced tumor models, as it is
well documented that NK cells are an important component of anti-tumor immunity (69,70).
In previous studies, moderate EX has also been shown to enhance NK cell activity (21-28).
The lack of a statistically significant effect of EX on NK cell cytotoxicity in these studies may
be due to a relatively short training period (6 weeks). Other studies in the literature reporting
an EX-induced enhancement of NK cell function have utilized a training protocol of several
months.
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In summary, we have documented that ER and EX, two lifestyle-based interventions known
to prevent obesity and inhibit tumorigenesis in rodent models, differentially modulate
components of systemic and mucosal immunity. ER enhanced NK cell function in the spleen,
whereas EX mainly enhanced proliferation and cytokine production from intestinal
lymphocytes. These results demonstrate that ER and EX are likely working through different
mechanisms, at least with respect to regulating immune function. Additionally, these data
demonstrate that moderate EX can enhance lymphocyte proliferation and cytokine production
in the absence of signficant changes in body composition, suggesting that the immune
enhancing effects of EX in humans may be achieved in a relatively short period of time (6
weeks) without large decreases in body weight or fat mass. These findings also suggest that
EX may be an important intervention to couple with ER (diet) in humans to prevent the immune
inhibition that may result from short term ER. Finally, the results from this study suggest that
moderate EX may be a viable intervention strategy to test in combination with other cancer
prevention or therapeutic agents where an enhancement of cytokine and proliferative
capabilities of lymphocytes may be beneficial. Future studies are aimed at evaluating the role
of EX on antigen-specific immune function to determine if the EX-induced enhancement of
immunity observed in this study impacts adaptive immune responses (i.e. response to
vaccination) and influences anti-tumor immunity.
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FIGURE 1.
The effect of ER and EX on the proliferation of T cells collected from the spleen (A) and Peyer’s
patches (B). Lymphocytes were stimulated with Con A to induce T cell proliferation at the
concentrations indicated for 72 h. Data shown are means ± SEM (n=11-12/group). When the
interaction between ER and EX was significant, Tukey’s post hoc test was done to compare
individual means among treatment groups. Means without a common letter differ (P<0.05).
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FIGURE 2.
Con A-induced splenic IFNγ (A), IL-6 (B), and IL-5 (C) production from mice maintained on
AL, AL+EX, ER, or ER+EX treatments. Lymphocytes were stimulated with Con A to induce
cytokine production at the concentrations indicated for 48 h. Data shown are means ± SEM
(n=11-12/group).
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FIGURE 3.
Con A-induced IFNγ (A), IL-6 (B), and IL-5 (C) production from cells collected from the
Peyer’s patches in mice maintained on AL, AL+EX, ER, or ER+EX treatments. Lymphocytes
were stimulated with Con A to induce cytokine production at the concentrations indicated for
48 h. Data shown are means ± SEM (n=11-12/group). When the interaction between ER and
EX was significant, Tukey’s post hoc test was done to compare individual means among
treatment groups. Means without a common letter differ (P<0.05).
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TABLE 4
Distribution of leukocytes in the Peyer’s patches (mean ± SEM)1,2 among mice exposed to AL, AL+EX, ER, or ER
+EX treatments for 6 weeks

Treatment Group T cells (CD3+) B cells (B220+) Macrophages (CD11b+/I-Ab+) Dendritic cells (CD11c+/I-Ab+)

AL 3.5 ± 0.7 13.2 ± 1.8 0.8 ± 0.2 0.7 ± 0.1
AL+EX 2.8 ± 0.7 12.6 ± 2.4 0.9 ± 0.2 0.6 ± 0.1
ER 2.9 ± 0.3 11.5 ± 0.9 0.7 ± 0.3 0.4 ± 0.1
ER+EX 1.7 ± 0.3 8.3 ± 1.5 0.9 ± 0.3 0.3 ± 0.1

P (ER) 0.141 0.112 0.820 0.021
P (EX) 0.101 0.312 0.747 0.287

1
Data shown are the total number of cells in each subset (X 106).

2
These data represent the mean ± SEM of 4 pooled groups of 2-3 animals per group.

J Nutr. Author manuscript; available in PMC 2009 January 1.


