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ABSTRACT A theory is provided for the detection effi-
ciency of diffuse light whose frequency is modulated by an
acoustical wave. We derive expressions for the speckle pat-
tern of the modulated light, as well as an expression for the
signal-to-noise ratio for the detector. The aim is to develop a
new imaging technology for detection of tumors in humans.
The acoustic wave is focused into a small geometrical vol-
ume, which provides the spatial resolution for the imaging.
The wavelength of the light wave can be selected to provide
information regarding the kind of tumor.

There is a need to develop new imaging technology to detect
cancers and tumors in humans. The present technology needs
to be improved, and many different techniques have been sug-
gested (1–6). For example, x-rays and ultrasound show tumors
and provide accurate spatial information, but they do not pro-
vide information on the tumors’ nature. Infrared light diffuses
in humans and cannot provide information on spatial posi-
tions unless the tumor is very near to the surface. Light can,
however, provide information on the nature of the tumor, be-
cause different tumors have different absorption bands.

Recently, a new imaging technology that combines the ben-
efits of ultrasound and diffuse light was proposed (7). Since
then it has been under continuous development (8–13). By
having the ultrasound and light present simultaneously, and
by detecting the light intensity at the frequency modulated
by the sound wave, one detects photons that have interacted
with both sound and light. We use the phrase “tagging” to
denote the process of modulating the light wave by the ul-
trasound frequency. UTL is ultrasound tagging of light. By
focussing the sound wave into a small geometrical volume,
one can provide spatial information regarding where the tag-
ging occurred. The spatial resolution is about the wavelength
of the ultrasound, which is about 1 mm, depending on the
sound frequency. High frequency sound is used because of
its shorter wavelength. Pulsing the laser light allows multiple
images as the slow sound pulse travels through the medium.
Phased arrays can be used to send ultrasound in different di-
rections, which allows for sweeping over the complete volume.
The tagged signal should be different in the volume occupied
by a tumor. Varying the wavelength of the light can then pro-
vide information about the nature of the tumor, and the ultra-
sound can provide information regarding the tumor’s location.
When finally developed, this UTL technology could provide a
new method of imaging.

Although this idea is attractive, the UTL technology is still
in its embryonic stage. Here we develop a mathematical model
of the imaging process. We consider what kind of signal will
be detected in this measurement. Several related issues bear
upon this answer. First, what is the nature of the speckle pat-
tern for a modulated signal? Diffuse light from a coherent
source is known to be emitted with a interference pattern
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that is nearly random in nature. Its speckle properties are well
documented (14). In the present experiment, the light will be
provided by a laser. If the laser has frequency ωL and the
ultrasound has frequency ωS , the modulated light has a fre-
quency of ωL + ωS or else ωL − ωS . What are the speckle
properties of the modulated signal? As far as we can tell, this
issue has never been discussed. In the next section, we solve
this problem and derive the distribution of intensities for a
modulated signal. A second theoretical question is the nature
of the tagging process. We propose that it is Brillouin scatter-
ing. However, because the photons are diffusing, the theory
for the intensity of Brillouin scattering is quite different from
the theory in the usual formulas, which assume ballistic pho-
tons. Finally, the third issue is to derive an expression of the
signal-to-noise ratio (SNR) of the modulated signal. We show
that this ratio is independent of the area of the detector but is
proportional to the intensities of the laser and the ultrasound.

1. Modulated Signal

Here we develop a theoretical model for the ultrasonic modu-
lation of light in random media. Our final goal is an expression
for the SNR. This model has been tested by experiments that
are not described here. We have a detector of area A that
captures the light intensity (denoted by I) with an efficiency
η and converts it into a current (denoted by i). These are
proportional, i = ζI, where ζ = eηA/~ωL. The light intensity
and the current are regarded as having two components, which
are called the unmodulated and modulated signals. These are
understood by noting that the light intensity is given by the
square of an electric field, and the field has two components:

I = �E�2 [1]

E�t� = e−iωLt�EU + ET cos�ωSt�� [2]

I�t� = IU�t� + IM�t� cos�ωSt� + IT cos�2ωSt� [3]

IU = �EU �2 +
1
2
�ET �2 [4]

IM�t� = 2<�E∗UET� [5]

IT =
1
2
�ET �2: [6]

The electric field EU is from the unmodulated light. The elec-
tric field ET is from the light tagged by the ultrasound. Its
frequency is shifted by the ultrasound frequency. The signal
from IT is too small to detect, and the modulated signal is
from IM cos�ωSt�. It comes from the cross-term between the
unmodulated and the tagged electric fields. An important fea-
ture of these intensities is that IU is strictly positive, while IM
can have either sign. IM is not positive because it is a cross-
term between two different electric fields, which are statisti-
cally independent. The signal comes from iM = ζIM , while the
noise comes from iU = ζIU . The tagging process is very weak,

Abbreviations: UTL, ultrasound tagging of light; SNR, signal-to-noise
ratio.
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so that iM � iU . We introduce the dimensionless parameter
r, which is the fraction of light that is tagged:

�ET �2 = r�EU �2; [7]

which is averaged over the area of the detector. Below we
give a theory for this important parameter. It depends on the
power in the ultrasound source, as well as on various geomet-
rical factors due to the size and shape of the system.

The intensities IU;M are random variables with statistical
properties (14). When coherent light from a laser undergoes
diffusion, the emitted light has a speckle pattern (14). The
speckle is a pinpoint of light over which the signal is coher-
ent. The dimension of a speckle is dspeckle = 1:2λL`/da, where
λL is the wavelength of light, ` is the distance from the de-
tector to the sample surface, and da is the aperture of the
light at the surface. The area of a typical speckle is about
AS = αλ2

L, where α = 3 − 5. This estimate should be the
same for the modulated and unmodulated light, because their
wavelengths are nearly identical. We also define the number
of speckles NS = A/AS on the detector. It should be about
the same number for the modulated and unmodulated light.
The speckle patterns of these two signals will have different
arrangements and will not coincide, but they are similar in
area and number.

We are treating each speckle as being statistically indepen-
dent. This is the conventional model for the unmodulated sig-
nal. We apply the same model to the modulated signal, as is
discussed below.

1.1. Untagged Light. Write the current from the untagged
light as a summation over the individual speckles

iU = ξ
Ns∑
j=1

Ij [8]

ξ = eηAS

~ωL
; [9]

where Ij is the light intensity of the individual speckles. The
individual speckles have as their probability distribution (14)

Ps�I� =
1
I0
e−I/I0 ; [10]

where I is always positive. Here I0 is the average intensity of
the light at the surface. Using this distribution, we use Markov
methods (15) to calculate the average value of iU . First we
calculate the distribution of values for this current. It has a
probability distribution

P̄s�iU� =
〈
δ

(
iU = ξ

Ns∑
j=1

Ij

)〉
[11]

=
∫
ds

2π
eisiUm�s�Ns [12]

m�s� =
∫ :

0
Ps�I�dIe−isξI [13]

= 1
1+ isξI0

[14]

P̄s�iU� =
�iU/i0�Ns−1

i0�Ns − 1�!e
−iU /i0 [15]

i0 = ξI0: [16]

The distribution of current in the detector P̄�iU� is given by
the above expression. The current iU has a Poisson distribu-

tion. The averages for this distribution are well known:

�iU� =
∫ :

0
dJJP̄s�J� = Nsi0 [17]

�i2U� =
∫ :

0
dJJ2P̄s�J� = Ns�Ns + 1��i0�2: [18]

We shall use these results below. The term �iU� = Nsi0 is the
shot noise, and i0 is the average current from one speckle.

1.2. Modulated Light. Now we consider the statistical
properties of the modulated light IM , which gives the mod-
ulated current iM . As a modulation, it can be either plus or
minus with equal probability. Thus its statistical properties
are different from those of the unmodulated signal, which
is always positive. We have derived the results by using the
methods in ref. 14. From Eq. 7 we note that the size of the
tagged electric field is ET 7

√
rEU , so that the size of the

modulated intensity is IM 7
√
rIU :

PM�IM� =
1

2
√
rI0
e−�IM �/�

√
rI0� [19]

Again I0 is the average intensity of the unmodulated light.
The modulated current iM is written as a summation over the
speckles, as we did in Eq. 8 for the unmodulated light. Then
we start the statistical development as we did in Eq. 11. The
function m�s� has a different value because even moments of
iM vanish because it can have either sign.

P̄M�iM� =
∫
ds

2π
eisiMm�s�Ns [20]

m�s� =
∫ :

−:
PM�I�dIe−isξI [21]

m�s� = 1
1+ r�sξI0�2

[22]

This distribution can be given by a complicated series. How-
ever, at large values of Ns it is well approximated by a Gaus-
sian:

P̄M�iM� =
1

σ
√

2π
e−i

2
M/2σ

2
[23]

σ2 = 2Nsri
2
0: [24]

The averages for this distribution are

�iM� =
∫ :

−:
JdJP̄M�J� = 0 [25]

�i2M� =
∫ :

−:
J2dJP̄M�J� = σ2: [26]

The average value of the square of the modulation current
�i2M� is proportional to the number of speckles. The average
value of the square of the unmodulated current �i2U� is propor-
tional to the square of the number of speckles. This difference
occurs because the unmodulated intensity is always positive,
while the modulated current can have either sign.

One can think of the modulated signal as having a random
walk in intensity space. The average intensity is then zero,
while the average of the square is proportional to the number
of steps, which here is the number of speckles.

To give some feel for the magnitude of these quantities, we
give approximate values for the laboratory measurements. The
laser wavelength was λL = 1064 nm, which gives the speckle
As = 3:14 3 10−6 mm2. The detector had an area of A =
0:3 mm2, so the number of speckles is Ns = A/As = 105. The
current in the detector for one measurement was �iU� = 30µA
so that i0 = �iU�/Ns = 0:3 nA.
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2. Power Spectrum

The modulated signal (from the tagged light) and the noise
(from the unmodulated light) are both found from the power
spectrum (16, 17). Both can be derived from the current–
current correlation function. We use the definition of current
in ref. 3, keep only the first two terms, and assume that the
current is proportional to intensity:

A�τ� = �i�t + τ�i�t��
= �iU�t + τ�iU�t��
+ �iM�t + τ�iM�t� cos�ωSt� cos�ωSt +ωSτ��: [27]

We have assumed that the correlation of the currents �iU iM� =
0. The time dependence of the intensity IM�t�, and iM�t�, is
due to variations in the amplitudes of the electric fields. These
may be caused by variations in the intensity of the laser or
by the motion of the scattering centers in the medium. In
our intended application, the scattering centers that produce
the speckles are not fixed in position but are cells that are
diffusing or flowing in biological tissue. The speckle pattern
will change because of slow variations in the light intensity.
This change affects the power spectrum of both the modulated
and the unmodulated light. A measure of this effect is the
time constant for the decay in the autocorrelation function
of a single speckle. We assume that the time decay of the
correlation is of the form exp�−�τ�/τ0�, where τ0 is the decay
time. The important correlations are then

�iU�t + τ�iU�t�� = Ns�Ns + e−�τ�/τ0�i20 + eNsi0δ�τ� [28]

�iM�t + τ�iM�t�� = �i2M�e−�τ�/τ0 [29]

so that

A�τ�=N2
s i

2
0 +Nsi0�eδ�τ�+ i0e−�τ�/τ0�1+ r cos�ωSτ���: [30]

The term in A�τ� containing a delta function δ�τ� is due to
the shot noise.

From the Wiener–Khinchin Theorem (16, 17), the power
spectrum is the Fourier transform of A�τ�

P�ω� =
∫ :

−:
dτeiωτA�τ� [31]

= 2πN2
s i

2
0δ�ω� + ei0Ns

+ τ0Nsi
2
0

[
2

1+ �τ0ω�2
+ r

1+ τ2
0�ω−ωS�2

+ r

1+ τ2
0�ω+ωS�2

]
: [32]

The first term in δ�ω� is unimportant. The second term eNsi0
is the shot noise and provides the basic noise spectrum. The
last three terms are the signal from the fluctuations in the
untagged and the tagged light.

In the laboratory experiment, the power spectrum is record-
ed on a Hewlett–Packard spectrum analyzer. Let B be the
bandwidth of the spectral analyzer in hertz. We assume that
we evaluate P�ω� in the vicinity of the ultrasound frequency
ωS :

P̃ =
∫ ωS+πB

ωS−πB
dωP�ω� [33]

8 eBi0Ns +
Nsi

2
0r

π
tan−1�πBτ0�: [34]

The only noise term is the shot noise eNsi0. The second term
is the signal from the ultrasound tagging. The SNR of these

two terms is

S

N
= ri0
eBeff

[35]

1
Beff
= tan−1�πBτ0�

πB
: [36]

We have defined an effective band width Beff . In a labora-
tory experiment on static, phantom tissue, τ0 is very long,
πBτ0 � 1, so that Beff = 2B. However, on living biological
tissue, where cells diffuse or drift in blood flow, the value
of τ0 will be must smaller. The actual value must be mea-
sured for each case. However, we expect that πBτ0 � 1 so
that Beff = 1/τ0. Thus the SNR in a laboratory experiment on
phantom tissue should be much larger than that found in a
measurement on living biological tissue. The latter value can
not be determined without a measurement of τ0.

An important feature of our formula (Eq. 35) is that it
is independent of the area of the detector: the dependence
on the number of speckles has cancelled out of the numer-
ator and denominator. It is proportional to the intensity of
light because i0 has this dependence. The factor of r is also
proportional to the intensity of the ultrasound, as is derived
below.

3. Ultrasonic Tagging

The interaction between sound and light is weak. Here we
estimate this interaction and derive a formula for the modu-
lation efficiency r.

There are two different mechanisms of scattering light from
a collection of particles. The first is Brillouin scattering, which
is the coherent scattering from the density fluctuations. The
density modulation of the sound wave sets up a diffraction
scattering. It strongly scatters light in transparent media. Here
we discuss the intensity of scattering when the light is diffus-
ing with a mean-free-path that is less than the wavelength of
sound λS . The second mechanism of scattering is when the
light scatters from the individual cells in the biological me-
dia. This incoherent scattering we estimate to be much weaker
than the Brillouin scattering, and we neglect it.

We start with the standard Boltzmann equation (18–20) for
the density of photons f �Er; ŝ� at the position Er that are going
in the direction ŝ. The media provides the two attenuation
coefficients for scattering (µs) and absorption (µa).

�ŝ · E∇ + µs + µa�f �Er; ŝ�=µs
∫
d�s′

4π
p�ŝ · ŝ′�f �Er; ŝ′� [37]

The term on the right give the scattering into various direc-
tions, where p�ŝ · ŝ′� is the probability of scattering of the
particles, by the media, from ŝ to ŝ′. The light intensity I and
photon flux ES are defined as

I =
∫
d�s
4π

f �Er; ŝ� [38]

ES = c
∫
d�s
4π

ŝf �Er; ŝ�: [39]

The first moment of Eq. 37 is obtained by taking the integral
d�s over all directions

E∇ · ES + µacI = 0: [40]

Our primary interest is in the distribution function for the
modulated light. Denote its distribution by f ′�Er; ŝ�. We as-
sume that in a small region VUS the scattering rate is altered
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µ′s → µ′s + δµsVUSδ3�Er − Er0�. Then the tagged light obeys the
Boltzmann equation

�ŝ · E∇ + µs + µa�f ′�Er; ŝ�

= µs
∫
d�s′

4π
p�ŝ · ŝ′�f ′�Er; ŝ′� − δµsVUSδ�Er − Er0�

3

[
f �Er0; ŝ� −

∫
d�s′

4π
p�ŝ · ŝ′�f �Er0; ŝ′�

]
: [41]

Take the first two moments of this equation. Primed variables
refer to modulated light

cµaI
′ + E∇ · ES ′ = 0 [42]

c

3
E∇I ′ + �µ′s + µa� ES ′ = gδµsVUSδ�Er − Er0� ES [43]

µ′s = µs�1− g� [44]

gŝ′ =
∫
d�s
4π

ŝp�ŝ · ŝ′�: [45]

Eliminating I ′ from the above equations gives

�∇2 − γ2� ES ′ = 3gµaδµsδ�Er − Er0� ES [46]

γ2 = 3µa�µ′s + µa�: [47]

We have rapidly introduced a series of constants that may
be unfamiliar to the reader. The effective scattering rate µ′s
enters into the diffusion equation. The attenuation of the in-
tensity of light is given by the parameter γ. In Table 1, we
have collected some typical published data on light diffusion
through various types of biological tissue. Most of these val-
ues are in the range of γ = 2–4 cm−1. For γ = 3 cm−1 and
d = 5 cm, then exp�−γd� = 3 3 10−7. Although this value
is small, one can detect the light coming through the tissue.
The value of g is typically estimated to be 1 + g + 0:9 so
that µs is quite large. The value of the absorption coefficient
µa is quite small, typically 10–100 times smaller than µ′s. The
small value of the absorption coefficient is why the light dif-
fuses. The large value of the scattering coefficient µs predicts a
small value for the mean-free-path of the diffusing light. The
values for blood are noticeably different. Other data are in
refs. 24 and 25.

In solving this equation, we make the following assump-
tions. The sample is in a slab geometry. The incident light
of intensity Ii uniformly illuminates one side of the sample.
It reaches the scattering center at position Er0 (depth z0) with
an intensity Iirt exp�−γz0�, where rt is the transmission coef-
ficient for light to enter the tissue. From Eq. 40 one finds that
ES�Er0� = ẑ�µac/γ�Iirt exp�−γz0�. At the scattering center, the
scattered light is directed isotropically outward in all radial di-
rections. The scattered light that reaches the other side of the
sample at a distance R from the scattering center is as follows:

δI = rtIi
3VUSgµaδµs

4πR
e−γ�R+z0� [48]

ER = Er − Er0: [49]

Table 1. Light absorption and scattering

Type of tissue λ, nm µa, cm−1 µ′s , cm−1 γ, cm−1 Ref.

Human brain 1064 0.4 5.5 2.7 21
Canine prostrate 1064 0.4 4.4 2.4 21
Pig liver 1064 0.5 2.4 2.1 21
Pig stomach 805 0.16 20 3.1 22
Human skin 805 0.09 29 2.7 22
Rat muscle 633 0.36 11 3.5 22
Blood 633 25 8 50 23
subcutaneous fat 633 0.2 4 1.6 23

We estimate R = d − z0 in the exponent, and R 8 d/2 in
the denominator, where d is the thickness of the slab. These
approximations yield the following expression for the tagging
fraction:

r = 3VUSgµaδµs
2πd

: [50]

Another possible experimental setup is to use a continuous
wave ultrasound pulse. Then the ultrasound occupies a cylin-
der of area AUS in the sample. In our analysis, we assume the
cylinder is perpendicular to the direction that light defuses. A
similar analysis for this case yields

r = 3
2π
AUSgµaδµs: [51]

These expressions provide the basic geometrical factors relat-
ing to the tagging. Next we derive δµs from the interaction
between sound and light.

The ultrasound has a wave vector Eq. If 1 is the displacement
of the particles, then the variation in density caused by the
ultrasound is

δρ

ρ
= �q1� cos� Eq · Er −ωSt�; [52]

where ρ is the density of the system. In the standard theory
of Brillouin scattering, the variation in dielectric constant ε
caused by the density variations is

δε = ρδε
δρ

δρ

ρ
= �ε− 1��q1� cos� Eq · Er −ωSt�; [53]

where we assumed that ε = 1+ 4παρ because local field cor-
rections are small in systems where the cells are larger than
the wavelength of light. By using the Golden Rule of quan-
tum mechanics, we derive the tagging rate for a photon of
wave vector Ek:

δµs�Ek� =
πω2

L

4cn2
�ε− 1�2�q1�2δ�ωL −ω′L 5ωS� [54]

�q1�2 = IUS
IS

[55]

IS =
1
2
ρC3

s ; [56]

where n is the refractive index, c is the velocity of light, and Cs
is the velocity of sound. The ultrasound intensity is IUS , while
IS is a reference intensity, which is 1.7 W/m2 for water. The
tagged light has a frequency ω′L = c� Ek + Eq�. Because q � k,
one can approximate ω′L 8 ωL + ck̂ · Eq = ωL +ωS .

One must average over the directions Ek = kŝ of the pho-
tons. In diffusion this is given by f �ŝ; z� = n�z� + 3j�z�ŝ · ẑ/c.
The first term contains the density n�z� of unmodulated
photons, while the second contains their current �j =
−Ddn�z�/dz�. The current term gives a negligible contribu-
tion in the present geometry, because the ultrasound direction
Eq is perpendicular to ẑ.

We must also take into account the important fact that the
photons have a mean-free-path that is short compared to the
wavelength of the ultrasound. This provides an uncertainty for
the wave vectors of the photons. The uncertainty can be in-
cluded in the present analysis by replacing the delta function
for frequency conservation by a Lorentzian for the conserva-
tion of wave vector �ω′L = ck′�:

δ�ω′L −ωL 5ωS� →
1

2πc
µT

�k− k′�2 + �µT/2�2
[57]

µT = µs + µa: [58]
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By using expressions 55 and 57 in Eq. 54 gives

δµs =
π

2µT

(ωL
c

)2
�ε− 1�2 IUS

IS
F�2q/µT � [59]

F�x� =
∫ 1

0

dν

1+ x2ν2
= tan−1�x�

x
: [60]

The final expression for r in the CW limit 51 is

r = 3
4π

(
gµa
µT

)(
ωL
cn

)2

�ε− 1�2AUSIUS
IS

F

(
2ωS
CsµT

)
: [61]

A similar expression is derived for the pulsed ultrasound; the
area AUS is replaced by the factor VUS/d. These expressions
are our final result for the tagging due to Brillouin scatter-
ing in a turbid medium. The tagging fraction depends on the
ultrasound power PUS = IUSAUS . The factor of area cancels
away, showing that in the present geometry the power is the
important quantity.

4. Summary

We have considered the process where light is diffusing
through a material while a pulsed sound wave is focused into
a small volume VUS , or else a continuous wave source sends
the sound along a small a path with a small area AUS . The
diffusing light waves that enter the ultrasound region have a
small probability of inelastically scattering from the sound,
which shifts their frequency by the sound wave frequency.
This modulated light is then detected after it transmits the
sample. We derive an expression for the intensity of the mod-
ulated signal, as well as the noise spectrum. Thus we derive
an expression for the SNR, which is a key parameter when
deciding whether there is enough signal to take an image.
The SNR depends on the fraction r of photons that are mod-
ulated by the sound frequency. An expression was derived
for r by assuming that the important scatttering process was
Brillouin scattering of the photons by the sound waves.
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