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ABSTRACT We prove the Regular or Stochastic Conjec-
ture for the real quadratic family which asserts that almost
every real quadratic map Pc, c��� �−−−2; 1/4�, has either an at-
tracting cycle or an absolutely continuous invariant measure.

1. Statement of the Results

The goal of this note is to outline a proof of the Regular
or Stochastic Conjecture for the real quadratic family. A
quadratic map Pcx x 7→ x2 + c is called regular if it has an at-
tracting cycle. In this case, the attracting cycle is unique and
attracts almost all orbits. It is called stochastic if it has a fi-
nite, absolutely continuous invariant measure (acim). In this
case, the measure is unique and weakly Bernoulli, and al-
most all orbits are asymptotically equidistributed with respect
to it.

Main Theorem [Regular or Stochastic]. Almost every
real quadratic polynomial, Pc�z� = z2 + c; c � �−2; 1/4�; is
either regular or stochastic.

Regular quadratic maps are also called (uniformly) hyper-
bolic, because they are uniformly expanding outside the basin
of the attracting cycle. Stochastic maps can also be called
(nonuniformly) hyperbolic in the sense of the Pesin theory.
Thus one can say that almost any real quadratic map is hy-
perbolic.

Previously, it was known that the set of stochastic maps has
positive measure (1, 2), while the set of regular maps is open
and dense (see ref. 3 for the proof of this result and further
reference comments). Our Regular or Stochastic Theorem com-
pletes the measure-theoretical picture of dynamics in the real
quadratic family.

Let us remind the reader of the following topological de-
composition of the parameter interval: �−2; 1/4� = 2∪. ∪) ,
where 2 stands for the regular parameter values, . stands for
nonregular at most finitely renormalizable parameter values,
and ) stands for infinitely renormalizable parameter values.
The set 3 of stochastic parameter values is contained in . .
Thus the Main Theorem will follow from the following two
results:

Theorem 1.1 (4, 5). Almost every nonregular real quadratic
that is at most finitely renormalizable is stochastic: meas�. \
3� = 0.

Namely, in our joint project, Martens and Nowicki gave a
geometric condition for existence of an absolutely continuous
invariant measure (5), and the author showed that this condi-
tion is satisfied almost everywhere in . (4).

Theorem 1.2. The set of infinitely renormalizable real quad-
ratics has zero Lebesgue measure: meas�)� = 0.

We derive this result from the following Renormalization
Theorem for all real combinatorial types. Let us consider the
following objects (see Section 2 for the definitions or refer-
ences): 1, is the space of quadratic-like germs considered up
to affine conjugacy, and # = �f � 1, x J�f � is connected�
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is the connectedness locus in 1,; (�f � is the hybrid class of
f � #; z 7→ z2 + χ�f � is the straightening of f � #; - is the
family of maximal real Mandelbrot copies; p�M� is the renor-
malization period of a copy M � -; Rx ⋃M�- 4M → 1,
is the renormalization operator defined on the disjoint union
of the renormalization strips 4M labeled by the Mandelbrot
copies; 6 is the space of two-sided sequences of natural num-
bers; and ω is the shift on this symbolic space.

Theorem 1.3. There is a set ! of real quadratic-like germs
such that:• ! is R-invariant and R�! is topologically conjugate to the
two-sided shift ωy• The restriction R�! is uniformly hyperbolic;• Any stable leaf W s�f �; f � !; is a complex manifold
of codimension one within 1, coinciding with the hybrid class
(�f �y• Any unstable leaf W u�f � is an analytic curve that passes
transversally through all real hybrid classes except possibly the
cusp class (�P1/4�y• For any δ , 0; the renormalization operator has
uniformly bounded nonlinearity on the curves Yu�f � =
W u�f � ∩ χ−1�−2; 1/4− δ�y• The straightenings χx Yu�f � → �−2; 1/4−δ� are uniformly
quasi-symmetric.

Notes: 1. The hyperbolicity and nonlinearity above are un-
derstood with respect to a suitable Banach metric (compare
the Remark in Section 2.11).

2. The Renormalization Conjecture stated by Feigenbaum
and independently by Coullet and Tresser in 1978 has a rich
history (see ref. 10 for references).

3. This work completes a program of study of the real
quadratic family by complex methods carried in the series
of papers (refs. 6, 7, 3, 8, 4, 5, 9, and 10) and preprint
IMS at Stony Brook # 1997/8, http://www.math.sunysb.edu/
~mlyubich/horseshoe.ps.gz.

2. Outline of the Proof

2.1. Background. We assume familiarity with a basic holo-
morphic dynamics, including the theory of quadratic-like
maps, complex renormalization, and little Mandelbrot copies
(see refs. 3 and 11).

The Mandelbrot set will be denoted by M∗. A Mandelbrot
copy is called maximal if it is not contained in any other copy
except M∗ itself. It is called real if it is centered on the real
line.

The critical point of quadratic-like maps will be assumed to
be at 0. A quadratic-like germ is roughly a class of quadratic-
like maps coinciding near the common Julia set (see ref. 10
for the precise definition). We normalize the germs by the
requirement that f ′�0� = 0 and f ′′�0� = 1. Given a quadratic-
like germ f , let mod�f � denote the supremum of the mod�A�
where A runs over all fundamental annuli of f .

Two quadratic-like germs are called hybrid equivalent if they
are quasi-conformally conjugate by a map h with ∂̄h = 0 a.e.
on the filled Julia set K�f �. By the Straightening Theorem
(11), if K�f � is connected, then the hybrid class (�f � has a
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single intersection point c = χ�f � with the quadratic family
�Pc; c �M∗�.

If M � - and χ�f � � M , we say that f is renormalizable
with real combinatorics M . Its renormalization will be denoted
as Rf A RMf . If f is infinitely renormalizable, then its combi-
natorial type τ�f � is defined as the string �M0;M1; : : :�, where
Mn �- and χ�Rnf � �Mn, n = 0; 1; : : : :

Given a quasi-conformal map h, Dil�h� , 1 will stand for
its dilatation.

2.2. Geometry of the Yoccoz Puzzle. Let O denote the
“Misiurewicz wake” rooted at the real tip of the doubling
Mandelbrot copy (bounded by the two rays of angle 55/12
landing at this root). Let f be a quadratic map whose hybrid
class belongs to O. In ref. 3 we construct a nest V 0 � V 1 � · · ·
of Yoccoz puzzle pieces about 0 called the principal nest. For
any n > 1, there is a quadratic-like map gnx V n → V n−1

corresponding to the first return map of 0 to V n−1. A level
n is called central if gn+10 � V n+1. Let �nk� stand for the
sequence of noncentral levels.

Theorem 2.1 (3). mod�V nk+1 \ V nk+2� > Ck where C , 0
is an absolute constant.

Remark: A related result for real quadratics was indepen-
dently proven in ref. 12. Note that the further argument needs
in a crucial way the above Theorem 2.1 for complex parameter
values.

There is an important special type of unbounded combina-
torics when a big renormalization period is created by means
of the saddle-node phenomenon. The combinatorial param-
eter that controls such combinatorics is called the essential
period pe A pe�M�, M �- (see refs. 3 and 8).

Theorem 2.2 (3). Let f be renormalizable by RM and let
mod�f � > µ , 0. Then mod�RMf � > νM�µ� > ν�µ� , 0.
Moreover, νM�µ� → : as pe�M� → :.

2.3. A Priori Bounds. We say that a real map f is close
to the cusp if it has an attracting fixed point with multiplier
greater than 1/2.

Theorem 2.3 (8, 13). Let f be an n times renormaliz-
able real quadratic-like map with mod�f � > µ , 0. Then
mod�Rnf � > νn�µ� > ν�µ� , 0; unless the last renormaliza-
tion is of doubling type and Rnf is close to the cusp. Moreover,
lim inf νn�µ� > ν , 0, where ν is an absolute constant.

2.4. Combinatorial Rigidity Theorem.
Theorem 2.4 (3). Let f and g be two infinitely renormal-

izable quadratic-like maps (not necessarily real) with the same
real combinatorial type τ = �M0;M1; : : :�, Mn � -, and with
a priori bounds. Then f and g are hybrid equivalent.

2.5. Criterion for Existence of the Acim. Let In = V n ∩ �,
λn = �In�/�In−1�.

Theorem 2.5 (Martens and Nowicki, ref. 5). If
∑√�λn� +

: then f has an acim.
This result was derived in ref. 5 from the criterion of Now-

icki and van Strien (15):
∑ �Dfn�f �0���−1/2 + : implies exis-

tence of acim.
Corollary 2.6. If all but finitely many levels of the principal

nest are noncentral, then f has an acim.
Indeed, by ref. 7 (or by Theorem 2.1), the scaling factors λn

exponentially decay under the assumption of the Corollary.
2.6. Parapuzzle Geometry. In ref. 4 we have constructed a

special nest of tilings of the parameter plane by parapuzzle
pieces 1l�c�. The generalized renormalization gl;λ of level l
form a full holomorphic family over 1l�c�. Let 5l�c� � 1l�c�
be the set of parameter values with central return on level l.

Theorem 2.7 (4). For any c � M∗ ∩ O, mod�1l�c� \
5l�c�� > Cl with an absolute constant C , 0.

Let us consider a holomorphic quadratic-like family f ,
fλx Ũλ → Ũ ′λ, over a topological disk 3̃ � �. Let us restrict it
to smaller disks 3 � 3̃, U ′λ � Ũ ′λ, λ � 3̃, in such a way that
fλx Uλ A f−1

λ U ′λ → U ′λ is also a quadratic-like family over 3.
This family is called proper over 3 if fλ�0� � ∂U ′λ for λ � ∂3.

A proper family is called unfolded if the curve λ 7→ fλ�0�,
λ � ∂3, has winding number 1 around 0.

A quadratic-like family is called equipped if there is a holo-
morphic motion hλx �U ′∗;U∗� → �U ′λ;Uλ� over 3 respecting
the boundary dynamics, i.e., hλ�f∗z� = fλ�hλz� for z � ∂U∗
(where ∗ � 3 is a base point). For µ , 0, let 'µ stand for the
collection of equipped unfolded quadratic-like families with
mod�fλ� > µ, mod�3 \M�f�� > µ (where M�f� is the Man-
delbrot set of f), and Dil�hλ� < µ−1.

Theorem 2.8 (4). Let f � 'µ be an equipped quadratic-like
family over 3; and let M � -, p�M� , 2. Then RM f is
an equipped quadratic-like family of class 'ν�µ�. Moreover,
ν�M;µ� → : as pe�M� → ::

This result is crucial for the transverse control of the renor-
malization operator.

2.7. Proof of Theorem 1.1. Theorem 2.7 shows that 5l�c�
has an exponentially small size relative to 1l�c�. Thus central
returns have exponentially decaying probabilities (in the sense
of the Lebesgue measure). Hence the probability to have in-
finitely many central returns is equal to 0. By Corollary 2.6,
the probability not to have an acim is equal to 0 as well.

2.8. McMullen Towers. McMullen tower f̄ is a sequence
�fk�nk=l of quadratic-like germs with connected Julia sets such
that fk = Rfk+1. The combinatorial type τ̄ = τ�f̄ � of such a
tower is the sequence of Mandelbrot copies Mk � - such
that χ�fk� � Mk. One says that the tower has a bounded
combinatorics if supp�fk� is finite. One says that a tower
has a priori bounds if mod�f̄ � A inf mod�fk� , 0. Combining
Theorem 2.4 and the Rigidity Theorem of ref. 14, we obtain
the following theorem:

Theorem 2.9. Two bi-infinite towers with the same bounded
combinatorics and a priori bounds are affinely equivalent.

2.9. Parabolic Towers. Parabolic towers are geometric lim-
its of McMullen towers with uniformly bounded essential pe-
riod (see ref. 9). One can naturally define combinatorics and
the modulus of such a tower.

Theorem 2.10 (9). If two parabolic towers with a priori
bounds are combinatorially equivalent then they are affinely
equivalent.

2.10. Space of Quadratic-Like Germs and the Hybrid Fo-
liation. In ref. 10 we supplied the space 1, of normalized
quadratic-like germs with a complex analytic structure mod-
eled on a family of Banach spaces. (Note: this structure does
not turn 1, into a Banach manifold but turn it roughly speak-
ing into an “inductive limit of Banach manifolds.”) We then
showed that the hybrid classes form a foliation of the con-
nectedness locus # with complex analytic leaves that have
codimension one in 1,. This foliation is transversally quasi-
conformal. This, in particular, implies that the maximal real
Mandelbrot copies are uniformly quasi-conformally equivalent
to the whole Mandelbrot set M∗ (except for the doubling copy
near its root c = −3/4).

The renormalization operator R is defined on the union of
the renormalization strips 4M = χ−1M , M � -. Each re-
striction RM = R�4M admits an analytic continuation to an
appropriate Banach neighborhood of the strip.

2.11. Schwarz Lemma and Exponential Contraction.
Theorem 2.11. Let f and g be two hybrid equivalent

quadratic-like maps with modulus at least µ. Assume that f
and g are n+ 1 times renormalizable. Then

dist�Rnf;Rng� < Cρn; [2.1]

where ρ � �0; 1� is an absolute constant, and C , 0 depends
only on µ.

Remark: The above distance is induced by the uniform
norm in the Banach space "ε of bounded holomorphic func-
tions on �ε = �zx �z� + ε�. Here ε = ε�µ� , 0 should be
selected in such a way that Rnf and Rng are well-defined on
�ε (which is possible by Theorem 2.3).
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For maps with essentially bounded combinatorics, Eq. 2.1
follows from the rigidity of parabolic towers (Theorem 2.10)
and the Schwarz lemma in Banach spaces. The renormal-
izations of maps with big essential periods are close to the
quadratic family (by Theorem 2.2), and the Schwarz lemma
yields strong contraction.

Remark: For bounded combinatorics, Theorem 2.11 was
originally proven by Sullivan (16) and McMullen (14) (in a
different way).

2.12. Full Renormalization Horseshoe. Let ! � # stand
for the set of f � # such that there is sequence �fn�:n=−:
with f0 = f , Rfn = fn+1 and mod�fn� > µ = µ�f � , 0, n � �.

Theorem 2.12. There exists a homeomorphism ηx 6 → !
conjugating ω and R�!.

Theorem 2.3 implies that any combinatorial type τ̄ � 6 is
realizable by a nonescaping map f � !. Theorem 2.11 yields
uniqueness of f .

2.13. Shadowing Lemma and Hyperbolicity (Proof of Theo-
rem 1.3). To complete the proof of Theorem 1.3, we show that
lack of hyperbolicity of R�! implies existence of the slow shad-
owing orbits, i.e., there exists an f � ! and g � 1, \(�f �
such that dist�Rnf;Rng� + ε, n = 0; 1; : : : : On the other hand,
this situation is ruled out by Theorem 2.4.

2.14. Proof of Theorem 1.2. Theorem 1.3 implies that the
set ! ∩ Yu�f �, f � !, has definite gaps in arbitrary small
scales on the curves Yu�f �. Since the straightenings from

Yu�f � to the quadratic family are uniformly quasi-symmetric,
the set ) � � has the same property. Now the Lebesgue den-
sity points theorem yields the statement.

The final result of Theorem 1.3 was obtained in the fall of 1996
during author’s visit to Institut des Hautes Études Scientific. It was
partially supported by the National Science Foundation Grant DMS-
9505833.
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