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Abstract
No longer considered to be exclusive to cellular developmental pathways, the Wnt family of secreted
cysteine-rich glycosylated proteins has emerged as versatile targets for a variety of conditions that
involve cardiovascular disease, aging, cancer, diabetes, neurodegeneration, and inflammation. In
particular, modulation of Wnt signaling may fill a critical void for the treatment of disorders that
impact upon both cellular survival and cellular longevity. Yet, in some scenarios, Wnt signaling can
become the catalyst for disease development or promote cell senescence that can compromise clinical
utility. This double edge sword in regards to the role of Wnt and its signaling pathways highlights
the critical need to further elucidate the cellular mechanisms governed by Wnt in conjunction with
the development of robust pharmacological ligands that may open new avenues for disease treatment.
Here we discuss the influence of the Wnt pathway during cell survival, metabolism, and aging in
order for one to gain a greater insight for the novel role of Wnt signaling as well as exemplify its
unique cellular pathways that influence both normal physiology and disease.
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1. Introduction
1.1 The Discovery of the Wnt Pathway

Wnt proteins, derived from the Drosophila Wingless (Wg) and the mouse Int-1 genes, have
been shown to play a role in both cell development and cell demise (Chong et al., 2007a; Chong
et al., 2007c; Li et al., 2006c; Speese & Budnik, 2007). Wnt proteins are secreted cysteine-rich
glycosylated proteins that play a role in a variety of cellular functions that involve embryonic
cell proliferation, differentiation, survival, and death (Li et al., 2006c; Patapoutian & Reichardt,
2000; Wodarz & Nusse, 1998). More than eighty target genes of Wnt signaling pathways have
been demonstrated in human, mouse, Drosophila, Xenopus, and zebrafish. This representation
encompasses several cellular populations, such as neurons, cardiomyocytes, endothelial cells,
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cancer cells, and pre-adipocytes (Chong & Maiese, 2004; Li et al., 2005). Furthermore, at least
nineteen of twenty-four Wnt genes that express Wnt proteins have been identified in the human.

The Wnt pathway was initially identified as a proto-oncogene in mammary tumors that was
activated by integration of the mouse mammary virus (Nusse & Varmus, 1982). Since then,
components of the Wnt signaling pathway have begin linked to tumorigenesis such as with
adenomatous polyposis (Munemitsu et al., 1995), colon carcinoma (Morin et al., 1997),
medulloblastoma (Dahmen et al., 2001; Sauvageot et al., 2007), tuberous sclerosis (Jozwiak
& Wlodarski, 2006), and lung cancer (Xu et al., 2007). Subsequent work has demonstrated the
importance of Wnt-Frizzled (FZD) transduction pathway in controlling the pattern of the body
axis as well as the development and maturation of the central nervous system (Augustine et
al., 1993; Ikeya et al., 1997), cardiovascular system (Marvin et al., 2001; Naito et al., 2006;
Palpant et al., 2007; Singh et al., 2007), and the limbs (Kengaku et al., 1997) (Table 1).

During embryological development, alternations of the Wnt-FZD pathway can lead to
abnormal morphogenesis in animal models (Ikeya et al., 1997; Liu et al., 1999; Stark et al.,
1994) and congenital defects in humans (Jordan et al., 2001; Niemann et al., 2004; Rodova et
al., 2002). In mature tissues, the Wnt-FZD pathway is involved in the self-renewal of
pluripotent embryonic stem cells (Bakre et al., 2007), bone formation (Canalis et al., 2007),
and may be responsible for the maintenance of many normal tissues (He et al., 2004; Reya et
al., 2003; Ross et al., 2000; Willert et al., 2003) as well as cellular senescence (Liu et al.,
2007). Other studies have revealed that dysfunction of the Wnt-FZD pathway can lead to
neurodegenerative disorders, such as Alzheimer’s disease (Balaraman et al., 2006; Chong et
al., 2007a; Marambaud et al., 2002; Morin et al., 2004; Soriano et al., 2001) and heart failure
(Barandon et al., 2003; Barandon et al., 2005; Li et al., 2006c; van de Schans et al., 2007).

1.2 Functional Classes and Receptors of Wnt Proteins
The molecular structural characteristics that all Wnt proteins share with varying degrees of
sequence identity involve the 39–46 kDa lipid-modified secreted glycoproteins containing
350–400 amino acids with a highly conserved pattern of 23–24 cysteine residues and several
asparagines-linked glycosylation sites (Li et al., 2005, 2006c). Some Wnt proteins also have
an additional domain, such as the Drosophila Wg, that contains an 85-amino acid domain near
the center of the protein (Nusse & Varmus, 1992). Wnt proteins are generally divided into
functional classes based on their ability to induce a secondary body axis in Xenopus embryos
and to activate certain signaling cascades that consist of the Wnt1 class and the Wnt5a class.
These involve intracellular signaling pathways that are critical for Wnt signal transduction.
However, it should be stated that the lines between these pathways are sometimes blurred and
not distinct, especially with the reliance upon common pathways that can involve calcium
signaling and Dishevelled (DVL), a cytoplasmic multifunctional phosphoprotein (Axelrod et
al., 1998; Boutros et al., 1998). The mammalian DVL protein family contains DVL-1, DVL-2,
and DVL-3. DVL family members have three conserved domains that include an N-terminal
DIX domain named for DVL and Axin, a central PDZ domain termed for Postsynaptic
density-95, Discs-large and Zonula occludens-1, and a C-terminal DEP that is named for DVL,
Egl-10 and Pleckstrin. DVL is a key transducer of Wnt signaling that acts at the plasma
membrane or in the cytoplasm in all three Wnt-FZD signaling pathways. Yet, DVL also acts
within the nucleus, since nuclear localization of DVL can be vital for functioning in the Wnt-
FZD signaling pathway (Itoh et al., 2005).

One of the Wnt pathways controls target gene transcription through β-catenin, generally
referred to as the canonical pathway that involves Wnt1, Wnt3a, and Wnt8 (Figure 1). The
members of the Wnt1 class are inducers of a secondary body axis in Xenopus and include Wnt1,
Wnt2, Wnt3, Wnt3a, Wnt8, and Wnt8a. Wnt proteins of this class facilitate activation of the
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FZD transmembrane receptor and the co-receptor lipoprotein related protein 5 and 6 (LRP-5/6).
Ultimately, this leads to the activation of the Wnt/β-catenin pathway and DVL.

Other Wnt pathways pertain to intracellular calcium (Ca2+) release (Figure 1). These involve
the non-canonical or Wnt/Ca2+ pathway consisting primarily of Wnt-4, Wnt-5a, and Wnt-11
that functions through non-β-catenin-dependent pathways and also include the planar cell
polarity (PCP) pathway (Patapoutian & Reichardt, 2000) and the Wnt-Ca2+-dependent
pathways (Patapoutian & Reichardt, 2000;Slusarski et al., 1997). The Wnt5a class cannot
induce secondary axis formation in Xenopus and includes the Wnt proteins of Wnt4, Wnt5a,
Wnt5b, Wnt6, Wnt7a, and Wnt11. Wnt proteins in the PCP pathway bind the FZD
transmembrane receptor and employ DVL to activate effector pathways through Rho/Rac small
GTPase and Jun N-terminal kinase (JNK) (Seifert & Mlodzik, 2007). In the Wnt-Ca2+-
dependent pathways, calcium dependent kinases are activated through G-protein signaling that
leads to elevations in intracellular Ca2+ either through cGMP or phospholipase activation (Ma
& Wang, 2006;Schulte & Bryja, 2007;Slusarski et al., 1997).

The receptors of Wnt proteins consist of at least ten mammalian isoforms of the FZD family.
The FZD proteins are named after the first member of the Drosophila tissue polarity gene
Frizzled (Adler et al., 1990; Vinson et al., 1989). Members of the FZD protein family are listed
as a distinct family of G-protein-coupled receptors (Foord et al., 2005). The FZD proteins have
a N-terminal signal peptide, an extracellular domain that contains a 120-amino acids, a
cysteine-rich domain followed by a hydrophilic linker region that shows little sequence
similarity among family members, a highly conserved seven-transmembrane domain separated
by short extracellular and cytoplasmic loops, and a cytoplasmic domain of variable size and
little sequence homology among family members (Adler et al., 1990; Vinson et al., 1989;
Wodarz & Nusse, 1998). Some Wnt proteins, such as Wnt8, can directly bind with the full-
length FZD receptor protein. A single Wnt protein also can bind to a combination of FZD
receptor proteins, including homologous members from a different species (Hsieh et al.,
1999b). Interestingly, FZD proteins can bind proteins from other protein families, such as R-
spondin and Norrin, and the FZD cysteine-rich domain also exists in several other proteins that
include the soluble secreted FZD-related proteins (sFRPs) (Mayr et al., 1997; Melkonyan et
al., 1997), some receptors of tyrosine kinases (Jennings et al., 1993; Wilson et al., 1993),
carboxypeptidase Z (Song & Fricker, 1997), the membrane-bound serine protease Corin (Yan
et al., 1999), and an isoform of collagen (Rehn & Pihlajaniemi, 1995). These proteins appear
to function as important regulators during Wnt-FZD signaling. For example, the sFRPs have
been found to function as antagonists of the Wnt pathway (Hsieh et al., 1999a; Mayr et al.,
1997; Melkonyan et al., 1997).

In addition to the FZD protein receptors, other obligate co-receptors also are necessary for
canonical Wnt-FZD signaling pathway. A transmembrane protein termed LRP-5/6 from the
low-density-lipoprotein receptor family is required (Pinson et al., 2000; Tamai et al., 2000;
Wehrli et al., 2000). In the canonical Wnt-FZD pathway, Wnt binds to both the FZD receptor
and the co-receptor low-density lipoprotein receptor-related protein 5/6 (LRP-5/6) (Wehrli et
al., 2000) resulting in the inhibition of the downstream component glycogen synthase
kinase-3β (GSK-3β). Wnt signaling also can be transmitted through the binding of extracellular
domain of LRP-5/6 to Axin, a key component in the GSK-3β complex, indicating that the
LRP-5/6 receptor is an important part of the Wnt-FZD signaling pathway (Mao et al., 2001;
Tolwinski et al., 2003).

Ryk also represents another co-receptor that belongs to one of divergent members of the
receptor tyrosine kinase family. Ryk not only can form a complex with FZD proteins such as
the co-receptor LRP-5/6 resulting in activation of the canonical Wnt-FZD signaling pathway,
but also can regulate the non-canonical Wnt-FZD signaling pathway through FZD independent
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pathways (Bejsovec, 2005; Lu et al., 2004). The molecular structure of all Ryk genes is
characterized by an extracellular domain with homology to Wnt inhibitory factor-1 (WIF1), a
single transmembrane-spanning sequence to which Wnt proteins bind (Schneider et al.,
1999). In addition, a conserved intracellular PDZ-binding motif exists which links Ryk to
downstream molecules of Wnt-FZD signaling pathway, such as DVL (Bejsovec, 2005; Lu et
al., 2004). Wnt proteins can bind to the extracellular domain of the Ryk receptor through the
intracellular PDZ-binding domain in the Ryk receptor to regulate multiple cellular functions
through either the canonical or the non- canonical Wnt-FZD signaling pathway. For example,
mammalian Ryk can function as a co-receptor with FZD to bind to Wnt1 and Wnt3a through
its WIF domain and interact with DVL via its PDZ domain resulting in the stimulation of
neurite outgrowth (Lu et al., 2004).

1.3 The Canonical and Non-Canonical Wnt Pathways
The canonical Wnt signaling pathway is referred to as the Wnt/β-catenin pathway since it can
regulate β-catenin protein levels to control the activation of Wnt-responsive target genes
(Figure 1). All Wnt signaling pathways are initiated by interaction of Wnt proteins with FZD
receptors, but in this pathway, the Wnt signaling pathway will only be activated if the binding
of the Wnt protein to the FZD receptor takes place in the presence of the co-receptor LRP-5/6
resulting in the formation of a Wnt-FZD-LRP-5/6 tri-molecular complex (Mao et al.,
2001;Pinson et al., 2000;Wehrli et al., 2000). Once Wnt protein binds to the FZD receptor and
the co-receptor LRP-5/6, this is followed by recruitment of DVL. DVL is phosphorylated by
casein kinase Iε to form a complex with Frat1 and inhibit GSK-3β activity (Kishida et al.,
2001;Lee et al., 1999;Papkoff & Aikawa, 1998).

The formation of the Wnt-FZD-LRP-5/6 complex also promotes the LRP-5/6-mediated
degradation of Axin (Mao et al., 2001). The inhibition of GSK-3β activity by Wnt with the
degradation of Axin blocks the formation of the protein complex consisting of GSK-3β, Axin,
and adenomatous polyposis coli (APC) tumor suppressor protein. If the formation of the protein
complex of GSK-3β, Axin and APC tumor suppressor protein does not occur, accumulation
of free β-catenin results for translocation to the nucleus (Ikeda et al., 1998). Once positioned
in the nucleus, the free β-catenin acts as a transcription factor and activates Tcf and Lef by
forming nuclear complexes with members of the Tcf/Lef transcription factor family (Ishitani
et al., 2003). This leads to the transcription and expression of a variety of Wnt-responsive target
genes such as c-Myc (He et al., 1998), cyclin D1 (Shtutman et al., 1999; Tetsu & McCormick,
1999), and Axin 2 (Jho et al., 2002; Lustig et al., 2002). In addition, the complexes of Tcf/Lef
and β-catenin may cooperate with factors activated by other signaling pathways to alter cellular
remodeling processes.

The canonical Wnt signaling pathway also is activated by several other cellular mechanisms.
The shifting of proteins from the cadherin-bound pool to the cytoplasmic pool can increase the
amount of available free β-catenin for the activation of target genes. Several receptor tyrosine
kinases can phosphorylate tyrosine residues of the β-catenin and cadherin-catenin complex to
allow β-catenin to become dissociated from the complex and increase the amount of β-catenin
in the cytoplasm for subsequent translocation to the nucleus. Furthermore, surface receptors,
such as epidermal growth factor receptor, c-RON, cErbB2, and erythropoietin receptor (EPOR)
can then stimulate the canonical Wnt signaling pathway (Bonvini et al., 2001; Danilkovitch-
Miagkova et al., 2001; Graham & Asthagiri, 2004; Li et al., 2006b). In addition, both insulin-
like growth factor and erythropoietin (EPO) lead to β-catenin stabilization (Li et al., 2006b;
Playford et al., 2000). The canonical Wnt signaling pathway also regulates cyclin D1 through
the inhibition of GSK-3β and cAMP-responsive element-binding protein (CREB) pathway
(D’Amico et al., 2000) as well as protein kinase A and CREB (Chen et al., 2005).
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The non-canonical or atypical Wnt signaling pathway has two intracellular signaling cascades
that consist of the Wnt/Ca2+ pathway and the Wnt/PCP pathway (Figure 1). In the Wnt/Ca2+

pathway, Wnt protein binds to FZD receptors on the cell surface resulting in several cellular
processes that involve stimulation of heterotrimeric G proteins, increased intracellular Ca2+

release, decreased cyclic guanosine monophosphate (cGMP) levels, and activation of the two
kinases Ca2+-calmodulin-dependent protein kinase II (CamKII) or calcineurin (CaCN) and
protein kinase C (PKC). Activation of these pathways can stimulate nuclear factor (NF)-AT
and other transcription factors (Li et al., 2006c;Wang & Malbon, 2003). Thus, the Wnt/Ca2+

pathway is most likely a G-protein dependent signaling pathway (Chong & Maiese,
2004;Maiese et al., 2005a;Wang & Malbon, 2004). In the Wnt/PCP pathway, Wnt proteins
bind to FZD receptors on the cell surface followed by activating Rho/Rac small GTPase (Habas
et al., 2003) and JNK (Moriguchi et al., 1999) to assist in the subsequent regulation of
cytoskeletal organization and gene expression.

Interestingly, several of the downstream proteins identified in the Wnt-FZD signaling pathway
can independently function with proteins from other cellular systems. For example, DVL is
able to directly regulate JNK activity (Li et al., 1999) and GSK-3β activity (Boutros et al.,
1998). Free β-catenin also can form a complex with α-catenin and members of cadherins family
to function as a structural adaptor protein linking cadherins to the actin cytoskeleton in cell-
cell adhesion processes. Association with cadherins can effectively sequester β-catenin from
the cytoplasmic pool that is responsive to Wnt-FZD signaling (Fagotto et al., 1996; Sadot et
al., 1998). As a result, the modulation of cadherin expression and function can indirectly
regulate the Wnt-FZD signaling pathway through β-catenin. Because both cadherins and Wnt
proteins have been demonstrated to regulate aspects of synapse formation, the interaction
between these proteins also may play a critical role in the development of nervous system
(Hall et al., 2000; Patapoutian & Reichardt, 2000; Tanaka et al., 2000).

2. The Wnt Pathway in Development and Metabolism
2.1 The Wnt Pathway, Stem Cells, and Development

The Wnt-FZD signaling pathway forms a critical component for the development of the brain,
spinal cord, and the cardiovascular system (Table 1). Wnt can regulate the course of progenitor
cells in various regions of the nervous system (Bronner-Fraser, 2004;Hirabayashi et al.,
2004;Lee et al., 2004;Muroyama et al., 2004). Wnt pathway components that involve β-catenin
and GSK-3β can control hippocampal and subventricular zone progenitor cell proliferation and
differentiation (Adachi et al., 2007;Wexler et al., 2007). Modulation of β-catenin in the Wnt
pathway also may be involved in the control of the orphan nuclear receptor Nurr1 that is vital
for the development and maintenance of midbrain dopaminergic neurons (Kitagawa et al.,
2007). The Wnt pathway, such as through Wnt1, also controls neuronal proliferation in the
caudal midbrian region (Panhuysen et al., 2004). Even during periods of injury, such as during
ischemia, Wnt signaling has recently been associated with neural stem cell proliferation (Wang
et al., 2007b). However, abnormal Wnt signaling can lead to progenitor cell proliferation, but
ultimately may not influence cell survival or differentiation (Chevallier et al., 2005).

In regards to the cardiovascular system, Wnt signaling has recently been shown to mediate the
development of early blood and endothelial cells from human embryonic stem cells (Woll et
al., 2007) (Table 1). Activation of the Wnt pathway through Wnt3a promotes the development
of multipotential mesendodermal progenitor cells to eventually differentiate along endothelial,
cardiac, and vascular smooth muscle lineages (Bakre et al., 2007). Wnt2 also has been found
to influence progenitor cells to differentiate along endothelial and cardiac lineages (Wang et
al., 2007a). Furthermore, canonical Wnt signaling fosters the expression of mammalian cardiac
progenitors (Kwon et al., 2007) as well as right ventricular growth (Ai et al., 2007).
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During cardiac development, Wnt9a has been found to stimulate β-catenin-responsive
transcription in avian cardiac atrioventricular endocardial cushions and lead to cell proliferation
(Person et al., 2005). It also has been shown that conditional targeting of APC, a protein that
can down-regulate intracellular levels of β-catenin in the neural crest, yields apoptosis of
cardiac neural crest cells, resulting in cardiac anomalies at birth (Hasegawa et al., 2002). The
Wnt/β-catenin also assists with the aggregation of cardiomyocytes during development
(Toyofuku et al., 2000). Recent work that has generated conditional β-catenin-deletion mutant
animals in the proepicardium demonstrate that the epicardial β-catenin pathway is required for
the development of the subepicardial space and the differentiation of epicardium-derived
mesenchymal cells into coronary smooth muscle cells (Zamora et al., 2007). These studies
suggest that Wnt signaling and β-catenin are required for proper development of cardiac tissue.
Several studies also provide support for the ability of the Wnt system through GSK-3β to
regulate cardiac development and hypertophy (Hardt & Sadoshima, 2002). In addition, the
BMP pathway appears to be vital for the specification of the first heart field, but that Wnt/β-
catenin signaling regulates the second heart-field (Klaus et al., 2007). Other studies that
examine β-catenin expression in the avian mesonephros, a transitory embryonic kidney that is
used in the study of vascular development and degeneration, have shown that degenerating
mesonephros and glomerular capillary tufts had significantly depressed β-catenin expression.
These observations are in contrast to viable cells with prominent β-catenin expression,
suggesting that β-catenin expression was linked to remodeling of the vascular system (Nacher
et al., 2005).

Timing of events, temporal location, and non-canonical pathways also appear to be notable
factors to mention. Inhibition of Wnt signaling can promote cardiac formation in the anterior
lateral mesoderm, but active Wnt signaling in the posterior lateral mesoderm is required for
blood development (Marvin et al., 2001). Activation of the Wnt/β-catenin pathway in the early
phase during embryoid body (EB) formation enhances embryonic stem cell differentiation into
cardiomyocytes, but activation of this pathway in the late phase after EB formation inhibits
cardiomyocyte differentiation and enhances the expression of hematopoietic/vascular marker
genes through suppression of BMP (Naito et al., 2006). Non-canonical Wnt pathways and
antagonists of the Wnt pathway also play a role with cardiac development, such as with stromal
vascular cells derived from the stromal vascular fraction of adipose tissue (Palpant et al.,
2007) and embryonic stem cell differentiation into cardiomyocytes (Singh et al., 2007). In
addition, Wnt11 can promote cardiomyogenic differentiation of human circulating endothelial
progenitor cells through activating the non-canonical protein kinase C (PKC)-dependent
signaling pathway (Koyanagi et al., 2005).

A number of studies have demonstrated that several components of the Wnt-FZD signaling
pathway also can oversee cell proliferation and migration during development in the nervous
system. In Xenopus embryos, the Wnt-FZD signaling pathway has been shown to activate
neuronal development through inhibition of bone morphogenetic protein (BMP) 4 expression
(Baker et al., 1999). BMP 5 also is involved in dorsal pattern specification, which may play
an important role in dorsal-ventral patterning of the developing brain which is ultimately under
control of the Wnt-FZD pathway (Ellies et al., 2000; Golden et al., 1999). BMPs through Wnt
signaling also can increase the number of tyrosine hydroxylase-positive locus coeruleus
neurons (Holm et al., 2006). BMP and a Wnt-BMP signaling loop can regulate cell
proliferation, migration, and axonal guidance of neurons in the developing nervous system
(Chizhikov & Millen, 2005; Yeo & Gautier, 2004). It also appears that blockade of Wnt8
function, as shown by over-expression of a dominant negative Wnt8, can inhibit the expression
of neural crest markers, suggesting that Wnt signaling pathway also is necessary for neural
crest induction (LaBonne & Bronner-Fraser, 1998; Lewis et al., 2004). Other studies that
employ gain-and loss-of-function for Wnt signaling have demonstrated that the Wnt-FZD
signaling pathway plays a critical role either in neural crest induction or in the specification of
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the neural crest competence territory (Bastidas et al., 2004). Wnt genes, genes encoding FZD-
Wnt receptors, or secreted FZD-related proteins and Tcf/Lef-1 transcription factors, also are
expressed in postnatal mouse cerebral cortex, indicating that Wnt signaling represents a major
cortical input during embryonic brain development (Shimogori et al., 2004). Furthermore, in
models of C. elegans, the Wnt-FZD pathway may regulate the subcellular positioning of
presynaptic terminals to determine synaptic connections in the nervous system (Klassen &
Shen, 2007). Interestingly, the Wnt pathway may control only specific elements of
development, such as cell adhesion, but not retinal neurogenesis (Fu et al., 2006).

Additional work demonstrates that autoregulation of the canonical Wnt/β-catenin signaling
pathway can control midbrain development through the expression of transcription factor Tcf-4
isoforms and Wnt2b (Kunz et al., 2004). In addition, Wnt signaling can foster midbrain
differentiation into dopaminergic neurons through GSK-3β modulation (Castelo-Branco et al.,
2004). Lef1/Tcf proteins also regulate the generation of dentate gyrus granule cells and the
development of the hippocampus (Galceran et al., 2000). Mouse embryos homozygous for a
Lef1-lacZ fusion gene, which encodes a protein that not only is deficient in DNA binding, but
also interferes with β-catenin-mediated transcriptional activation by other Lef1/Tcf proteins,
are absent of the hippocampal structure. Other work demonstrates roles for DVL, Rac, and
JNK signaling pathways during neuronal development. Wnt7b and DVL can activate Rac and
JNK signaling pathways to promote dendritic branching in cultured hippocampal neurons,
since application of dominant-negative Rac, administration of dominant-negative JNK, or
inhibition of JNK activity can inhibit DVL -mediated dendritic growth (Rosso et al., 2005).

It is important to note that during development of the neuronal and cardiovascular systems, the
modulation of apoptotic pathways by Wnt signaling is a critical component for the regulation
of cell and tissue growth. Wnt signaling can either facilitate or prevent apoptosis depending
upon the environmental stimuli. For example, Wnt proteins can regulate apoptosis within
rhombomeres 3 and 5 in the developing hindbrain and in limb buds during vertebrate limb
development to control growth of the hindbrain and limbs (Ellies et al., 2000; Grotewold &
Ruther, 2002a, 2002b). In addition, sFRPs that function as antagonists of the Wnt-FZD pathway
can also modulate apoptosis during development. For example, there exists a negative
relationship between the expression of sFRP2 and the occurrence of apoptosis in rhombomeres
3 and 5. The over-expression of sFRP2 in the rhombencephalic neural crest can prevent the
apoptosis of premigratory neural crest cells from rhombomeres 3 and 5 by inhibiting the
expression of Wnt1 and BMP 4. In contrast, depleting sFRP2 function or over-expressing Wnt1
in rhombomeres results in apoptosis (Ellies et al., 2000). sFRP2 also can function to inhibit
Wnt3a expression during cardiomyogenesis as a feedback mechanism (Deb et al., 2007) and
regulate myocardial tissue repair following ischemic injury (Mirotsou et al., 2007). The Wnt-
β-catenin signaling pathway also is involved in the regulation of apoptotic cell loss during
development and can prevent apoptosis through the regulation of β-catenin and Tcf/Lef. In β-
catenin mutant embryos, the removal of β-catenin can lead to apoptotic loss of the hindbrain,
the melanocyte lineage, neural crest cells, sensory neurons, and dorsal root ganglia (Brault et
al., 2001; Hari et al., 2002). Over-expression of exogenous Wnt1 results in the protection of
cells against c-Myc induced apoptosis through induction of β-catenin, cyclooxygenase-2, and
Wnt1 induced secreted protein (WISP-1) (You et al., 2002).

2.2 The Wnt Pathway and Metabolic Disease
A body of recent work suggests that the Wnt signaling pathway has a significant role in cellular
metabolism, especially in disorders that involve diabetes mellitus (DM). DM is a significant
health concern for both young and older populations (Maiese et al., 2007a; Maiese et al.,
2007c). Approximately 16 million individuals in the United States and more than 165 million
individuals worldwide suffer from DM. By the year 2030, it is predicted that more than 360
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million individuals will be afflicted with DM and its debilitating conditions (Wild et al.,
2004). Type 2 DM represents at least 80 percent of all diabetics and is dramatically increasing
in incidence as a result of changes in human behavior and increased body mass index (Laakso,
2001). Type 1 insulin-dependent diabetes mellitus accounts for only 5–10 percent of all
diabetics (Maiese et al., 2007c), but is increasing in adolescent minority groups (Dabelea et
al., 2007). Yet, the incidence of undiagnosed diabetes, impaired glucose tolerance, and
fluctuations in serum glucose in the young raises further concerns (Jacobson et al., 2007).
Individuals with impaired glucose tolerance have a greater than two times the risk for the
development of diabetic complications than individuals with normal glucose tolerance (Harris
& Eastman, 2000).

In regards to the vascular and nervous systems, patients with DM can develop severe
neurological and vascular disease (Donahoe et al., 2007) that can lead to an increased risk for
cognitive decline (Chong et al., 2005d; Li et al., 2006a; Schnaider Beeri et al., 2004). Disease
of the nervous system can become the most debilitating complications for DM and affect
sensitive cognitive regions of the brain, such as the hippocampus that modulates memory
function, resulting in significant functional impairment and dementia (Awad et al., 2004). DM
also has been found to increase the risk for vascular dementia in elderly subjects (Schnaider
Beeri et al., 2004; Xu et al., 2004) as well as potentially alter the course of Alzheimer’s disease.
Although some studies have found that diabetic patients may have less neuritic plaques and
neurofibrillary tangles than non-diabetic patients (Beeri et al., 2005), contrasting work suggests
a modest adjusted relative risk of Alzheimer’s disease in patients with diabetes as compared
with those without diabetes to be 1.3 (Luchsinger et al., 2001). Furthermore, costs to care for
cognitive impairments resulting from diabetes that can mimic Alzheimer’s disease can
approach $100 billion a year (Maiese & Chong, 2004; McCormick et al., 2001; Mendiondo et
al., 2001).

Interestingly, the development of insulin resistance and the complications of DM in the nervous
and vascular systems can be the result of cellular oxidative stress (Maiese et al., 2007a; Maiese
et al., 2007c). In patients with DM, elevated levels of ceruloplasmin are suggestive of increased
reactive oxygen species (Memisogullari & Bakan, 2004) and acute glucose fluctuations may
promote oxidative stress (Monnier et al., 2006). Hyperglycemia can lead to increased
production of reactive oxygen species in endothelial cells, liver and pancreatic β-cells (Ceriello
et al., 1996; Ihara et al., 1999; Ling et al., 2003; Yano et al., 2004). Prolonged duration of
hyperglycemia is not necessary to lead to oxidative stress injury, since even short periods of
hyperglycemia, generate reactive oxygen species, such as in vascular cells (Yano et al.,
2004). Recent clinical correlates support these experimental studies to show that acute glucose
swings in addition to chronic hyperglycemia can trigger oxidative stress mechanisms during
type 2 DM, illustrating the importance for therapeutic interventions during acute and sustained
hyperglycemic episodes (Monnier et al., 2006).

The preservation of cellular energy reserves is dependent upon the maintenance of
mitochondrial integrity during DM (Newsholme et al., 2007). For example, chronic exposure
to elevated levels of free fatty acids can increase reactive oxygen species production in cells
and has been shown to lead to mitochondrial DNA damage and impaired pancreatic β-cell
function (Rachek et al., 2006). In patients with type 2 DM, skeletal muscle mitochondria have
been described to be smaller than those in control subjects (Kelley et al., 2002). Furthermore,
a decrease in the levels of mitochondrial proteins and mitochondrial DNA in adipocytes has
been correlated with the development of type 2 DM (Choo et al., 2006). Insulin resistance in
the elderly also has been associated with elevation in fat accumulation and altered
mitochondrial oxidative and phosphorylation activity (Petersen et al., 2003; Pospisilik et al.,
2007).
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Current studies suggests that abnormalities in the Wnt signaling pathways, such as with
transcription factor 7-like 2 gene, may impart increased risk for type 2 DM in some populations
(Grant et al., 2006; Lehman et al., 2007; Scott et al., 2006) as well as have increased association
with obesity (Guo et al., 2006). Additional work has described the expression of Wnt5b in
adipose tissue, the pancreas, and the liver in diabetic patients, suggesting a potential regulation
of adipose cell function (Kanazawa et al., 2004). Clinical observations in patients with coronary
artery disease and the combined metabolic syndrome with hypertension, hyperlipidemia, and
DM have observed impaired Wnt signaling through a missense mutation in LRP-6 (Mani et
al., 2007) (Table 2). Experimental studies in mice with hyperglycemia through a high fat diet
also demonstrate increased expression of some Wnt family members, such as Wnt3a and Wnt7a
(Al-Aly et al., 2007). In addition, intact Wnt family members may offer glucose tolerance and
increased insulin sensitivity (Wright et al., 2007) as well as protect glomerular mesangial cells
from elevated glucose induced apoptosis (Lin et al., 2006). Animals that over-expressed
Wnt10b and were placed on a high-fat diet had a reduction in bodyweight, hyperinsulinemia,
triglyceride plasma levels, and improved glucose homeostasis (Aslanidi et al., 2007).

These clinical and experimental observations for the Wnt pathway in conditions associated
with hyperglycemia and DM suggest a potential protective cellular mechanism for Wnt. Recent
in vitro studies demonstrate that the Wnt1 protein is necessary and sufficient to provide cellular
protection during elevated glucose exposure (Chong et al., 2007c). Administration of
exogenous Wnt1 protein can significantly prevent apoptotic endothelial cell (EC) injury during
elevated glucose exposure. Interestingly, this protection by Wnt1 can be regulated by the
growth factor and cytokine erythropoietin (EPO) (Maiese et al., 2004, 2005b; Nangaku &
Fliser, 2007). Through the Wnt pathway, EPO may offer an attractive therapy to maintain
proper cellular metabolism and mitochondrial membrane potential during conditions of
oxidative stress and DM. In cell culture and animal studies, EPO is cytoprotective during
elevated glucose (Chong et al., 2007c) and can block apoptotic DNA degradation during
elevated glucose similar to other models of oxidative stress in cardiac and vascular cell models
(Avasarala & Konduru, 2005; Chong et al., 2002b, 2003a; Chong & Maiese, 2007a; Moon et
al., 2006). EPO can at times enhance tissue function (Ben-Dor et al., 2007) and is closely related
to the maintenance of mitochondrial membrane potential (ΔΨm ) (Li et al., 2004a). Loss of
ΔΨm through the opening of the mitochondrial permeability transition pore represents a
significant determinant for cell injury and the subsequent induction of apoptosis (Leuner et al.,
2007; Maiese & Chong, 2004). EPO has the capacity to prevent the depolarization of the
mitochondrial membrane that also affects the release of cytochrome c (Chong et al., 2002b;
Chong et al., 2003d; Miki et al., 2006). With the Wnt pathway, EPO maintains the expression
of Wnt1 during elevated glucose exposure and prevents loss of Wnt1 expression that would
normally occur in the absence of EPO during elevated glucose. In addition, blockade of Wnt1
with a Wnt1 antibody can neutralize the protective capacity of EPO, illustrating that Wnt1 is
a critical component in the cytoprotection of EPO during elevated glucose exposure (Chong
et al., 2007c).

3. The Wnt Pathway in Neurodegeneration, Vascular Disease, and Cardiac
Dysfunction
3.1 Wnt and Disease of the Nervous System

The Wnt pathway can influence both acute and chronic disease processes of the nervous system.
For example, experimental models of behavior suggest that the ability to tolerate stressful
environments may be associated with the expression of Wnt2 (Krishnan et al., 2007). Other
work suggests that loss of Wnt signaling may contribute to retinal neurodegeneration, since
retinal degeneration with the progressive loss of photoreceptors during retinitis pigmentosa
has been associated with increased secretion of the Wnt inhibitory protein FZD-related
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protein-2 (Jones et al., 2000). Studies have also demonstrated that a mutation in the membrane-
type FZD-related protein gene may be involved in retinal photoreceptor degeneration (Kameya
et al., 2002).

In relation to cognitive function, Wnt has been demonstrated in the brains of individuals
affected by neuropsychiatric disorders (Miyaoka et al., 1999). In models of frontotemporal
dementia, the Wnt pathway can be up-regulated early during the onset of the disease (Wiedau-
Pazos et al., 2007). It is conceivable that this increased expression of Wnt may improve memory
function similar to work that has demonstrated improved cognition with agents such as lithium
chloride that enhance Wnt activity have shown (De Ferrari et al., 2003). Genetic analysis also
suggests that LRP-6 variants of the Wnt pathway may be associated with late onset Alzheimer’s
disease (De Ferrari et al., 2007) and that up-regulation of the Wnt pathway such as with agents
as cannabidiol may provide alternative treatments for Alzheimer’s disease (Esposito et al.,
2006a) (Table 2). Although it is unclear whether Wnt expression has a direct role in the
development of neuropsychiatric or dementia disorders, the Wnt pathway has been tied to
several of the pathological components of Alzheimer’s disease (Li et al., 2005, 2006c). The
production of β-amyloid (Aβ) peptide aggregates composed of a 39–42 amino acid peptides
and the accumulation of intracellular neurofibrillary tangles are considered to be two critical
pathological mechanisms that lead to Alzheimer’s disease. In Drosophila models of
neurodegeneration, Wnt can lead to neurofibrillary pathology (Jackson et al., 2002).

The proteolytic processing of amyloid precursor protein (APP) during Alzheimer’s disease has
been closely linked to the Wnt pathway through presenilin 1 (PS1) and DVL. APP cleaves β-
amyloid into products that include a 40-residue peptide and a 42-residue peptide (Aβ1-42).
However, it is Aβ1-42 that is considered to be the β-amyloid product that most directly leads
to Alzheimer’s disease and apoptotic injury (Chong et al., 2005e; Maiese & Chong, 2004).
Wnt may regulate APP isoform expression (Morin et al., 2004). In addition, PS1 is required
for the processing of APP and has been shown to down-regulate Wnt signaling and interact
with β-catenin to promote its turnover (Soriano et al., 2001). Using a familial Alzheimer’s
disease-associated PS-1 mutant, PS-1 (L286V), other studies have shown that pharmacological
inhibition of T cell factor/β-catenin/cAMP-response element-binding protein (CREB)-binding
protein (CBP)-mediated transcription restores normal neurite outgrowth, illustrating the
integration of the Wnt in the PS pathway (Teo et al., 2005). DVL also can regulate the α-
secretase cleavage of APP through protein kinase C/mitogen-activated protein kinase
dependent pathways, increasing production of soluble APP (Mudher et al., 2001). Furthermore,
over-expression of mouse DVL-1 and –2 inhibits GSK-3β mediated phosphorylation of tau
protein and may thus prevent formation of neurofibrillary tangles during Alzheimer’s disease
(Wagner et al., 1997).

Current studies also have examined the ability of Wnt to directly reduce β-amyloid toxicity.
Investigations with lovastatin as an extension of prior clinical work that suggests that a lower
prevalence of Alzheimer’s disease can occur during statin administration show that this agent
can reduce β-amyloid production and cellular injury through increased β-catenin activity and
the inhibition of GSK-3β (Salins et al., 2007). In addition, the pathways controlled by Wnt1
appear to be critical for neuronal protection during β-amyloid exposure against genomic DNA
degradation, membrane PS exposure, and microglial activation (Chong et al., 2007a). The
neuroprotective attributes of Wnt1 against β-amyloid are lost during gene silencing of Wnt1
protein expression. More importantly, Wnt 1 protection is dependent upon protein kinase B
(Akt) activity and the inhibition of GSK-3β with the cellular translocation β-catenin to the
nucleus (Chong et al., 2007a) (Figure 2).
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3.2 Wnt, Vascular Integrity, and Immunity
In many respects, the ability of Wnt to foster new vascular growth is complimentary to the
ability of Wnt to afford protection in the nervous system. Several Wnt family members can
control endothelial cell development (Woll et al., 2007), proliferation, and migration (Cheng
et al., 2008). New capillary formation from pre-existing vessels into an avascular area is a
process known as angiogenesis (Chong et al., 2002a). Angiogenesis is present during
embryogenesis, during menstruation, and during pathological processes that involve wound
healing, chronic inflammation, and tumor growth (Risau, 1997). In several vascular cell
populations, Wnt signaling plays a significant part in the modulation of new vessel formation.
Several Wnt ligands, such as Wnt2, Wnt5a, Wnt7a, and Wnt10b, are expressed endogenously
in ECs and vascular smooth muscle cells. Wnt receptors that involve Fzd1, Fzd2, Fzd3, and
Fzd5, as well as cysteine-rich 61 that contains Wnt-induced secreted proteins-1, 2 and 3 are
also expressed in these cell populations for Wnt to exert a direct biological effect (Brigstock,
2002; Li et al., 2006c). For example, mice deficient in Wnt2 and Fzd5 display vascular
abnormalities that include defective placental vasculature as well as embryonic lethal mutations
(Ishikawa et al., 2001). Antagonism of the Wnt system, such as through sFRP expression also
blocks endothelial cell proliferation (Ezan et al., 2004). In contrast, over-expression of Wnt1
can lead to the proliferation of cultured primary ECs, increase the free pool of β-catenin, and
activate transcription through Tcf/Lef, suggesting that the Wnt-FZD signaling pathway is
closely involved in the proliferation of ECs (Wright et al., 1999). Yet, Wnt1 signaling also can
have a regulatory role, such as during the proliferation of umbilical vein ECs, to block further
growth through mechanisms that involve cell-cell contact (Cheng et al., 2003). Studies with
mice homozygous for the deletion of the Wnt receptor ligand Fzd5 that can synergize with
Wnt2, Wnt5a, and Wnt10b lead to embryos that die in utero approximately 10 days post coitum
as a result of defects in yolk sac angiogenesis, supporting a critical role for Wnt during embryo
vascular development (Ishikawa et al., 2001). In contrast, mice heterozygotes were found to
be viable, fertile and appear normal. In disorders that involve failure of peripheral retinal
vascularization, mutations in Fzd4, a gene encoding the Wnt receptor FZD-4, are believed to
account for the vascular failure. Studies have shown that injection of only wildtype Fzd4, but
not mutated Fzd4, into Xenopus embryos can activate CamKII and PKC, components of the
Wnt/Ca2+ signaling pathway, to control retinal angiogenesis (Robitaille et al., 2002),
supporting that Wnt- FZD signaling pathway broadly controls vascular development and
function in a number of organ systems. In addition, FrzA, as a member of secreted FZD-related
protein, can increase migration and tube formation of ECs to result in enlarged, longer, and
mature of vessels, further supporting the necessity of the Wnt- FZD signaling pathway during
development of the vasculature (Dufourcq et al., 2002) (Table 2).

In addition to vascular development, the Wnt pathway participates in inflammatory cell control
and the regulation of vascular injury. In fact, the ability of the Wnt pathway to modulate
inflammatory cell activity can ultimately impact upon cell survival and longevity since
activated immune cells can lead to the phagocytic removal of both neurons and vascular cells
(Chong et al., 2005a; Chong et al., 2004a; Kang et al., 2003b). During inflammation, microglial
cells require the activation of intracellular cytoprotective pathways (Chong et al., 2007b; Li et
al., 2006b) to proliferate and remove injured cells (Li et al., 2005; Mallat et al., 2005).
Subsequently, microglia can form a barrier for the removal of foreign microorganisms from
the central nervous system and promote tissue repair during neuronal and vascular cell injury
(Chong et al., 2007b; Dringen, 2005). Yet, microglia also may lead to cellular damage through
the generation of reactive oxygen species (Maiese & Chong, 2004; Sankarapandi et al.,
1998) and through the production of cytokines (Benzing et al., 1999; Mehlhorn et al., 2000).
During injury to cells, activation of microglia can parallel the induction of cellular apoptosis
and correlate well with the severity of an ischemic insult (Chong et al., 2004a; Kang et al.,
2003a, 2003b). Furthermore, microglial activation has been associated with several
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neurodegenerative disorders, such as Alzheimer’s disease with the co-localization of microglia
and amyloid plaque development (Sheng et al., 1997).

Given the significant impact that inflammatory cells may play during oxidative stress and cell
injury, it becomes essential to understand the role of Wnt during inflammatory cell activation.
Early work has shown that Wnt Transcripts for Wnt 4, 7b, 10b and 13 were up-regulated in
macrophages during human colorectal cancer (Smith et al., 1999). Subsequent work has
suggested that Wnt family members, such as Wnt7b in macrophages, may be responsible for
the apoptotic cell death of adjacent vascular cells (Lobov et al., 2005) and that inflammatory
cells require components of the Wnt signaling pathway to maintain cellular integrity (Chong
et al., 2007b). Interestingly, the canonical Wnt pathway can increase monocyte adhesion to
ECs (Lee et al., 2006a) and control transendothleial migration of monocytes (Tickenbrock et
al., 2006). Wnt also can influence matrix metalloproteinase (MMP) 2 and MMP9 expression
to support T cell migration through basement membranes (Wu et al., 2007a). Wnt1 has recently
been shown to possess a unique capacity to not only prevent early apoptotic membrane PS
exposure, but also directly modulate inflammatory microglial activation and proliferation
(Chong et al., 2007a) that can lead to cellular engulfment and removal (Chong et al., 2005a).

Investigations that employ vascular cell injury models also support a direct cytoprotective role
for the Wnt signaling pathway that may be independent from inflammatory cell modulation.
In a rat aorta balloon injury model, the FZD receptor (rFrz) genes, rFrz1 and rFrz 2, have been
shown to be transiently down-regulated as early as one hour following balloon injury. Yet,
Frzb-1, a secreted protein that acts as an antagonist of Wnt signaling, can be increased and
appears to coincide with the arrest of aortic smooth muscle cell proliferation (Mao et al.,
2000). Similarly, the secreted protein FrzA can be elevated in ECs during traumatic
manipulation and subsequently block the proliferation of ECs (Duplaa et al., 1999). In regards
to apoptotic vascular injury, it has been shown that within eight hours following EC shear
stress, expression of β-catenin is significantly increased at the cell-cell junctions of ECs (Noria
et al., 1999). In addition, transfection of a degradation-resistant β-catenin into rat vascular
smooth muscle cells can prevent apoptotic vascular cell injury. Furthermore, use of a dominant
negative Tcf-4 transgene lacking the β-catenin binding domain, Tcf4 (N31), can eliminate
cytoprotection from the Wnt pathway (Wang et al., 2002). Similar to arterial vessels, the Wnt
signaling pathway also plays a role during venous injuries. In a crush injury vein model, Wnt5a
can have increased expression that may be beneficial to overcome antagonists of the Wnt
pathway (Price et al., 2004). In brain ECs, endogenous activation of Wnt1 also may offer a
minimum level of protection during elevated glucose exposure, since application of a Wnt1
antibody results in a slight increase in EC injury. Furthermore, administration of exogenous
Wnt1 protein significantly increases EC survival and prevents apoptotic EC degeneration
during elevated glucose exposure. More importantly, administration of a Wnt1 antibody in the
presence of exogenous Wnt1 application can neutralize the protective capacity of Wnt1,
illustrating that Wnt1 is an important component in the cytoprotection of ECs during elevated
glucose exposure (Chong et al., 2007c) (Table 2).

3.3 Wnt and Cardiac Dysfunction
During the complicated process of wound healing in the heart, changes in components of the
Wnt- FZD signaling pathway, such as Wnt (Barandon et al., 2003), FZD (van Gijn et al.,
2001), DVL-1 (Chen et al., 2004), GSK-3β (El Jamali et al., 2004), β-catenin (Bergmann et
al., 2004), and sFRP (Barandon et al., 2003) can occur. For example, during myoblast
proliferation and migration following myocardial infarction, elevated expression of FZD genes
including FZD 1, 2, 5, 6, 7, 8, and 10 have been identified during heart remodeling. The over-
expression of some FZD genes may be associated with reduction in infarct size and the
prevention of cardiac rupture to improve cardiac function (Barandon et al., 2003). It is
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important to note that different members of the Wnt family may contribute to distinct events
during cardiac injury. Both Wnt8a and Wnt10b are up-regulated following myocardial
infarction while Wnt7b is down-regulated to undetectable levels during this period (Barandon
et al., 2003). Additional work also has demonstrated that β-catenin is translocated from the
plasma membrane to the cytoplasm of ECs following the expression of DVL during the phase
of the neovascularization after myocardial infarction (Blankesteijn et al., 2000). Furthermore,
over-expression of antagonists of the Wnt/FZD pathway can reverse the benefit of treatments
such as ischemic preconditioning and minimize β-catenin and Akt activity (Barandon et al.,
2005). Interestingly, mice heterozygous for the loss of β-catenin (homozygous mice die at
birth) have no structural or functional abnormalities, but suffer from significantly decreased
heart weight and heart weight/body weight ratio during transverse aortic constriction (Qu et
al., 2007). These data suggest that the Wnt system and its components that involve β-catenin
can prevent cardiomyocyte injury and preserve potential myocardial function (Table 2).

Furthermore, the expression of another Wnt component, DVL-1, appears to have a vital role
during cardiac injury. The expression of DVL-1 mRNA and cytoplasmic DVL-1 protein are
significantly enhanced within days in myofibroblasts, vascular ECs, and smooth muscle cells
of newly formed and pre-existing blood vessels in the region of a myocardial infarction (Chen
et al., 2004). In addition, mice without DVL-1 demonstrate a benefit from pressure overload
cardiac hypertrophy that is mediated through Akt and GSK-3β (van de Schans et al., 2007).

In addition to FZD, DVL-1, and several Wnt genes, other members of the Wnt signaling
cascade also appear to have relevant roles during myocardial injury. Expression of sFRP3 and
sFRP4 in failing human ventricular myocardium is increased when compared to donor hearts.
This increased expression of sFRP is associated with the expression of the pro-apoptotic Fas
proteins, but inversely linked to the expression of the anti-apoptotic protein Bcl-xL (Schumann
et al., 2000). Other studies illustrate that cardiac rupture following myocardial infarction is
correlated with decreased levels of β-catenin in cardiomyocytes (Blankesteijn et al., 1999).
The lack of β-catenin in the adherence junctions of cardiomyocytes may lead to impaired
structural integrity of the heart, since β-catenin may play a vital role in a structural adaptor
protein linking cadherins to the actin cytoskeleton in cell- cell adhesion (Ligon et al., 2001).
Yet, the role of β-catenin during cardiac infarction is not entirely clear, since cytosolic β-catenin
exists in vascular ECs and smooth muscle cells that reside in the area of myocardial infarction
(Barandon et al., 2003). Pathological cardiac hypertrophy also may be dependent upon
modulation of the Wnt pathway. In volume-overloaded rabbit hearts, cardiac hypertrophy is
accompanied by suppressed mRNA expression of β-catenin (Itoh et al., 2002). The suppressed
levels of β-catenin may be a result of increased GSK-3β activity. Other work has demonstrated
that inhibition of GSK-3β by Akt through phosphorylation of a serine residue at position 9 can
play an important role in the development of cardiac hypertrophy (Haq et al., 2000; Hardt &
Sadoshima, 2002) especially during pressure overload (van de Schans et al., 2007).

4. Wnt Governs Vital Cytoprotetective Pathways
4.1 Wnt, Oxidative Stress, and Apoptosis

Wnt signaling controls a variety of signal transduction pathways for cytoprotection that can
involve protein kinase B, caspases, forkhead transcription factors, GSK-3β, and nuclear factor
κB. Intimately associated with Wnt signaling pathways that control cellular survival and
longevity are the injury mechanisms associated with apoptosis (Figure 3). Oxidative stress
occurs as a result of the development of reactive oxygen species that consist of oxygen free
radicals and additional chemical entities.

Oxygen consumption in organisms, or at least the rate of oxygen consumption in organisms,
has intrigued a host of investigators and may have had some of its original origins with the
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work of Pearl. Pearl proposed that increased exposure to oxygen through an increased
metabolic rate could lead to a shortened life span (Pearl, 1928). Subsequent work by multiple
investigators has furthered this hypothesis by demonstrating that increased metabolic rates
could be detrimental to animals in an elevated oxygen environment (Muller et al., 2007). When
one examines more current work, oxygen free radicals and mitochondrial DNA mutations have
become associated with oxidative stress injury, aging mechanisms, and accumulated toxicity
for an organism (Yui & Matsuura, 2006).

Oxygen free radicals can be generated in elevated quantities during the reduction of oxygen
and subsequently lead to cell injury and apoptosis. Reactive oxygen species can involve
superoxide free radicals, hydrogen peroxide, singlet oxygen, nitric oxide (NO), and
peroxynitrite (Chong et al., 2005d). Most species are produced at low levels during normal
physiological conditions and are scavenged by endogenous antioxidant systems that include
superoxide dismutase (SOD), glutathione peroxidase, catalase, and small molecule substances
such as vitamins C and E. Other closely linked pathways to oxidative stress may be tempered
by different vitamins, such as vitamin D3 (Regulska et al., 2007) and the amide form of niacin
or vitamin B3, nicotinamide (Chlopicki et al., 2007; Chong et al., 2002c; Feng et al., 2006;
Hara et al., 2007; Ieraci & Herrera, 2006; Lin et al., 2000; Maiese & Chong, 2003).

Oxidative stress leads to the destruction of multiple cell types that include neuronal and vascular
cells (Chong et al., 2006a; De Felice et al., 2007; Lin & Maiese, 2001). More importantly, it
has recently been shown that genes involved in the apoptotic process are replicated early during
processes that involve cell replication and transcription, suggesting a much broader role for
these genes than originally anticipated (Cohen et al., 2007). Apoptotic induced oxidative stress
in conjunction with processes of mitochondrial dysfunction can contribute to a variety of
disease states such as diabetes, ischemia, general cognitive loss, Alzheimer’s disease, and
trauma (Chong et al., 2005d, 2005e; Harris et al., 2007; Leuner et al., 2007; Okouchi et al.,
2007). Oxidative stress can lead to apoptosis in a variety of cell types that involve neurons,
ECs, cardiomyocytes, and smooth muscle cells through multiple cellular pathways (Chong et
al., 2004a; Chong et al., 2007b; Harris et al., 2007; Kang et al., 2003b; Karunakaran et al.,
2007; Verdaguer et al., 2007).

Externalization of membrane phosphatidylserine (PS) externalization is an early event during
cell apoptosis (Maiese et al., 2000; Mari et al., 2004) and can become a signal for the
phagocytosis of cells (Chong et al., 2005a; Li et al., 2006b; Lin & Maiese, 2001). The loss of
membrane phospholipid asymmetry leads to the externalization of membrane PS residues and
assists microglia to target cells for phagocytosis (Chong et al., 2003c; Kang et al., 2003a,
2003b; Maiese & Chong, 2003; Mallat et al., 2005). This process occurs with the expression
of the phosphatidylserine receptor (PSR) on microglia during oxidative stress (Li et al.,
2006a, 2006c), since blockade of PSR function in microglia prevents the activation of microglia
(Chong et al., 2003b; Kang et al., 2003a). As an example, externalization of membrane PS
residues occur in neurons during anoxia (Maiese, 2001; Maiese & Boccone, 1995; Vincent &
Maiese, 1999a), nitric oxide exposure (Chong et al., 2003e; Maiese et al., 1997), and during
the administration of agents that induce the production of reactive oxygen species, such as 6-
hydroxydopamine (Salinas et al., 2003). Membrane PS externalization on platelets also has
been associated with clot formation in the vascular system (Leytin et al., 2006).

The cleavage of genomic DNA into fragments (Maiese et al., 1999; Maiese & Vincent,
2000a, 2000b) is considered to be a later event during apoptotic injury (Chong et al., 2004b).
Several enzymes responsible for DNA degradation have been differentiated and include the
acidic, cation independent endonuclease (DNase II), cyclophilins, and the 97 kDa magnesium
- dependent endonuclease (Chong et al., 2005d; Chong & Maiese, 2007b). Three separate
endonuclease activities are present in neurons that include a constitutive acidic cation-
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independent endonuclease, a constitutive calcium/magnesium-dependent endonuclease, and
an inducible magnesium dependent endonuclease (Vincent & Maiese, 1999b; Vincent et al.,
1999a).

During oxidative stress, mitochondrial membrane transition pore permeability also is increased
(Chong et al., 2003a; Di Lisa et al., 2001; Kang et al., 2003b; Lin et al., 2000), a significant
loss of mitochondrial NAD+ stores occurs, and further generation of superoxide radicals leads
to cell injury (Chong et al., 2005f; Maiese & Chong, 2003). In addition, mitochondria are a
significant source of superoxide radicals that are associated with oxidative stress (Chong et al.,
2005d; Maiese & Chong, 2004). Blockade of the electron transfer chain at the flavin
mononucleotide group of complex I or at the ubiquinone site of complex III results in the active
generation of free radicals which can impair mitochondrial electron transport and enhance free
radical production (Chong & Maiese, 2007b; Li et al., 2006a). Furthermore, mutations in the
mitochondrial genome have been associated with the potential development of a host of
disorders, such as hypertension, hypercholesterolemia, and hypomagnesemia (Li et al.,
2004b; Wilson et al., 2004). Reactive oxygen species also may lead to cellular acidosis and
subsequent mitochondrial failure (Chong et al., 2005e). Disorders, such as hypoxia (Roberts
& Chih, 1997), diabetes (Cardella, 2005; Kratzsch et al., 2006), and excessive free radical
production (Ito et al., 1997; Vincent et al., 1999a, 1999b) can result in the disturbance of
intracellular pH. When one considers the potential of Wnt pathways to foster cell development
and survival, Wnt signaling may offer new therapeutic avenues against oxidative stress that
leads to both early and late apoptotic stages in several disorders.

4.2 Wnt, Akt, and Caspases
One attractive pathway that may work in concert with Wnt to maintain cell survival and block
inflammatory cell activation involves protein kinase B, or Akt (Chong et al., 2007a; Chong et
al., 2007c; Li et al., 2006c; Speese & Budnik, 2007). Phosphorylation of Akt in conjunction
leads to its activation and protects cells against genomic DNA degradation and membrane PS
exposure (Chong et al., 2003a, 2003b; 2003d). Up-regulation of Akt activity during multiple
injury paradigms, such as vascular and cardiomyocyte ischemia (Miki et al., 2006; Parsa et al.,
2003), free radical exposure (Chong et al., 2003b; Matsuzaki et al., 1999), N-methyl-D-
aspartate toxicity (Dzietko et al., 2004), hypoxia (Chong et al., 2002b; Zhang et al., 2007), β-
amyloid toxicity (Chong et al., 2005c; Du et al., 2004; Nakagami et al., 2002), heat exposure
(Shein et al., 2007), DNA damage (Chong et al., 2002b, 2004a; Henry et al., 2001; Kang et al.,
2003a), and oxidative stress (Chong et al., 2004a; Kang et al., 2003a, 2003b) increases cell
survival. Cytoprotection through Akt also can involve control of inflammatory cell activation
(Chong et al., 2003a; Kang et al., 2003a, 2003b), transcription factor regulation (Chong &
Maiese, 2007a), maintenance of mitochondrial membrane potential (ΔΨm ), prevention of
cytochrome c release (Chong et al., 2003a, 2003b; Chong et al., 2003d), and blockade of
caspase activity (Chong et al., 2002b, 2003a, 2003b).

Evidence for the dependence of Wnt on the Akt pathway can be drawn from a variety of cell
populations (Chong et al., 2005b). For example, neuronal cell differentiation that is dependent
upon Wnt signaling and trophic factor induction is blocked during the repression of Akt activity
(Fukumoto et al., 2001), differentiation of cardiomyocytes does not proceed without Akt
activation, (Naito et al., 2005) Wnt has been shown in preadipocytes to increase Akt
phosphorylation (Longo et al., 2002), and the Wnt-induced secreted protein in a fibroblast cell
line uses Akt to block apoptotic death (Su et al., 2002). sFRP2, which can modulate Wnt
signaling, also employs Akt for cardiac tissue repair (Mirotsou et al., 2007). Reduction in tissue
injury during pressure overload cardiac hypertrophy also is linked to Akt activation (van de
Schans et al., 2007) and the benefits of cardiac ischemic preconditioning appear to rely upon
Akt (Barandon et al., 2005). In the neuronal system, Wnt over-expression can independently
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increase the phosphorylation and the activation of Akt to promote neuronal protection.
Inhibition of the phosphatidylinositol 3-kinase (PI 3-K) pathway or gene silencing of Akt
expression prevents Wnt from blocking apoptotic injury and microglial activation (Chong et
al., 2007a).

Modulation of Akt activity ultimately controls the apoptotic pathways of the caspase family.
Caspases are a family of cysteine proteases that are synthesized as inactive zymogens which
are proteolytically cleaved into subunits at the onset of apoptosis (Li et al., 2006a; Maiese et
al., 2005a; Okouchi et al., 2007). The apoptotic-associated caspases include initiator caspases,
such as caspase 2, 8, 9, and 10, that activate downstream effector caspases, resulting in an
amplification of cascade activity. The initiator caspases consist of long N-terminal prodomains
that contain caspase recruitment domains (CARDs) in caspase 2 and caspase 9 or death effector
domains (DEDs) in caspase 8 and caspase 10 (Hofmann et al., 1997). The effector caspases
consist of caspase 3, 6, and 7 that function to directly cleave crucial cellular protein substrates
to result in cell destruction.

The caspases 1 and 3 have each been linked to the apoptotic pathways of genomic DNA
cleavage and cellular membrane PS exposure (Chong et al., 2003a; Chong et al., 2003d;
Takahashi et al., 1999). These caspases, in addition to caspase 8 and 9, are also tied to the direct
activation and proliferation of microglia (Chong et al., 2003b; Kang et al., 2003a, 2003b).
Caspase 1 is believed to be principally responsible for the externalization of membrane PS
residues in several cell systems that can subsequently activate microglial phagocytosis (Chong
et al., 2005a; Chong et al., 2004a; Kang et al., 2003b). Furthermore, caspase 9 is activated
through a process that involves the cytochrome c -apoptotic protease-activating factor-1
(Apaf-1) complex (Chong et al., 2003a; Chong et al., 2005d; Kang et al., 2003a). In addition,
caspase 8 serves as an upstream initiator of executioner caspases, such as caspase 3, and also
leads to the mitochondrial release of cytochrome c (Engels et al., 2000; Stegh et al., 2002).
Following caspase 8 and caspase 9 activation, caspase 3 directly leads to genomic DNA
degradation.

In reference to the Wnt pathway and caspase activity, loss of Wnt4 and Wnt5a expression
during elevated glucose in mesangial cells results in elevated caspase 3 activity and apoptotic
cell death (Lin et al., 2006). Furthermore, reduction in caspase 9 activity by the Wnt pathway
(Chen et al., 2001) and the prevention of cytochrome c release with caspase pathway activation
(You et al., 2002) has been attributed to the resistance of cells to cancer therapeutics designed
to induce apoptosis. Other members of the Wnt pathway that are mutated in disease, such as
the APC gene during colonic polyp progression, can suppress caspase 3, 7, and 9 activities to
prevent apoptotic demise of colonic polyps (Chen et al., 2003). In patients with Alzheimer’s
disease, observation of Wnt pathway impairment and the increased phosphorylation of beta-
catenin that can lead to its degradation has been suggested as a possible mechanism of
pathology that is associated with elevated caspase 3 activity (Ghanevati & Miller, 2005).

4.3 Wnt and Forkhead Transcription Factors
As a central regulatory protein, Akt controls the activity and function of a number of robust
pathways such as the mammalian forkhead transcription factor family that oversees processes
that can involve cell metabolism, hormone modulation, and apoptosis (Cuesta et al., 2007;
Maiese et al., 2007a; Maiese et al., 2007b). The mammalian forkhead transcription factor
family preferentially bind to the core consensus DNA sequence 5′-TTGTTTAG-3′, the
forkhead response element (Chong et al., 2005d; Chong et al., 2004c; Wijchers et al., 2006).
The first member of this family was the Drosophila melanogaster gene Fork head. Since this
time, greater than 100 forkhead genes and 19 human subgroups are known to exist that extend
from FOXA to FOXS (Maiese et al., 2007b; Wijchers et al., 2006). The forkhead box (FOX)
family of genes is characterized by a conserved forkhead domain commonly noted as a
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“forkhead box” or a “winged helix” as a result of the butterfly-like appearance on X-ray
crystallography (Clark et al., 1993) and nuclear magnetic resonance (Jin et al., 1998). All Fox
proteins contain the 100-amino acid winged helix domain, but it should be noted that not all
winged helix domains are Fox proteins (Larson et al., 2007).

FOXO3a is one member of the forkhead family of transcription factors that exemplifies the
ability to function as a versatile target for a number of disorders (Maiese et al., 2007b). Akt
controls the “pro-apoptotic” forkhead transcription factor FOXO3a by inhibiting the nuclear
translocation of FOXO3a that would normally activate the transcription of apoptotic nuclear
genes (Chong & Maiese, 2007a). As a result, control of FOXO3a is considered to be a viable
therapeutic target for agents such as metabotropic glutamate receptors (Chong et al., 2006b)
and NAD+ precursors (Chong et al., 2004c; Li et al., 2006a, 2006b) to increase cell survival.
In addition, FOXO3a interfaces with several pathways that regulate cellular lifespan (Lehtinen
et al., 2006) and function to control neoplastic growth (Li et al., 2007).

If one then considers the role of forkhead transcription factors in the Wnt pathway, early work
has shown that FoxD3 is activated by the Wnt pathway and inhibited by BMP signaling to
control neural plate development (Pohl & Knochel, 2001). Other forkhead family members
also rely upon the Wnt pathway for cellular proliferation and function. FoxI1 activates the Wnt/
β-catenin pathway to increase extracellular proteoglycans, promote gastrointestinal cell
proliferation (Perreault et al., 2001), and possibly foster carcinogenesis (Perreault et al.,
2005). Yet, the Wnt pathway also utilizes forkhead members to regulate cellular function and
can activate FoxN1 for regulatory control of thymic function (Balciunaite et al., 2002). In other
examples of cell development, Wnt signaling has been shown to rely upon Foxf1 and Foxf2
during intestinal maturation in murine models (Ormestad et al., 2006). In addition, Foxa2 may
be a significant component during in early anterior-posterior axis polarization (Kimura-
Yoshida et al., 2007). Interestingly, β-catenin that is believed to function independently from
other Wnt signaling pathways has been shown to bond to FOXO and enhance its transcriptional
activity (Essers et al., 2005).

4.4 Wnt, GSK-3β, and NF-κB
Both Wnt1 and Akt1 also share a common pathway through the phosphorylation of GSK-3β
(Chong & Maiese, 2007b). DVL is phosphorylated by casein kinase Iε to form a complex with
Frat1 and inhibit GSK-3β activity. Cell injury during GSK-3β activation may occur through
the phosphorylation of β-catenin that can lead to its ubiquitination and subsequent degradation.
As a result, Wnt “anti-apoptotic” pathways can be dismantled in the absence of β-catenin and
cannot support cell survival or block apoptosis (Chen et al., 2001; Li et al., 2006c; Terry et al.,
2006; You et al., 2004). Modulation of GSK-3β activity can regulate progenitor cell
proliferation and differentiation (Adachi et al., 2007; Wexler et al., 2007), promote midbrain
differentiation (Castelo-Branco et al., 2004), control cardiac hypertophy (Haq et al., 2000;
Hardt & Sadoshima, 2002), and increase cell survival during oxidative stress, such as during
neurofibrillary pathology (Wagner et al., 1997), amyloid toxicity (Chong et al., 2007a; Salins
et al., 2007), and cardiac injury (van de Schans et al., 2007). GSK-3β activity also can influence
inflammatory cell survival and activation (Chong et al., 2007a; Chong et al., 2007c; Li et al.,
2006b). As a result, GSK-3β is considered to be an important treatment strategy for several
degenerative disorders (Chong et al., 2005d, 2007b; Rowe et al., 2007; Wu et al., 2007b). For
example, inactivation of GSK-3β by small molecule inhibitors or RNA interference prevents
toxicity from high concentrations of glucose and increases rat beta cell replication, suggesting
a possible target of GSK-3β for pancreatic beta cell regeneration in DM (Mussmann et al.,
2007). Clinical applications for GSK-3β are especially attractive when considered in concert
with trophic factors such as EPO. For example, both the potential benefits of EPO to improve
cardiovascular function in diabetic patients (Silverberg et al., 2006; Silverberg et al., 2001)
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and the positive effects of exercise to improve glycemic control during DM (Maiorana et al.,
2002) appear to rely upon the inhibition of GSK-3β activity. EPO blocks GSK-3β activity
(Chong et al., 2005d, 2007b; Rowe et al., 2007; Wu et al., 2007b) and combined with exercise
may offer synergistic benefits, since physical exercise also has been shown to phosphorylate
and inhibit GSK-3β activity (Howlett et al., 2006).

Protection through Wnt signaling also may require the activation of nuclear factor-κB (NF-
κB). NF-κB proteins are composed of several homo- and heterodimer proteins that can bind
to common DNA elements. It is the phosphorylation of IκB proteins by the IκB kinase (IKK)
and their subsequent degradation that lead to the release of NF-κB for its translocation to the
nucleus to initiate gene transcription (Hayden & Ghosh, 2004). Dependent upon Akt controlled
pathways, the transactivation domain of the p65 subunit of NF-κB is activated by IKK and the
IKKα catalytic subunit to lead to the induction of protective anti-apoptotic pathways (Chong
et al., 2005b). NF-κB itself can be cytoprotective and lead to the induction of several anti-
apoptotic genes, such as inhibitors of apoptotic proteins (IAPs), that can specifically inhibit
caspases 3, 7, and 9 (Chong et al., 2005c; Li et al., 2006b; Spandou et al., 2006). Increased
expression of NF-κB during injury models can occur in inflammatory microglial cells (Chong
et al., 2005c, 2007b; Guo & Bhat, 2006) and in neurons (Sanz et al., 2002). NF-κB represents
a critical pathway that is responsible for the maintenance of Bcl-xL expression (Chen et al.,
2000; Chong et al., 2005e) and the protection of cells against oxidative stress (Chong et al.,
2005c). Although NF-κB has not consistently been found to be beneficial in all cell systems
(Esposito et al., 2006b; Jacobsen et al., 2006) and sometimes may not be cytoprotective (Nurmi
et al., 2006; Xu et al., 2005), cytoprotection through Wnt signaling in some scenarios has been
associated with expression of NF-κB. In neuronal cell lines, over-expression of Wnt1 protects
cells from serum deprivation and is accompanied by NF-κB activation (Bournat et al., 2000).
In addition, sFRP2 appears to yield an anti-apoptotic effect in mammary cancer cells through
NF-kappaB activation that may in addition require JNK suppression (Lee et al., 2006b).

5. Perspectives and Considerations for Wnt Signaling
As our appreciation for the expansive pathways governed by the Wnt pathway continue to
unfold, both basic research as well as future clinical studies should provide direction for the
potential therapeutic applications of Wnt. The scope of the Wnt pathway is exceedingly broad
and is involved in the development of the brain, spinal cord, and the extension of numerous
sub-populations of sensory and motor neurons. Furthermore, Wnt signaling regulates the
processes of vascular remolding, cardiac development, and cardiac hypertrophy. Integration
of the nervous and cardiovascular systems through Wnt occurs at several cellular levels that
relate to oxidative stress, apoptotic injury, and inflammatory cell activation eliciting excitement
for the development of treatment strategies that range from the repair of infarcted cardiac tissue
to the restoration of cognitive loss (Figure 3).

Unfortunately as with all therapeutic modalities, a “double edge sword” exists in regards to
the benefits and risks of any treatment strategy. Although Wnt signaling is a critical component
for the regulation of cell and tissue growth in the neuronal and vascular systems, Wnt can either
facilitate or prevent apoptosis depending upon the environmental stimuli. This knowledge in
regards to Wnt is of particular concern, since recent studies have shown that Wnt signaling can
suppress apoptotic pathways during neoplastic growth and limit the effectiveness of treatments
directed to control or eliminate tumor growth. In addition, in other studies that involve DM,
neuronal disorders, or cardiac disease, it is not entirely evident whether mutations in genes of
the Wnt pathway or alterations in protein expression of the Wnt pathway components during
these disorders confer protective or detrimental effects. Therefore, it becomes imperative if the
“protectionist” Wnt pathway is to offer us the ability to live well and “age gracefully” to clearly
focus upon the multiple cellular mechanisms controlled by Wnt. Only with this conviction in
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the forefront of objectives can we hope to offer patients robust and safe treatment regimens for
a variety of disorders that can involve neurodegeneration, cardiac insufficiency and diabetes.
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Figure 1. Intracellular signaling for Wnt is mediated through the canonical and non-canonical
pathways
A representative schematic for the canonical and non-canonical pathways is shown. The
canonical Wnt signaling pathway is referred to as the Wnt/β-catenin pathway since it can
regulate β-catenin. All Wnt signaling pathways are initiated by interaction of Wnt proteins
with Frizzled (FZD) receptors. The Wnt signaling pathway will only be activated if the binding
of the Wnt protein to the FZD receptor takes place in the presence of the co-receptor LRP-5/6
resulting in the formation of a Wnt-FZD-LRP-5/6 tri-molecular complex. Once Wnt protein
binds to the FZD receptor and the co-receptor LRP-5/6, this is followed by recruitment of
Dishevelled (DVL). DVL is phosphorylated by casein kinase Iε to form a complex with Frat1
and inhibit glycogen synthase kinase (GSK-3β) activity. The non-canonical or atypical Wnt
signaling pathway has two intracellular signaling cascades that consist of the Wnt/Ca2+

pathway and the Wnt/PCP pathway. In the Wnt/Ca2+ pathway, Wnt protein binds to FZD
receptors on the cell surface resulting in several cellular processes that involve stimulation of
heterotrimeric G proteins, increased intracellular Ca2+ release, decreased cyclic guanosine
monophosphate (cGMP) levels, and activation of the two kinases Ca2+-calmodulin-dependent
protein kinase II (CamKII) or calcineurin (CaCN) and protein kinase C (PKC). Activation of
these pathways can stimulate several transcription factors. In the Wnt/PCP pathway, Wnt
proteins bind to FZD receptors on the cell surface followed by activating Rho/Rac small
GTPase and Jun N-terminal kinase (JNK) to assist with cytoskeletal organization and gene
expression.
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Figure 2. Wnt1 promotes nuclear translocation of β-catenin during amyloid-beta
(Aβ) exposure. Immunofluorescence staining for β-catenin was performed at 12 hours
following Aβ1-42 (20 μM) application in SH-SY5Y cells by using rabbit anti-β-catenin
antibody followed by Texas-red labeled anti-rabbit second antibody. The nucleus was
counterstained with DAPI. Representative pictures of staining for β-catenin, DAPI, and merged
images are illustrated. In control untreated cells, β-catenin is expressed in both nucleus and
cytoplasm. Aβ1-42 application resulted in predominant distribution of β-catenin in the
cytoplasm. However, the expression of β-catenin was mainly observed in nucleus in Wnt1
over-expressing SH-SY5Y cells. In merged images, cells with Aβ1-42 exposure show decreased
β-catenin staining (blue) in the nucleus while Wnt1 over-expression reveals strong β-catenin
staining in the nucleus (red).
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Figure 3. Wnt signaling is cytoprotective through the modulation of multiple cellular pathways
Wnt signaling begins with Frizzled (FZD) receptors resulting in the activation of Dishevelled
(DVL) followed by the inhibition of glycogen synthase kinase (GSK-3β), Axin, and
adenomatous polyposis coli (APC) tumor suppressor protein complex. The suppressed
GSK-3β, Axin and APC complex prevents phosphorylation (p) of β-catenin and leads to the
accumulation of β-catenin. β-catenin enters into cellular nucleus and contributes to the
formation of Lef/Tcf lymphocyte enhancer factor/T cell factor (Lef/Tcf) and β-catenin complex
that may cooperate with factors activated by other signaling pathways resulting in cellular
proliferation, differentiation, survival and apoptosis through the induction of target nuclear
gene transcription. Interconnected pathways with Wnt involve IκB kinase (IKK), IκB,
inhibitors of apoptotic protein (IAPs), the forkhead family members (FOXO), glycogen
synthase kinase-3β (GSK-3β), nuclear factor-κB (NF-κB), mitochondrial membrane potential
(ΔΨm), cytochrome c, (Cyto-c), and caspases. Ultimately these pathways converge upon early
apoptotic injury with phosphatidylserine (PS) exposure and later apoptotic DNA degradation.

Maiese et al. Page 42

Pharmacol Ther. Author manuscript; available in PMC 2009 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Maiese et al. Page 43

Table 1
Cellular Expression of the Wnt and the Wnt-FZD Receptor with Biological Response

Cellular Expression of Wnt Cellular Expression of Wnt-FZD Receptor Biological Response

Neurons Neurons Brain development and resistance to injury
Astrocytes Astrocytes Brain development and protection
Progenitor stem cells Progenitor stem cells Cellular development and maturation
Endothelial cells Endothelial cells Angiogenesis
Progenitor vascular stem cells Progenitor vascular stem cells Angiogenesis and cardiomyogenesis
Vascular smooth muscle cells Vascular smooth muscle cells Angiogenesis, vascular remodeling, and cytoprotection
Progenitor cardiac stem cells Progenitor cardiac stem cells Cardiomyogenesis
Endocardial cells Endocardial cells Endocardial cushion formation
Cardiomyocytes Cardiomyocytes Cardiac remodeling and cytoprotection
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Table 2
Wnt Signaling Pathway in the Diseases of the Nervous and Cardiovascular Systems

Clinical or Biological Presentation Wnt Signaling Components Outcome References

Alzheimer’s disease Wnt signaling down-regulated by presenilin 1
β-amyloid production increased
LRP-6 variants, possible neurofibrillary changes

β-catenin degradation increased
GSK-3β activity increased and β-catenin activity decreased; apoptotic neuronal injury increased; microglial activation increased

Soriano et al., 2001
 Salins et al., 2007
Chong et al., 2007a
De Ferrari et al., 2007
Jackson et al., 2002

Retinitis pigmentosa Wnt inhibitory protein Fzd-related protein-2 secretion increased Increased loss of photoreceptors Jones et al., 2000
Angiogenesis and inflammatory cell control Wnt1 expression increased

Wnt1 and β-catenin expression increased
Frz A expression increased
Fzd 4 increased; CAMKII and PKC activated
DVL expression and β-catenin increased
Wnt1 activation

HUVEC proliferation inhibited; HUVEC morphology altered
EC and VSMC proliferation increased
Vessel density increased
Retinal angiogenesis increased
Neovascularization increased
Reduction in inflammatory cell activation/proliferation

Cheng et al., 2003
Wright et al., 1999
Barandon et al., 2003; Dufourcq et al., 2002
Robitaille et al., 2002
Blankesteijn et al., 2000
Chong et al., 2007a

Arterial injury β-catenin accumulation increased
FrzA expression increased

VSMC survival increased and apoptosis decreased
Proliferating vascular ECs decreased

Wang et al., 2002
Duplaa et al., 1999

Cardiac injury/Pressure overload β-catenin expression increased DVL-1 decreased
Increased FZD gene expression

Infarct size, leukocyte infiltration, and apoptosis decreased; capillary density increased
Cardiac apoptosis decreased; cardiomyocyte adherence enhanced; cardiac function improved
Decreased pressure induced cardiac hypertrophy

Qu et al., 2007
van de Schans et al., 2007
Barandon et al., 2003
Ligon et al., 2001

Diabetes mellitus Wnt signaling increased with hyperglycemia; trophic factor enhanced Wnt1 expression
Missense mutations LRP-6

Vascular/renal cell early and late apoptotic programs decreased
Glucose intolerance

Chong et al., 2007c
Lin et al., 2006
Manni et al., 2007

Abbreviations: CAMKII, calcium/calmodulin-dependent protein kinase II; EC, DVL, disheveled; endothelial cell; Fzd, Frizzled; GSK-3β, glycogen
synthase kinase-3β; HUVEC, human umbilical vein endothelial cell; LRP, low-density lipoprotein receptor-related protein; VSMC, vascular smooth
muscle cell.
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