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Summary

Cadaveric renal transplants suffer frequently from delayed graft function,
which is associated with increased risk for long-term graft survival loss. One-
third of kidney grafts that are stored in current organ preservation solutions
experience delayed graft function, demonstrating the urgent need for
improvement. Although ischaemic graft injury is complex in nature, comple-
ment activation is considered important to the process. Here we show that
pharmacological targeting of the complement 5a receptor (C5aR) during cold
ischaemia has a protective effect on early kidney graft survival, inflammation
and apoptosis in a mouse model of syngeneic kidney transplantation. Graft
survival of kidneys that were stored in University of Wisconsin solution in the
presence of a C5aR antagonist increased from 29% to 57%. Increased graft
survival was associated with less tubular damage and apoptosis, protection
from sustained C5aR expression and decreased production of tumour necro-
sis factor-a and macrophage inflammatory protein-2. In a translational
approach, we determined C5aR expression in paediatric living-related and
cadaveric allografts. C5aR expression was significantly higher in all compart-
ments of kidneys from cadaveric compared with kidneys from living-related
donors. C5aR expression in cadaveric kidneys correlated positively with cold
ischaemia time, renal dysfunction and the frequency of apoptotic tubular
cells, suggesting a novel role for C5a in delayed graft function pathogenesis.
Supplementing organ preservation solutions with C5aR inhibitors may
improve early graft function following cadaveric kidney transplantation.
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Introduction

Transplantation-associated ischaemia reperfusion injury
(IRI) of cadaveric renal allografts drives delayed graft func-
tion (DGF) [1,2], a form of acute renal failure (ARF), result-
ing frequently in acute graft loss and/or chronic rejection
[3]. Although the underlying pathomechanisms of renal IRI
are complex, tubular epithelial cell damage at the corticome-
dullary junction is the main outcome of the injury [4], often
associated with tubular cell apoptosis and/or necrosis [5].

The activation of the complement system by renal IRI and
its role as a mediator of transplant injury is well appreciated
(reviewed in [6,7]). Alternative pathway activation has been
considered as the predominant pathway following renal IRI
[8,9]. However, recent data point towards a major contribu-
tion of the lectin pathway [10,11], suggesting that the alter-

native pathway is critical to amplify lectin pathway-initiated
complement activation [7]. Local production and activation
of complement factors is of critical importance in triggering
the generation of the complement 5a (C5a) anaphylatoxin
[12,13] and the membrane attack complex, both of which can
promote IRI-initiated tissue damage [14]. Accordingly, strat-
egies aimed at prevention of complement activation or the
specific blockade of complement pathways have the potential
to protect from IRI-mediated tissue injury [15,16].

Organ preservation solutions are used currently to mini-
mize renal tissue injury in cadaveric donor (CAD)-derived
grafts during cold ischaemia (CI). In the United States, Uni-
versity of Wisconsin (UW) solution is the most frequently
used preservation reagent [17]. Conceptually, such solutions
are designed to reduce hypoxic and inflammatory injury as a
more general approach to confine tissue damage. Because of
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the shortage in donor organs, the frequency of using grafts
from marginal donors is rising, limiting the protective effect
of organ preservation even more [18]. Further, non-heart-
beating donors, who suffer from a high incidence of DGF in
response to warm ischaemia, are used more frequently [19].
Importantly, the incidence of DGF is much lower in grafts
from living-related donors (LRD) compared with CAD;
however, the epidemic dimensions of renal failure in an
ageing population of patients suggest that LRD will not solve
the problem of organ shortage [20].

We hypothesized that combining the general protective
effect of organ preservation with pharmacological targeting
of the C5a/C5a receptor (C5aR) within the graft will result in
improved graft protection during CI. To address this hypoth-
esis experimentally we used the C5aR antagonist A8D71-773

(C5aRA), which targets both receptors for C5a, i.e. C5aR
(CD88) and C5L2 [21]. Here, we demonstrate a positive
regulatory impact of C5aRA on transplantation-associated
IRI as evidenced by reduced cortical and medullar tissue
damage, tissue inflammation and tubular apoptosis, result-
ing in increased graft survival. Further, we found strong
positive correlations between C5aR expression in allografts
from paediatric CAD and organ function, cold ischaemia
time (CIT) and tubular apoptosis, suggesting a critical role
for C5aR signalling in the development of DGF following
paediatric kidney transplantation.

Materials and methods

Animal studies

All experiments involving animals were approved by the
Institutional Animal Care and Use Committee of Cincinnati
Children’s Hospital Research Foundation.

Kidney transplantation

Syngeneic kidney transplantation in C57BL/6 mice was per-
formed as described previously [22]. Briefly, animals were
anaesthetized with isoflurane and the left donor kidney
attached to a cuff of the aorta and the renal vein with a small
caval cuff, and the ureter were removed en bloc. Warm
ischaemia time was 25–30 min. The donor kidney was per-
fused with UW preservation solution (groups A and B) or
UW solution supplemented with C5aRA (group C) until the
venous effluent was clear (~1 ml). Subsequently, kidneys
were placed in UW preservation solution for 30 min (group
A) or 2 h in the absence (group B) or presence (group C) of
C5aRA (10-6 M). After left nephrectomy of the recipient, the
vascular cuffs were anastomosed to the recipient abdominal
aorta and vena cava, respectively, below the level of the native
renal vessels. The ureter was anastomosed directly into the
bladder. Mice were killed 72 h after surgery by CO2 asphyxi-
ation and both kidneys were removed for analysis.

Determination of tumour necrosis factor-a,
macrophage inflammatory protein-2 and C5aR gene
expression levels in kidney tissue

Quantification of gene expression was performed essentially
as described [23]. Briefly, frozen kidney tissue was homog-
enized in Trizol reagent and RNA was extracted and quanti-
fied by spectrophotometry.After DNAse digestion,cDNA was
obtained using superscript (RNaseH-) RTase and the mix-
tures were incubated for 50 min at 42°C followed by 15 min at
70°C and aliquots were then frozen. Standards for real-time
reverse transcription–polymerase chain reaction (RT–PCR)
were obtained from a macrophage cell line (J774.A1) stimu-
lated for 2 h with lipopolysaccharide (200 ng/ml) at 37°C.
Gene expression levels were determined by real-time
RT–PCR using iQ-SYBRgreen reaction mix (Bio-Rad, Her-
cules, CA, USA) containing 5 ml cDNA and 500 nM primer.
The following primers were used: glyceraldehye-3-
phosphate-dehydrogenase forward: 5′-TGC ACC ACC AAC
TGC TTA-3′, reverse: 5′-GGA TGC AGG GAT GAT GTT C-3′;
tumour necrosis factor (TNF)-a forward: 5′-TTG TGG CAG
GGG CCA CCA C-3′, reverse: 5′-GCC ATT TGG GAA CTT
CTC ATC-3′; macrophage inflammatory protein (MIP)-2/
CXCL2 forward: 5′-TCA GTG CTG CAC TGG TCC TG-3′,
reverse: 5′-CAT TGA CAG CGC AGT TCA CTG-3′; C5aR
forward: 5′-CAG GCG GTG TAG AGG AGA AG-3′, reverse:
5′-GAA GGA AGG AAG GAG GAG AGG-3′.

Apoptosis assay of mouse kidney tissue

To detect apoptotic nuclei, we used the In Situ Cell Death
Detection Kit, POD (Roche Diagnostics GmbH, Penzberg,
Germany) based on transferase-mediated dUTP nick-end
labelling (TUNEL) according to the manufacturer’s
instructions. TUNEL-positive apoptotic nuclei were detected
by fluorescence microscopy. Cells that displayed the charac-
teristic morphology of apoptosis, including nuclear frag-
mentation, nuclear condensation and intensely fluorescent
nuclei by TUNEL assay were considered apoptotic. In con-
trast, TUNEL-positive cells lacking morphological criteria
were not considered apoptotic. Slides were examined in a
blinded manner, and apoptosis was quantified by counting
the number of TUNEL-positive nuclei per 100 tubular cells
counted in an average of five high-power fields (¥40) in each
section.

Complement 5a receptor immunohistochemistry of
mouse tissue

Cryostat sections (5 mm) were air-dried for 2 h and
then treated with 3% H2O2/phosphate-buffered saline
(PBS) : methanol (1 : 4) at room temperature for 20 min.
After blocking, endogenous avidin and biotin (DakoCyto-
mation Biotin Blocking System; Dako, Carpinteria, CA,
USA) sections were covered with blocking buffer containing
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normal rabbit serum (5%), sodium azide (0·1%), human
heat-aggregated immunoglobulin G (IgG) (1 mg/ml) in PBS
for 30 min. Subsequently, sections were incubated with a rat
monoclonal antibody (mAb) to mouse C5aR (5 mg/ml; clone
10/92; Hycult Biotechnology, Uden, the Netherlands) over-
night at 4°C and then with a biotinylated anti-rat IgG
(Vector Laboratories, Burlingame, CA, USA) for 90 min at
room temperature. Slides were washed and then incubated
with streptavidin–horesradish peroxidase (HRP) (1 : 2000 in
PBS) for 45 min at room temperature. Substrate chromogen
(Dako North America, Carpinteria, CA, USA), was added
according to the manufacturer’s directions and allowed to
react for 2 min. Sections were counterstained with Meyer’s
haematoxylin for 1 min and then ‘blued’ in ammonia water
for 30 s.

Haematoxylin and eosin staining and
histological scoring

Serial sections (4 mm thickness) of paraffin embedded
kidney tissue were dewaxed and rehydrated for staining with
haematoxylin and eosin. The grade of histological damage
was assigned by determining in a blinded fashion the extent
of: haemorrhage, infiltrating cells and oedema - each on
a grade of 0–3 (absent, mild, moderate and severe
respectively). Spatial distribution of damage was determined
by assessing the percentage area of tissue involved. The indi-
vidual ‘tissue damage score’ and ‘tissue damage (%)’ values
were then multiplied together to yield a measure of ‘relative
kidney damage’.

Human biopsy material

We utilized excess protocol kidney biopsy samples obtained
previously from allografts at 1 h of reperfusion after release of
the vascular clamps during LRD (n = 13) or CAD (n = 12)
kidney transplantation [24]. Paraffin-embedded kidney
biopsy samples from transplant recipients who had consented
previously to a study approved by the Institutional Review
Board for examination of pathogenetic pathways were avail-
able for examination. Four-micron sections were cut onto
slides and processed for routine haematoxylin and eosin his-
tology, C5aR immunohistochemistry and TUNEL staining.

Complement 5a receptor immunohistochemistry on
human biopsy material

Paraffin-embedded sections were deparaffinized and rehy-
drated through two changes of xylene and graded alcohols,
fixed with fresh 4% formaldehyde in PBS for 30 min at 4°C,
blocked with normal goat serum and incubated with anti-
human C5aR mAb (clone W17/1; Hycult Biotechnology)
for 1 h at room temperature. Slides were then exposed for
60 min to biotinylated anti-mouse secondary antibody,
incubated for 30 min in HRP–streptavidin complex, devel-

oped for 5 min with HRP substrate mixture (ImmunoCruz
Staining Systems, Santa Cruz Biotechnology, Santa Cruz,
CA, USA) and counterstained with haematoxylin. As a
negative control, the primary antibody was omitted. C5aR
staining was quantified in a blinded fashion by counting
the number of positively stained cells in at least five high-
power fields.

Apoptosis assay on human biopsy material

To quantify apoptosis, we performed the terminal deoxy-
nucleotidedyl transferase (TUNEL) assay in paraffin wax-
embedded sections as described previously [24] using the
ApoAlert Assay Kit (Clontech, La Jolla, CA, USA), according
to the manufacturer’s instructions. Slides were examined in a
blinded fashion and apoptosis was quantified as described
above for mouse tissue.

Statistical evaluation

Statistical analysis was performed using the SigmaStat
version 3·5 (SystatSoftware SSI, San Jose, CA, USA). All data
are given as mean � standard error of the mean. First we
tested for a normal distributed population, using the
Kolmogoroff–Smirnov test. Comparison of the means of
more than two groups was performed by one-way analysis
of variance. Pairwise comparison was performed using the
Holm–Sidak method. Differences between treatment groups
were considered significant with P < 0·05. Survival analysis
was performed with Kaplan–Meier survival analysis using
the log-rank test. Correlations between C5aR tissue staining
in human biopsy samples and serum creatinine (sCr), CIT
and frequency of tubular epithelial apoptosis were deter-
mined using Pearson’s product–moment correlation.

Results

Pharmacological C5aR targeting improves early
graft survival

To define the impact of C5aR blockade during CI, we estab-
lished three different treatment groups. In group A, donor
grafts were kept in UW preservation solution for 30 min. In
groups B and C, CIT was extended to 2 h. In group C, C5aRA
was added to the preservation solution. The different treat-
ments had a substantial impact on graft survival. The loss of
kidney grafts was defined as death of the animal. Animals
that died within the first 6–8 h because of bleeding issues, i.e.
a leaking anastomosis, were excluded from the study. During
the first 24 h following transplantation, graft survival rates
within the different treatment groups were between 68%
(group A) and 71% (group C). Twenty-four to 48 h after
transplantation, graft survival rates decreased substantially
in groups A (from 68% to 36%) and B (from 67% to 24%).
In contrast, we found only a modest decrease in graft sur-
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vival in group C mice (from 71% to 57%) which did not
change during the next 24 h (Fig. 1).

Complement 5a receptor blockade reduces kidney
damage

Kidney damage was evaluated in transplanted and
non-transplanted kidneys 72 h after syngeneic kidney
transplantation. CI for 30 min (group A) resulted in some
glomerular changes, i.e. a slightly decreased Bowman’s space,
but relatively normal tubules were apparent (Fig. 2a; left
panel). The contralateral kidney appeared normal (Fig. 2a;
right panel). Dramatic changes were apparent in the trans-
planted kidney after 2 h CI (Fig. 2b; left panel). Glomeruli
were avascular and acellular and tubules showed massive
cellular disintegration. Large foci of haemorrhage and
numerous oedematous regions were apparent throughout
the tissue. Some damage was also apparent in the contralat-
eral kidney (Fig. 2b; right panel), although it was less
pronounced. Glomeruli were evident, but were dysmorphic
and tubules were separated widely owing to significant
oedema. Tissue damage in the transplanted kidney of group
C mice was reduced significantly (Fig. 2c; left panel), as evi-
denced by the presence of glomeruli and reduced areas of
haemorrhage. Generally, the tissue was similar in appearance
to that in group A mice. In agreement with these findings,
the contralateral kidney (Fig. 2c; right panel) appeared rela-
tively normal in terms of glomerular and tubular structure,
with no oedema.

Quantitative assessment revealed more pronounced tissue
damage in the medulla of the transplanted kidney than in the
cortex in all treatment groups (Fig. 2d; left panel). Tissue
damage was most severe in kidneys from group B mice, both
in transplanted as well as in non-transplanted kidneys. C5aR
blockade decreased cortical and medullar damage signifi-
cantly in the graft, and even more in the non-transplanted
kidney (Fig. 2d; right panel).

We further determined the spatial distribution of kidney
damage. About 20% or 30% of kidney graft tissue within the
cortex or the medulla of group A mice was damaged. In
contrast, only 10% of kidney tissue was damaged in the
contralateral, non-transplanted kidney (Fig. 2e; right panel).
Two hours of CI dramatically increased the magnitude of
kidney damage up to ~90% in the transplanted or 50–60% in
the non-transplanted kidney, both in the medulla and the
cortex. Importantly, kidney damage was reduced to 60–70%
in the transplanted kidney of group C mice and was only
10% in the non-transplanted kidney.

To measure more accurately the overall kidney damage in
response to IRI, we combined the quantitative assessment
(Fig. 2d) and spatial distribution of kidney damage (Fig. 2e)
in a score that grades relative kidney damage. As shown in
Fig. 2f, the relative kidney damage was: (i) more pronounced
in the transplanted kidney compared with the non-
transplanted kidney; (ii) higher in the medulla than in the
cortex of the transplanted kidney; (iii) most severe in group
B kidneys; and (iv) substantially reduced in group C kidneys.

Complement 5a receptor blockade during CI reduces
tubular apoptosis

We and others have shown that apoptotic pathways become
activated after IRI in rodents [12] and in human renal
allografts [24,25]. In agreement with these findings, we
observed a low frequency of apoptotic cells (4·3 � 0·28 apo-
ptotic cells/100 counted tubular cells) in the transplanted
kidney of group A mice (Fig. 3a and d). The apoptotic events
occurred almost exclusively in tubular epithelial cells but not
in glomeruli. Extension of CIT to 2 h was associated with
threefold higher numbers of apoptotic tubules (13·2 � 0·6)
in the transplanted kidney (Fig. 3b and d). Importantly,
addition of the C5aRA to the UW solution protected from
the induction of tubular apoptosis (7·2 � 0·5 cells; Fig. 3c
and d). In contrast to the transplanted kidney, we found only
very minor tubular apoptosis in the non-transplanted
kidneys and no significant differences between the three
treatment groups (Fig. 3a–c and e).

Complement 5a receptor blockade during CI protects
from up-regulation of C5aR on tubular cells

Previously, we have shown that 30 min of warm ischaemia
results in significant up-regulation of C5aR expression in
murine tubular epithelial cells as early as 2 h after reperfu-
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Fig. 1. Impact of pharmacological complement 5a receptor (C5aR)

targeting on kidney graft survival. Percentage survival rate of mice in
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30 min cold ischaemia (CI) in University of Wisconsin (UW) solution
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C: 2 h in UW solution with the addition of C5aRA (10-6 M) (n = 21).
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significantly after 2 h of CI (P = 0·038; log-rank test).
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sion, which persists for at least 24 h in a murine model of
renal IRI [12]. Here, we found no tubular C5aR expression
72 h after CI in group A mice. However, C5aR expression was
evident on tissue macrophages (Fig. 4a; left panel). In con-
trast, we observed intense C5aR staining of tubular epithelial
cells in the transplanted kidney after 2 h cold storage
(Fig. 4b; left panel), which was almost abrogated following
C5aRA treatment (Fig. 4c; left panel). In the contralateral
kidneys of mice from all treatment groups, we found C5aR
staining of tissue macrophages but not of tubular cells
(Fig. 4a–c; right panels). These data suggest that C5aR
up-regulation persists for at least 72 h after CI and that C5aR
targeting protects from sustained C5aR expression in the
transplanted kidney.

In addition to the histological evaluation, we determined
C5aR mRNA expression in kidney tissue by quantitative
real-time PCR. We found eight- or ninefold higher C5aR
expression in grafts from group B mice compared with grafts
from group A or group C mice (Fig. 4d; left panel). In non-
transplanted kidneys, C5aR expression was only slightly
elevated in grafts from group B mice (2·6- or twofold)

compared with that from group A and group C mice respec-
tively (Fig. 4d; right panel). C5aR expression levels between
group A and group C were indistinguishable.

Decreased kidney inflammation in response to C5aR
blockade during CI

Tissue damage following CI was associated with increased
kidney inflammation, as evidenced by increased mRNA
levels of the proinflammatory cytokine TNF-a and the CXC
chemokine MIP-2/CXCL2. We found fourfold or 17-fold
higher TNF-a or MIP-2/CXCL2 expression levels in tissues
from group B mice than in tissues from group A mice
(Fig. 4e and f; left panels). Similarly, TNF-a or MIP-2/
CXCL2 expression was 3·2-fold or 15-fold higher in kidneys
from group B mice compared with kidneys from group C
mice. C5aRA treatment protected from the induction of the
proinflammatory response, as evidenced by similar TNF-a
and MIP-2/CXCL2 expression levels in kidneys from group
A and group C mice. In the non-transplanted kidney,
the inflammatory response was much weaker than in the
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(c) 2 h CI in the presence of C5aRA. Small arrows depict glomeruli and large arrows indicate regions of haemorrhage. Figures are reduced from an
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A tissue damage score was determined on a scale of 0–3 (none, mild, moderate and severe) as outlined in Materials and methods, with a maximum

possible score of 9 = severest damage being attainable. (e) Spatial distribution of damage in transplanted (left panel) and non-transplanted kidneys

(right panel). (f) Relative kidney damage shown as a composite damage score calculating the product of each individual damage score with its

corresponding area of damage. All values were determined 72 h post-transplantation (n = 6–12).

C5aR targeting improves kidney graft survival

121© 2008 British Society for Immunology, Clinical and Experimental Immunology, 153: 117–126



transplanted kidney and the effect of the C5aRA became less
evident (Fig. 4e and f; right panels).

Complement 5a receptor expression is increased in
human cadaveric grafts and correlates with CIT, kidney
function and apoptosis

Our animal studies demonstrate that C5aR is up-regulated
in response to transplantation-associated IRI and that phar-
macological targeting of the C5aR during CI has a beneficial
impact on early tissue damage, inflammation and apoptosis,
eventually improving early graft survival. To assess the role of
C5aR in the pathogenesis of transplantation-associated IRI
in human kidneys, we investigated a total of 25 paediatric
patients, 12 or 13 of whom received allografts from LRD and
CAD respectively. Their demographic characteristics, diag-
noses and clinical variables are shown in Table 1.

All CAD samples showed typical histological evidence of
IRI, including flattening of proximal tubule cells, loss of
brush border, tubular cast formation and occasional necrotic

cells, as described previously [24]. C5aR was up-regulated in
this group compared with the LRD in all tissues examined
(Fig. 5a and b). Quantitative determination of C5aR expres-
sion revealed significantly higher values in the CAD group
than in the LRD group (Fig. 5c). As expected, we found a
strong positive correlation between CIT and sCr levels
(Fig. 5d). Importantly, C5aR expression levels in the CAD
group showed significant positive correlations with peak sCr
(Fig. 5e), duration of CIT (Fig. 5f) and the frequency of apo-
ptotic cells (Fig. 5g). These data suggest that CIT drives the
up-regulation of C5aR expression in human kidney tissue
which, in turn, promotes kidney damage and tubular apop-
tosis, leading eventually to increased sCr.

Discussion

Ischaemia and reinstitution of blood flow in ischaemically
damaged kidneys activate a complex sequence of events
that sustain renal injury and play a pivotal role in the
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development of DGF, resulting in post-transplantation olig-
uria in 20–40% of primary cadaveric renal transplants in the
US [26,27]. DGF has been linked to poorer prognosis, result-
ing in either acute rejection or significantly decreased 1- and
5-year graft survival [28]. Although the pathogenesis of IRI
is complex and understood incompletely, several animal

studies have demonstrated convincingly that local activation
of the complement system is critical to the development of
IRI (reviewed in [6,7]).

Despite the significant advances that have been made in
understanding the mechanisms underlying IRI in animal
models, little progress has been made in therapeutic
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Fig. 4. Impact of complement 5a receptor (C5aR) targeting on ischaemia reperfusion injury-induced C5aR expression and tissue inflammation.

(a–c) C5aR expression in transplanted (left panels) and non-transplanted kidneys (right panels). (a) 30 min cold ischaemia (CI). Black arrows

indicate C5aR positive macrophages; white arrows indicate C5aR positive tubular epithelial cells. (b) 2 h CI without C5aRA. (c) 2 h CI in the

presence of C5aRA. Figures are reduced from an original magnification of 20¥. (d) C5aR; (e) tumour necrosis factor-a; and (f) macrophage

inflammatory protein-2/CXCL2 mRNA expression levels, quantified by real-time polymerase chain reaction in transplanted (left panel) and

non-transplanted (right panel) kidneys respectively. The mRNA expression between the indicated treatment groups was compared. All values were

determined 72 h post-transplantation (n = 6–12).

Table 1. Clinical characteristics of patients with living-related donor (LRD) and cadaveric donor (CAD) kidney transplantation.

Age

(years)

Gender

Diseases (n) Race (n)

Ischaemia time

(min)Male Female

LRD 14·5 � 0·9 6 6 Obstruction 3 Caucasian 3

�30

Dysplasia 2 Hispanic 4

GN 3 African American 5

FSGS 4

CAD 13·5 � 0·9 6 7 Obstruction 4 Caucasian 3

1395 � 77

Dysplasia 4 Hispanic 4

GN 3 African American 6

FSGS 2

FSGS, focal segmental glomerulosclerosis; GN, glomerulonephritis.
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approaches over the past decades. Haemodialysis is used cur-
rently as a supportive therapy as no other, more effective
treatment is available [29,30].

To minimize the effects of organ damage and IRI, organ
donation requires both in situ flush with a cold preservation
solution and hypothermic storage. UW solution is the stan-
dard solution used for abdominal organ transplantation,
including the kidney [17]. Importantly, the preservation
effects of even the market leader UW is anything but
optimal, leading to DGF rates of 20–40%. A meta-analysis
examining the modes of preservation-linked DGF and graft
half-life concluded that DGF could contribute to a 20%
reduction in 10-year graft survival compared with that
observed with immediately functioning renal allografts [30].
Therefore, the number of functioning graft years lost world-
wide as a consequence of poor organ preservation appears to
be significant. Clinical and experimental studies suggest that
improvements in organ preservation will have significant
benefits for long-term outcomes. Hence the optimization of
organ preservation may permit better use of the scarce
resource of donor organs.

In order to optimize organ preservation, we have targeted
the C5aR within the kidney tissue by supplementing UW

solution with C5aRA. This molecule functions as a competi-
tive C5aRA for human and mouse C5aR and C5L2 [21]. The
significant therapeutic potential of C5aRA has been demon-
strated in a variety of diseases models, such as renal [12] and
intestinal [31] IRI, immune complex disease [31,32], experi-
mental allergic asthma [33,34] and infection with intra-
cellular parasites [23].

Our data show that 30 min of warm ischaemia combined
with 2 h of CI induces substantial cortical and medullary
tissue damage involving glomeruli and tubules, leading
eventually to graft loss. Blockade of C5aR during CI reduces
tissue damage significantly in the graft as well as remote
injury in the non-transplanted kidney, resulting ultimately
in a significantly improved graft survival rate. Mechanisti-
cally, C5aR expression has been identified on human and
mouse tissue macrophages [35,36] as well as on human
proximal tubular and glomerular mesangial cells [35,37,38]
of naive kidneys. After renal IRI, C5aR expression on tubular
and mesangial cells is up-regulated up to 24 h after the insult
[12]. In agreement with our previous data, we found that 2 h
CI resulted in C5aR up-regulation on tubular cells, which
persisted for 72 h. Targeting of the C5aR during CI pre-
vented the sustained C5aR tubular expression. At first glance,

Fig. 5. Complement 5a receptor (C5aR)

expression in cadaveric donor (CAD) and

living-related donor (LRD) and its correlation

with cold ischaemia time, kidney function and

tubular cell apoptosis. (a, b) C5aR expression in

glomeruli, tubules and the interstitium of

human allografts from LRD (a, upper panels)

or CAD (b, lower panels). C5aR staining is

depicted by the white arrowheads in each panel.

(c) Quantitative evaluation of C5aR expression

in grafts from CAD (n = 13) and LRD (n = 12).

Groups were compared by analysis of variance

to determine statistical differences between

treatment groups (see Material and methods).

(d) Correlation between cold ischaemia time

(CIT) and peak serum creatinine (sCr) levels

(r = 0·97, P < 0·001). (e–g) Correlations between

C5aR staining intensity (number of C5aR

positive tubules/field) and peak sCr levels

(r = 0·96, P < 0·001) (e), duration of CIT

(r = 0·82, P < 0·001) (f) and the frequency of

apoptotic cells in the allograft (r = 0·78,

P = 0·001) (g).
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this effect is surprising as the C5aRA was administered only
locally during CI. However, C5aR expression is regulated
positively by cytokines such as interleukin (IL)-6 [39] which,
in turn, can be induced by C5aR activation on tissue mac-
rophages [40]. Thus, local C5aR blockade at the time of
reperfusion might be critical to prevent C5a-induced release
of proinflammatory cytokines and chemokines, which
would otherwise promote a proinflammatory amplification
loop. In support of this view, we found decreased TNF-a and
MIP-2 expression levels in grafts of mice that had been
treated with the C5aRA. In addition to tissue macrophages,
hypoxia-stressed proximal tubular epithelial cells and glom-
erular mesangial cells are an important source of TNF-a.
Importantly, TNF-a or MIP-2 blockade in vivo protects from
the development of renal IRI-induced tissue damage and
apoptotic/necrotic death of tubular cells [41,42]. These data
suggest that early C5aR blockade suppresses the develop-
ment of kidney damage and dysfunction by counterbalanc-
ing IRI-induced development of tissue inflammation and
apoptosis/necrosis which, in concert, promote DGF.

The relevance of C5aR blockade as a potential therapeutic
concept in human kidney transplantation is emphasized by
our data, showing that C5aR expression is up-regulated soon
after CI in grafts from CAD and that this up-regulation is
associated strongly with CIT, impaired kidney function and
the frequency of apoptotic tubular epithelial cells. These data
indicate that the mechanisms leading to ARF and graft loss
in murine models of kidney transplantation and in human
paediatric patients are similar, at least with regard to C5a-
induced graft pathology.

The concept of blocking C5aR and C5L2 during
transplantation-associated CI has not been explored before.
Previous concepts have focused on complement regulatory
molecules such as the complement receptor 1-related protein
y (Crry) [43], C3-specific small interfering RNA [44] or a
membrane-localizing complement regulator derived from
human complement receptor type 1 (APT070) [45,46].
While Crry failed to protect kidneys from IRI-induced
injury, systemic delivery of anti-C3 siRNA reduced IRI-
mediated renal injury in mice. APT070 was used in a rat
model of syngeneic kidney transplantation as an additive to
the preservation solution. Importantly, this treatment was
associated with less tubular damage and improved renal
function, leading eventually to increased graft survival (from
26·3% to 63·6%), the extent of which was similar to what we
have found in our study (Fig. 1). APT070 interacts with C3b
and C4b, leading to dissociation of both molecules from C3
or C5 convertases and acts as a co-factor for factor I to
degrade C3b and C4b. Thus APT070 promotes broad inhi-
bition of the complement system, whereas C5aRA specifi-
cally blocks the C5aR pathway, leaving major functions of
the system such as opsonization, lysis and clearance of apo-
ptotic cells intact.

In addition to the impact on inflammation and apoptosis,
recent reports imply that C5aR blockade will also affect

the induction of adaptive immune responses following
allotransplantation. Previously, we have shown that C5aRA
inhibits microbial-induced production of IL-12 from human
monocytes [33]. Extending this finding, Lalli et al. recently
found that allospecific T helper tpe 1 differentiation is
impaired substantially when antigen-presenting cells lack
the C5aR [47]. Collectively, these data suggest that C5aR
targeting in renal transplantation may not only protect from
early inflammation induced by innate immune mechanisms
but also from the development of allospecific adaptive
immune responses promoting allograft rejection.

In conclusion, we demonstrate that administration of a
C5aR/C5L2 inhibitor to UW solution reduces IRI-induced
kidney damage and tubular cell apoptosis as well as sustained
up-regulation of C5aR in tubular epithelial cells in a model
of syngeneic kidney transplantation. Thus C5aR targeting
during CI might prove useful to protect from the develop-
ment of transplantation-associated DGF.
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