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Abstract

In fMRI data analysis it has been shown that for a wide range of situations the hemodynamic response
function (HRF) can be reasonably characterized as the impulse response function of a linear and time
invariant system. An accurate and robust extraction of the HRF is essential to infer quantitative
information about the relative timing of the neuronal events in different brain regions. When no
assumptions are made about the HRF shape, it is most commonly estimated using time windowed
averaging or a least squares estimated general linear model based on either Fourier or delta basis
functions. Recently, regularization methods have been employed to increase the estimation efficiency
of the HRF; typically these methods produce more accurate HRF estimates than the least squares
approach (Goutte, et al. 2000). Here, we use simulations to clarify the relative merit of temporal
regularization based methods compared to the least squares methods with respect to the accuracy of
estimating certain characteristics of the HRF such as time to peak (TTP), height (HR) and width (W)
of the response. We implemented a Bayesian approach proposed by Marrelec et al. (2001, 2003) and
its deterministic counterpart based on a combination of Tikhonov regularization (Tikhonov and
Arsenin 1977) and generalized cross-validation (GCV) (Wahba,1990) for selecting the regularization
parameter. The performance of both methods is compared with least square estimates as a function
of temporal resolution, color and strength of the noise, and the type of stimulus sequences used. In
almost all situations, under the considered assumptions (e.g. linearity, time invariance and smooth
HRF), the regularization-based techniques more accurately characterize the HRF compared to the
least-squares method. Our results clarify the effects of temporal resolution, noise color, and
experimental design on the accuracy of HRF estimation.
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Introduction

Event-related functional magnetic resonance imaging (ER-fMRI) data analysis is typically
based on the assumption that the Blood Oxygen Level Dependent (BOLD) signal (Ogawa, et
al. 1990) is the output of a linear and time invariant system (Boynton, et al. 1996; Friston, et
al. 1994). While nonlinearities in the BOLD response have been documented (Boynton, et al.
1996; Buxton, et al. 1998; Dale and Buckner 1997) the assumption of linearity has been shown
to be a good approximation in a wide range of situations (Friston, et al. 1998; Glover 1999).
Here we have assumed that the fMRI time series is the convolution of the HRF with a given
stimulation pattern. Despite recent and impressive progress (Logothetis and Pfeuffer 2004) the
relationship between the fMRI signal and neuronal activity is not well understood, an accurately
estimated HRF at each voxel can provide potentially useful quantitative information about the
relative timing and the response amplitude of neuronal events under various experimental
manipulations. Due to regional variability in the blood flow response, care must be used if one
is interested in comparing BOLD time courses across brain regions (Lindquist and Wager
2007; Menon, et al. 1998; Miezin, et al. 2000). Although, it has been shown that time course
differences between primary visual cortex and supplementary motor area are predictive of
response time in a visual-motor task (Menon, et al. 1998).

Estimation methods differ in the assumptions they make about the underlying shape of the
HRF. In this work, we will focus our attention on methods that do not assume a fixed shape of
the HRF in order to account for its variability across brain regions and subjects (Aguirre, et al.
1998; Handwerker, et al. 2004). The HRF can be estimated by modeling the fMRI time series
using the general linear model (Friston, et al. 1995) and a set of delta functions, which is an
approach commonly known as the finite impulse response (FIR) method (Dale 1999; Lange,
et al. 1999). In this case the design matrix contains as many columns as HRF values being
estimated. The first column is a vector of ones and zeros that represents the event onset times
(in an ER-experiment) locked to the acquisition times and the rest of the columns are its
temporally shifted versions. This approach has been applied by several researchers to estimate
the HRF in different applications (Lu, et al. 2006; Lu, et al. 2007; Miezin, et al. 2000; Ollinger,
et al. 2001a; Ollinger, et al. 2001b; Serences 2004).

There is considerable evidence suggesting that the HRF is smooth (Buxton, et al. 2004) and
several researchers have used this property as a physiologically meaningful constraint in their
HRF estimation schemes. Goutte et al. (2000) proposed the use of the smooth FIR (or temporal
regularization) by combining the temporal smoothness constraint on the HRF with boundary
conditions. They used a Bayesian approach based on Gaussian priors on the HRF with a
covariance structure that they showed to be equivalent to constraining a high order discrete
derivative operator. A similar conceptual line was followed by Marrelec et al. (2001, 2003),
but in this case the second derivative discrete operator was used to impose smoothness on the
estimated HRF. In a more sophisticated development, the method was extended to deal with
multiple event designs, variability across sessions, and HRF temporal resolution shorter than
the actual temporal resolution of the collected data (Ciuciu, et al. 2003). In addition, two
approaches based on Tikhonov regularization (Tikhonov and Arsenin 1977) and generalized
cross validation (GCV) (Wahba 1990) have been introduced for HRF estimation. The
Tikhonov-GCV (Tik-GCV) method has a long history in the inverse problems literature, but
has been rarely applied to fMRI data. Zhang et al. (2007) proposed a two level algorithm to
estimate not only the HRF but the drift using smoothness constraints. To estimate the
regularization parameter at each level they used GCV and Mallow's Cj, criteria. Vakorin et al.
(2007) have used Tikhonov regularization based on B-spline basis and a GCV for selection of
the regularization parameter. Their approach was customized for block-designs.
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In this paper we simulate event-related fMRI designs to study the impact of temporal
regularization based methods on the estimation of HRF features such as time to peak (TTP),
height of the response (HR) and the width of the response (W) when compared to the more
common least squares or maximum likelihood estimation. We implemented the Bayesian
method proposed by Marrelec et al (2001,2003) and its deterministic counterpart based on
Tikhonov regularization combined with generalized cross-validation for the selection of the
regularization parameter. Although our Tik-GCV algorithm is related to previous work
(Vakorin, et al. 2007; Zhang, et al. 2007), our approach focuses on using delta basis functions
to estimate the HRF during ER-designs and it consists of only one step. Our approach is more
similar to the Bayesian approach of Marrelec et al. (2001, 2003) but it differs on the critical
issue of how the regularization parameter is selected. In our simulations, we use different
probabilistic distributions of the inter-trial-intervals (ITI) (Hagberg, et al. 2001), different
temporal resolutions, and vary the color and power of the noise. The performance of each
technique is then illustrated using real data.

Materials and Methods

Linear Model

If we assume that the fMRI response is linear and time invariant then the BOLD signal y at a
given voxel can be represented as

y=Xh+n, (1)

where y is a N x 1 vector representing the fMRI signal from a voxel, N is the number of time
samples, X = [X1Xz...X ng], Where X is the stimulus convolution matrix (with dimension N x
Ns) corresponding to the event i, h is a NsNe % 1 vector containing the vertical concatenation
of the individual HRFs and Ng is the number of events. The stimulus convolution matrix X; is
generated based on the stimulus sequence. The dimension N of the vector h; (i-th event HRF)
is determined by the assumed duration of the HRF and its discretization time resolution. Finally,
n is additive noise with covariance matrixV.

In this work we model the drift usually observed in the fMRI times series using orthogonal
polynomials, the number of events was set to Ne = 1 and the noise was considered to be i.i.d
Gaussian (V = 1I). In order to account for the autocorrelation present in the fMRI time series,
the temporal covariance structure should be estimated based on the acquired data (Friston, et
al. 2002; Worsley, et al. 2002) and used to pre-whiten the fMRI time series before applying
the model. So, our linear model will be defined as

y=Xh+Pl+n, 2

where P is a N x M matrix containing a basis of M orthonormal polynomial functions that
takes a potential drift into account. The highest order of the polynomials is M — 1 and | is the
M x 1 vector of the drift coefficients. We took M = 3 in our implementation to model 15t and
2"d order drift commonly observed in fMRI times series.

In principle, the HRF response function can be resolved at a finer temporal resolution than the
one given by the TR (Dale 1999). We follow a strategy similar to the one proposed by Ciuciu
et al. (2003) where the BOLD data and the trial sequence are put on a finer grid and the true
onsets of the trials are approximated to the closest neighbors in this finer grid. This approach
allows one to model the fMRI time series when the onsets of the stimuli are not synchronized
with the acquisition times without oversampling the data.
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HRF estimation methods
Least Squares—The least square solution of (2) is obtained by solving

min||XA+PI - y|f3,
hl (3)

and it is given by
WS =(XTX,) " Xy,
where
X,=(I - P(PTP) ' PTYX=JX.

where J= (1 — PPT). The last equality results from orthonormality of P in our case. The resulting
X amounts to removing the drift from the stimulus convolution matrix (Liu, et al. 2001).

Bayesian method

The Bayesian approach with temporal priors proposed by Marrelec et al. (2003; 2001) makes
two assumptions on the unknown HRF. First, it begins and ends at zero, which is accomplished
by setting the first and last sample values of the HRF to 0 (Goutte, et al. 2000). Second, the
HRF is smooth, which is achieved by setting a Gaussian prior for the norm of the second
derivative of the HRF. For full technical details see the references included above. Here we
briefly present the key expressions that we used in our computations. In order to estimate the
HRF posterior pdf(p(h | y)) Marrelec et al used the approximation

p(hly) ~ p(hly,A=2) @)

and they proved p(hly.A=1) to be Student-t distributed. In (4) h,y, 2 and 1 are the HRF, the
fMRI data, the hyper-parameter and its estimate respectively. As the HRF estimate they

proposed the expected value of p(hly,A=2) given by
h=xTx +220)'x"y 5)

where Q = LTL, L is a (Ns — 2)x(Ng — 2) matrix representing the discrete second derivative
operator. The application of the boundary conditions implies removing the first and last column
of matrices X and X being their new dimension N x (Ng — 2). This will be true for the three
methods compared in this work. For the sake of simplicity we keep the same notation. The
regularization parameter A establishes a tradeoff between fidelity to the data and the smoothness
constraint. A greater value of the regularization parameter will produce smoother HRF
estimators 7 in Eq.(5). In the particular case 4 = 0 the method reduces to the LS method. The
posterior pdf of the hyper-parameter 1 was deduced to be

N2

PAly) o< 7 Uy = T XXX+ 22 Q)7 XT )y P07

T 2
Jdet(XTX, +220) ©

where F = N — Ng. The MAP estimate ( 1 = arg max p(4|y)) based on (6) was proposed as the
choice of the regularization parameter. We use the MATLAB optimization toolbox to find A
providing as initial value Ag = 1.
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Tikhonov regularization
The Tikhonov solution of (2) is obtained by solving the following optimization problem:

in {|IXh+PL = yl3-+ A2ILA3
nﬁ.‘/n{” +PL— yll5+A7 IIz} )

instead of the problem defined by Eq.(3). The second term imposes smoothness on the
estimated HRF while the first expresses its fidelity to the data. The regularization parameter
has a similar interpretation as for the Bayesian method. We used as L the discrete second
derivative and assumed hy=hn,=0 (Marrelec, et al. 2003). The HRF estimator we derived from
Eq.(7) is (see Appendix A)

h=XTX, +22Q)'xTy ®)

Note that Eq.(8) and Eq.(5) are the same but we select the regularization parameter using GCV
(see appendix C), which is a very popular technique in the inverse problems and ridge
regression literature (Golub, et al. 1979;Wahba 1990). In our implementation we used a
MATLAB package for regularization available publicly at
http://www2.imm.dtu.dk/~pch/Regutools/regutools.html) (Hansen 1994). For more details
about our implementation see the appendixes.

HRF parameters estimation

After estimating the HRF using the methods described above we used the result to compute
the TTP, HR and W to compare the different methods for HRF estimation. For an analysis of
the physiological meaning of these parameters and potential problems in their interpretation
such as confusability we refer the reader to Lindquist and Wager (2007). We computed the HR
and TTP as:

HR=max(abs(;)).imax= {i € 1.2,..N;[HR=h;} TTP=(imy — 1)  d1,
4

where dt is the time resolution of the HRF estimation. For computing W we followed a three
step procedure similar to the one proposed by Lindquist and Wager (2007). The first step is to
find the earliest time point t, such that t, > TTP and h(t,) < 0.5HR, i.e., the first point after the
peak that lies below half maximum. Second, find the latest time point t; such that t; < TTP and
h(t;) < 0.5HR, i.e., the last point before the peak that lies below half maximum. As both t, and
t) take values below 0.5HR, the distance d; =t - t; overestimates the width. Similarly, both
ty.1 and t41 take values above 0.5HR, so the distance d, =11 - t|+1 underestimates the width.
We then estimated W using the average between these two distances(d,,d,) to perform the
comparisons between the HRF estimation techniques.

Measures of performance

The comparative results presented below are based on the relative errors for TTP, HR, W and
root mean square error (RMS):

ITTP’es[ _ TTPll'ue |

e (TTP) =—— x 100 o
|HR§51 _ HRtl'ue |
HR) =————— x 100
e ( ) HRuue (10)
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IW;SI _ Wll'uc |
e (W) =— e x 100 -

Ns
Z(h?sl_h}rue)z

e(RMS) = x 100

(12)

The measures of the relative error were computed for the most efficient design (Dale 1999)
generated using a random walk of 1000 iterations. They were expressed in percentages and
were averaged across 200 realizations of the noise. In order to make the e(RMS) comparison
fair we set hy=hy,=0 for the LS method by removing the first and last columns of the matrix
X. The efficiency when optimizing the designs was computed according to Dale (1999) and
taking into account the drift (Liu 2001)

1
&= T~
c2trace(XTV-1x,)™) (13)

we set o =1and V =l in all simulations.

Simulated Data

Generation of event sequences—Single event sequences were generated from three
commonly used probabilistic distributions: geometric, uniform and exponential. We always
constrained the minimum ITI (ITlyn) to be one second. A geometric distribution of the ITI
was produced by inserting the null events in the sequence with the same probability (p = 0.5)
as the real event (Burock, et al. 1998). The exponential and uniform distributed intervals were
based on the corresponding MATLAB functions. In the case of the uniform distribution, for a
desired mean ITI (ITlpean), We generated interval values between [ITlnean —8:1Tlnean 181,
which were truncated for short 1Tl ean Values due to the constraint on 1Tl .. For the
exponential distribution in order to guarantee simultaneously the required ITlyeqn and a
constraint on 1Ty, we choose the parameter of the distribution as 1Tlean -1TImin and then
added ITlyp to the generated random values. We also generated sequences with fixed ITI.

HRF test function—In our simulations we used the difference between two gamma densities
functions (Friston, et al. 1998; Glover 1999; Worsley, et al. 2002)

h(t)=HR ((L)ale(%) _ c( t )ae(f_d‘))

dy dy

where a; =6, a» =12, by = by =0.9, ¢ = 0.35, HR = 0.3. In this case the time to peak was 5.4
s, the amplitude was HR and the W was 5.2 s.

The fMRI signal was simulated by putting together the sequence of events at a finer temporal
grid. The events onsets were approximated to the nearest point in the grid and then convolved
with the test function h(t). The resulting signal was undersampled to TR and Gaussian white

signal
N . SNR:]OIOgm(w . . -
noise with a given SNR ( var(noise) ') or with a fixed standard deviation was
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added to the data together with a quadratic drift. The durations of the experiment and the HRF
were set to 310 s and 20 s respectively.

Simulations: As explained above the measures of performance were computed for designs
that have been optimized according to efficiency and using a random walk. This allowed for
a fairer comparison of the least squares method to the regularized techniques since optimizing
the design will improve the performance of the former. All simulations were repeated for the
three different types of random designs that we implemented (geometric, exponential and
uniform), but the results will be presented only for the exponential sequences (with the
exception of simulation 3) since the results were similar for the other two types of sequences.

Simulation 1: As described above it is possible in principle to estimate the HRF shape from
the model described in Eg. (2) with a temporal resolution finer than the TR of the given fMRI
time series. We designed this simulation to assess the effect of increasing the temporal
resolution of the HRF estimation across TRs and SNRs (between -2 and 8 db). The ITI were
generated with 1 Tlnean =58, ITlmin =1 sand TR =1 and 2 s respectively. No quadratic drift
was added in these simulations to allow a more clear assessment of the influence of the temporal
grid resolution.

Simulation 2: In fMRI data analysis it is generally accepted that there is a need to account for
the noise autocorrelation (colored noise) present in the data to increase the estimation efficiency
(Worsley, et al. 2002). However, Marrelec et al. (2003) reported their regularized solution to
be robust to the structure of the noise and Birn et al. (2002) concluded using a FIR model with
simulated white noise and real fMRI resting data that the HRF estimation accuracy is unaffected
by colored noise. To test these assertions, we designed the following simulations. One event
random designs with TR = 1 s, temporal resolution equal to the TR, and different ITIyean (3,
5, 10 and 20 s) were generated. We computed our performance measures for three different
types of noise: white (WN), autoregressive order 1 (AR(1)), and autoregressive order 4 (AR
(4)). For the AR(1) noise the coefficient was set at 0.3 and for the AR(4) noise coefficients
were set at

€,=0.3679,_1+0.1353&,,_2+0.04982,_3+0.0183¢,_4+&,

which are the same values as in Marrelec et al. (2003). The signal to noise ratio was varied
between -2 and 8 db.

Simulation 3: In these simulations we compared the performance of the three methods across
different experimental designs (exponential, geometric, uniform and fixed-ITI) and ITlmean
values. The parameters were set to: TR =2 s, the I Tlin = 1 s and the temporal resolution was
TR/2. Gaussian white noise with standard deviation 0.2 was added. In these simulations we
computed the measures of performance across the 5% most efficient designs in order to more
clearly assess the influence of the random design on the HRF estimation.

Simulation 4: These simulations were designed to compare the performance of the two
regularization techniques in terms of the regularization parameter selection and variability of
the estimates. For different 1Tl neqn Values (3, 7, 10 and 15 s), we kept track of the generated
regularization parameters by both methods for two hundred realizations of the noise. The mean
TTP, HR and W values together with their 2.5% lower and upper tails were computed and
displayed. Three different levels of white noise (5, 3 and 0 db) were explored. Other parameters
in this simulation were TR = 2 s and temporal resolution TR/4.
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Stimulus Presentation—A healthy volunteer (author RC) provided written consent for
MRI scanning. The subject was instructed to maintain fixation on a gray cross in the center of
a projection screen and to concentrate on the visual stimulus, a black and white checkerboard
(250ms duration) that encompassed ~3° of visual space displayed using MR-compatible
goggles (Resonance Technology, www.mrivideo.com). The subject was instructed to respond
as quickly and as accurately as possible to a single flash of the checkerboard using the right
index finger on a keypad. The single event-related paradigm was a geometric design optimized
in terms of efficiency among 10000 generated at random. It consisted of 78 events totaling
330.8 seconds. The ITlyi, was 1.7 seconds, and there were null events built into the paradigm
(p = 0.5) (Burock, et al. 1998).

Image Acquisition—The experiment was conducted on a 1.5-T GE Echo-speed Horizon
LX imaging unit with a birdcage head coil (GE Medical Systems, Milwaukee, WI). Functional
imaging was performed in the axial plane using multi-section gradient echo-planar imaging
with a field of view of 24cm (frequency) x 15 cm (phase) and an acquisition matrix of 64 x 40
(28 sections, 5-mm thickness, no skip, 2100/40 [TR/TE]). A high resolution structural image
was obtained using a 3D spoiled gradient-echo sequence with matrix, 256x256; field of view,
24cm,; section thickness, 3mm with no gap between sections; number of sections, 128; and in-
plane resolution, 0.94 mm.

Image Processing—Images were motion corrected within SPM99, normalized to Montreal
Neurological Institute space using image header information (Maldjian, et al. 1997) combined
with the SPM99 normalization, and resampled to 4x4x5 mm using sinc interpolation.
Statistical parametric maps were generated using SPM99 from the Wellcome Department of
Cognitive Neurology, London, England, and implemented in Matlab (The Mathworks Inc.,
Sherborn, MA) with an IDL (Research Systems Inc., Boulder, CO) interface. The data sets
were smoothed using an 8x8x10 mm full-width-half-maximum Gaussian kernel. The data was
high-pass filtered, detrended and globally normalized using the corresponding options in the
SPM estimation module. Regional activity was detected using SPM by fitting a regression
model based on the stimulus time series convolved with the canonical HRF and the first
derivative. Significantly activated regions were identified using the random field theory
functions for family wise error rate control present in SPM (cluster size test p < 0.05 corrected).
The significantly activated region of the visual cortex containing 371 voxels was selected to
carry out the HRF estimation. The SPM pre-processed data (without high pass filtering and
global normalization) was fed to a set of MATLAB programs with our implementation of the
different HRF estimation techniques. The detrending of the time series was carried out as part
of the estimation process as shown in Eq. (2) by including the polynomial term.

Results and Discussion

Effect of the HRF temporal resolution (Simulation 1)

Figure 1 depicts the results up to a time resolution of TR/4. The LS method quickly becomes
unstable when a finer temporal grid is used and the quality of the extracted HRF shape is poor,
as can be seen from the e(RMS) values at all SNRs. The unstable behavior is even worse for
designs where acquisition times and stimulus onsets are synchronized. Both regularization
based methods often provide improvements in accuracy as reflected by e(TTP), e(W) and e
(RMS) over the LS when using finer temporal grids. Their performance is similar, although
the Bayesian method is slightly better in terms of accuracy when estimating the TTP and W
and slightly worse when estimating HR. The e(RMS) is a global measure that fails to reflect
gains in accuracy when estimating the HRF characteristics (TTP, HR and W). For example, in
Figure 1 second row (Tik-GCV) the panel on the right shows very little change in e(RMS)
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when going from one resolution to the next while at the same time greater changes in accuracy
for the TTP and W estimates are seen. This reflects the fact that the main lobe of the HRF is
better reconstructed (local improvement) when using finer temporal resolution. Tikhonov-like
solutions show oscillations due to suppression of higher frequencies that can be usually
observed, in the HRF estimation case, after the main lobe of the HRF. These oscillations affect
the e(RMS) measure even though the main lobe (and also TTP, HR and W) is more accurately
recovered.

The same simulation was performed with TR = 1 s (not shown). When comparing the results
we conclude that in general the longer the TR, the greater the obtained gains in terms of
accuracy from the finer time grids when using the regularized methods. The TTP and W benefit
the most in terms of accuracy as a function of decreasing temporal grid size.

Effect of the noise autocorrelation (Simulation 2)

The results of these simulations are shown in Figures 2 and 3. In Figure 2 where the 1Tlmean
was 3 s, all three methods are relatively robust to the noise autocorrelation according to all
measures and for a wide range of SNRs. However, Figure 3 demonstrates that with increasing
ITlmean (10 S) there is a clear departure of the estimates made by adding AR(4) noise, compared
to those made by adding white noise alone. For higher values (15 and 20 s) the departure of
AR(1) and AR(4) is even greater (not shown). Very similar results were obtained for all 3 types
of random designs (not shown).

Our simulations show that, in general, none of the three methods are robust to the addition of
colored noise. A relative robustness is observed only for low values of the I1Tlean. When the
ITImean Of the random design is shorter (3 s) its total power is not only greater but also more
evenly distributed across frequencies. This implies that increasing the ITlyean increases the
overlap of the signal with the colored noise (low frequencies) in the frequency domain, making
it more likely that the estimation results will be adversely affected by the addition of colored
noise.

In the results reported by Marrelec et al. (2003) concerning the robustness of their regularized
estimator, the conclusions were based on one randomly generated design most likely with a
short 1 Tlmean. On the other hand, Birn et al. (2002) based their conclusions about HRF
estimability on 200 time series that were taken from a resting state (null) fMRI data set and
the degree of autocorrelation was not clear. Woolrich et al.(2001) have reported, based on 6
null fMRI data sets, that for around 50 % of the voxels, the time series show no autocorrelation
especially in white matter. This may explain Birn's results but this has to be corroborated.

Effect of the experimental design (Simulation 3)

Figure 4 shows that in general, the LS method (first row) does poorly in terms of all measures
when a fixed ITI design is used. In addition, it does not perform well in terms of e(RMS) and
W for some ITlmean Values (4, 8, 12...) when the geometric design is employed. In this case,
the event onsets are fully synchronized with the acquisition times and the use of a finer temporal
grid only worsens the conditioning of the design matrix. With the exception of this particular
case, the performance of the LS method is very similar for the three types of random designs
we implemented across the whole range of ITlean Values.

The two regularization methods often produced better HRF estimates for all experimental
designs. Again a very similar performance is observed across the whole range of 1Tl ,ean Values
for the three probabilistic distribution of the ITI. Despite the improvements in accuracy
produced by the fixed ITI design after regularization, it remains the worst by a large margin.
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Comparison of regularization based methods (Simulation 4)

Figure 5 shows the results of comparing the two regularization methods in terms of accuracy
and variability of the TTP, HR and W estimates. Each row corresponds to noise levels of 5, 3
and 0 db respectively while each column illustrates the results for a different parameter. The
bars represent the mean values and the 2.5% low and upper tails of the estimates.

The Bayesian approach often shows less variability than GCV and similar bias when estimating
TTP and W. However, when estimating HR the variability is similar but the estimates are
slightly more biased than those produced by GCV. These results are fully compatible with the
results depicted in Figure 1 for TR/4 and are representative of all simulation scenarios that we
have explored.

As expected, the variability of both methods increases with the noise level. In addition, we also
observed an increase in the variability of the estimates as I Tlyean decreased for the same noise
level, which could be explained by the greater approximation error incurred when locking
events onset times to the employed temporal grid. The greater the number of events, the greater
the accumulated approximation error will be.

Figure 6 depicts two dimensional plots of the regularization parameters generated by both
methods (Bayesian x-axis and GCV y-axis) when performing the simulations reported in Figure
5. Again each row corresponds to a different noise level but now each column represents a
different ITlyeqn. The Bayesian approach tends to produce greater regularization parameters
with smoother estimators than those produced by Tik-GCV. This is more apparent with a lower
SNR and a short I Tlyean (Figure 6 left bottom corner subplot). As a result, the HR is under-
estimated using the Bayesian method, but the TTP and W are more accurately estimated.

Real data results

The real data were collected as described above to illustrate the relative performance of the
three methods in a simple experimental setting. First, using SPM99, a region of the visual
cortex containing 371 voxels was found to be significantly activated (p < 0.05 cluster test
corrected for multiple comparisons) by the single flash event (Figure 7 upper row). The results
of applying the least squares, Tik-GCV and the Bayesian estimation methods using a temporal
grid size TR/4 are shown in Figure 7. The bottom row shows the voxel-wise estimated HRFs
with the average HRF computed across all voxels in the region shown as black thick lines. The
LS method becomes highly unstable for the TR/4 temporal grid while the regularized
techniques manage to produce meaningful and similar results.

Conclusions

In this work we have studied improvements in HRF estimation produced by the use of temporal
regularization with respect to the more traditional and widely used least squares approach. The
comparison was made in terms of the accuracy achieved when HRF features such as the time
to peak, response amplitude and width were computed from the estimated HRFs. The results
show that regularization based methods often outperform the least squares approach, especially
when SNR is low and oversampling is employed. A topic of particular concern was the impact
of the HRF temporal resolution on the accuracy of TTP, HR and W estimates. Our simulations
show that the use of discretization resolutions finer than the TR produces greater improvements
for longer TRs (2 s), a situation very common in fMRI studies allowing most of the brain to

be imaged. Decreasing the grid size to less than TR/4 produces small gains in terms of accuracy
although TTP and W estimates still showed some improvements when Tik-GCV is used. We
have also shown that by refining the time resolution of the estimation, valuable information
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about the HRF time course can be extracted without resorting to nonlinear optimization and
assumption of a fixed HRF shape as has been done before (Miezin, et al. 2000).

Another issue of interest was the robustness of all three estimation methods to the color of the
noise. Previous reports suggest that HRF estimation techniques that do not assume a fixed
shape of the HRF are quite robust to the presence of auto-correlated noise. However, our
analysis suggests that the three methods we studied were relatively robust to the color of the
noise only with short ITlyean Values. At longer ITlyean, the signal's total power is lesser and
with more content in the lower frequencies, which makes the estimates more likely to be
affected by the fMRI noise autocorrelation. We conclude that the noise autocorrelation
structure should definitely be taken into account to reduce the variability of the estimates when
using these techniques. To our knowledge, these observations highlight for the first time the
influence of autocorrelations on the estimated shape of the HRF; the bulk of the literature
focuses on the influence of autocorrelation on statistical detection and inference (Bullmore, et
al. 2001; Smith, et al. 2007; Worsley, et al. 2002).

We also evaluated the influence of the stimulus sequence on the estimates produced by each
of the three estimation methods. We found that the performance of each the three methods
individually are similar for uniform, exponential and geometric designs (with the exception of
LS when combined with synchronized geometric sequences). Regularization produces more
accurate HRF estimates across the whole range of 1Tl nean. FOr synchronized geometric
sequences the regularization produces a significant improvement in estimation when using a
temporal grid finer than the TR. Despite the improvement in performance due to regularization,
the fixed-ITI design produces a less accurate HRF estimates overall.

Though the goal of this work was not to pursue a detailed comparison of Bayesian and GCV
regularization techniques, we noted some differences in our simulations. The Bayesian
approach tends to produce smoother HRF estimates than GCV. The results are similar in
general up to a temporal resolution of TR/4, but the former is consistently more accurate and
shows less variability for determining the time to peak and the width of the HRF while the
latter is slightly more accurate for estimating the amplitude of the response. At finer than TR/
4 temporal grids, Tik-GCV behavior was more robust. A possible shortcoming in this
comparison is that the designs were optimized using an efficiency metric which is frequentist
in nature (expected error over many experiments) while the use of a Bayesian measure could
in theory improve the performance of the Marrelec et al. (2001,2003) method at finer temporal
resolutions. We do not explore this issue here; however, despite this possible shortcoming in
this comparison we find that the Bayesian method does quite well. In terms of computational
cost all simulations and tests with real data made so far show that Tik-GCV is much faster than
the Bayesian approach. For a more conclusive evaluation of the relative performance of these
two techniques, additional research is needed.

Finally, it is important to remark that all of our conclusions are based on the assumption of
linearity and time invariance of the fMRI BOLD signal. While significant non-linearities are
sometimes observed in real data, the assumption of linearity is reasonable in many experimental
situations. The conclusions made about the impact of the color of the noise on HRF estimation
(simulation 2) were based on the assumption of autoregressive models of the noise that,
although a common model used in fMRI data analysis, is not the only option.
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Appendix A

The Tikhonov functional defined by Eq.(7) can be rewritten as
h g nl’
: _ 2
n;;ln{n[ X P][ ,] o+ Iz 0][ l ]||2}

2 2
. h h
min ||Xext[ l ]—yu +12||Lm[ ,]u
" 2 2 (14)

Where O is a Ng x sdM matrix composed of zeros, Xegyxt = [X P] and Leyt = [L O].

or

The solution of the last equation is

" -l
[ - ] =(XT Xext ALY Lext) XLy
(15)

Now we replace in Eq. (15) Xext = [X P] and Lyt = [L O]. This result is

X7 Xt A2LL L=

ext ext

xX'x x'p i L'L 0\ ( X"X+A’L"L X'P
P'x P'p 0 0)" PLX I

In the last equality the fact that P is orthogonal (PTP = 1) was used. Now Eq.(15) becomes

( XTx+2LTL XTP\ ([ XT
[y_ PTX I PT y

h 2 %
I T]:(XCTXIXMM LiyLex) Xy (16)

To invert the block matrix in Eq.(16) we used properties for inversion of block matrices
(Behrens and Scharf 1994) (see also
http://ccrma.stanford.edu/~jos/lattice/Block _matrix_decompositions.html)

We obtain

B

Then we have

~ TX(XTJXﬂ“ﬁzLTL)fI 1+PTX(XTJX+A2LTL)’l x'p

()

17

= ((XTJX+/12LTL)_1XT - (XTJX+/12LTL)_]XTPPT) y=
= ((XTJX+/12LTL)_1XT (1- PP”‘)) y:(XTJX+/12LTL)_1 X7 Jy=

- -1_..
:(XiXi”Z Q) Xy (18)

This is the Tik-GCV HRF estimator given in Eq.(8) and it is the same as the one proposed by
Marrelec et al. (2001,2003) that we have obtained using a completely different rationale.

In a similar way it can be shown that

= (<PTX(XTIX+R2LTL) XT4PT - PTX(XTIX+RLIL) X7 PPT ) y=

=pT (1 — X(XTJX+/12LTL)"XTJ) y 19
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We compute the regularization parameter by noting that Eq.(18) is also the solution of the
Tikhonov functional

in{|1X, 2 — ylI3+A% LAl
min {|X 1~ y{-+ 22| LAI) 20

Eq.(20) is transformed to the standard form (see Appendix B) and the regularization parameter
is computed using GCV (see Appendix C).

Appendix B

When it comes to dealing with Eq. 20 algorithmically, it is more efficient if it is written in the
so called standard form (Hanke and Hansen 1993). This refers to the case where L = I. If L is
invertible, an obvious transformation to standard form is given by Lh = h* which leads to the
new problem formulation

. sps 02 32 sn2
min {|X°4" = yl+ 211k 15 on
where X * = X L1, After solving (21) the solution of the problem given by Eq.(20) is obtained
as h = L71h". The regularization parameter is computed using the GCV. One important

computational advantage is that the evaluation of the GCV function greatly simplifies when
the problem is in the standard form.

Appendix C

Generalized cross-validation

We follow the description of the rationale behind GCV provided by (Hanke and Hansen
1993) although the notation is the one used in our paper for consistency, and we assume L =
I. The GCV was developed as an improvement over the ordinary cross-validation (OCV),
which is based on the philosophy that if an arbitrary element of the data y is left out, then the
corresponding solution should predict this observation well.

Let A be fixed for the moment and assume that we try to estimate one component y; of the data
vector y from the remaining N — 1 components in the following way:

1. We first apply Tikhonov regularization with the chosen 4 to the modify system X'h*
=y’ which is obtained from X"h” =y by deleting the i-th equation. Let h; j denote the
resulting approximation.

2. Then, h, ;is used to estimate y; as X*h,u.

It can be expected that a good choice of A is one for which the error of the above estimation,
averaged with reasonable weights over all possible values of i € {1,..., N}, becomes small.
This is the basis for GCV, where the optimal 1 is chosen to be the minimizer of the function

_ =A@yl
(trace (I — A (1)))? (21)

G

where A(Z) = X* (X*TX" + 221)71 X*T. The expression given by Eq.(21) can be simplified by
the use of the singular value decomposition or bidiagonalization (Elden 1984). The former
(SVD) is the method used by the Hansen regularization toolbox. For more technical details
and a rigorous discussion about GCV see (Wahba,1990).
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Figure 1.

Measures of estimation error for the different parameters (columns) are presented for each
method (rows) across temporal resolutions (colored lines). (TR =2 s, ITlpean =5 S and
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The estimation error of the three methods (rows) when noise with different structure (colored
lines) is added to the data with a short ITI. The ITIs were generated using an exponential

distribution with ITlpean =38, ITlyin =1s, TR =1 s and the grid size equal to TR. In this case
with a relatively short ITI the estimates are quite robust to the degree of noise autocorrelation.
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The performance of the three methods (rows) when noise with different structure (colored
lines) is added to the data with a long ITI. The ITIs were generated using an exponential
distribution with ITlpean = 10 seconds, 1Tlymin =1's, TR = 1 s and the grid size equal to TR.
The long I Tlyean increases the impact of the noise autocorrelation on the HRF estimates.
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The performance of the three methods (rows) is computed across 1Tl nean Values and different
experimental designs (colored lines). TR = 2 s, temporal grid size TR/2 and Gaussian white
noise with std = 0.2 was added.
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Figure 5.

The comparative performance of both regularization techniques in terms of accuracy and
variability is illustrated for TR = 2 s, grid size TR/4 and 4 different 1Tl ean (3, 7, 10 and 15 s)
and exponential sequences. The bars represent the mean value and the 2.5 % lower and upper
tails of the estimates. The horizontal lines stand for the real parameters values. The upper,
middle and bottom rows correspond to noise levels of 5, 3 and 0 db respectively.
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Figure 6.

A 2D plot of the regularization parameters generated by both methods (Bayesian x-axis and
GCV y-axis) corresponding to the simulation illustrated in Figure 5. The upper, middle and
bottom rows correspond to noise levels of 5, 3 and 0 db respectively and each column to a

different ITlnean. In each plot the line x=y has been included.
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Figure 7.

In the upper row, slices of a significantly activated area (p < 0.05 cluster corrected) of the visual
cortex are shown. Estimates of the HRF were based on all voxels within this region of
significant activation as determined using SPM99. The voxel wise HRF estimate produced by
the 3 methods are displayed in the bottom row with the corresponding average HRF across the
activated area shown as black thick lines. The LS method becomes very unstable while the
regularization based methods are able to produce meaningful results. The estimated values for
(TTP, HR, W) produced by LS, Tik-GCV and the Bayesian methods are (3.15 s, 4.16, 2.1 3),
(3.1555, 3.27,4.72 s) and (3.15 s, 3.07, 4.73 s) respectively.
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