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Although various methods for inducing tolerance were

identified after the original report of oral tolerance by

Wells in 1911,1 it was not appreciated that tolerance

could be actively maintained until Gershon’s seminal

reports published by Immunology in 1970 and in 1971.

Gershon showed that thymus-derived lymphocytes were

not only required for tolerance induction2 but that they

could adoptively transfer tolerance to naı̈ve recipients.3

This form of tolerance, dubbed ‘infectious tolerance’, was

antigen-specific and the T cells that inhibited responses

were operationally defined as suppressor T cells, in dis-

tinction from helper T cells.4 Suppressor T (Ts) cells were

later identified as Ly2,3+ (CD8+) T lymphocytes.5,6 These

observations prompted us to test whether Ts cells played

a role in major histocompatibility complex (MHC)-linked

unresponsiveness. Our experiments demonstrated that

unresponsiveness to certain synthetic polypeptide anti-

gens7 and proteins closely related to self antigens such as

insulin8 was maintained by CD8+ Ts cells. The ability of

antigen-specific CD8+ T cells to adoptively transfer non-

responsiveness was convincingly demonstrated by numer-

ous investigators using a variety of experimental systems

(reviewed in refs 9,10).

After an explosion of studies in the 1970s, interest in

Ts cells fell precipitously in the mid- to late 1980s from a

convergence of several findings, none of which was indi-

vidually fatal but collectively they led to the demise of

this field. First, the newly developed methodology to gen-

erate long-term lines and clones of T cells yielded very

few stable, CD8+ T cells with antigen-specific suppressive

activity. Second, no coding region corresponding to the

Ts-cell-associated serological determinant, referred to as

I-J, was evident when a physical map and complete

sequencing of the MHC was accomplished.11 Nor did we

find RNA transcripts from Ts-cell hybridomas that could

hybridize to cosmid clones spanning the I-A and I-E sub-

regions of the MHC.12 Third, the biochemical nature of

the soluble suppressor factors, which were extracted from

Ts cells or elaborated by Ts-cell hybridomas, was not elu-

cidated despite strenuous efforts by several laboratories

including my own. Fourth, once it was recognized that

CD8+ cytotoxic T lymphocytes recognized endogenous

peptides in association with MHC class I proteins, it was

thought that CD8+ Ts cells should not be able to recog-

nize exogenous protein antigens. Fifth, and perhaps most

critical, was that the focus of immunological research

shifted to the molecular identification of critical elements

of immune responses, which met with unprecedented

success. In the dawning of the age of molecular immunol-

ogy, the complex circuits of interacting cells and ill-

defined factors that were associated with the Ts field came

to be regarded as untenable. Consequently, fewer and
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fewer studies of CD8+ Ts cells were funded and interest

in these cells dissipated, although it never totally dis-

appeared.

The concept that T cells are involved in immunological

tolerance through active suppression was resurrected by

the observations that a distinct subset of naturally occur-

ring CD4+ CD25+ T cells from naı̈ve mice have the

capacity to prevent autoimmune disease mediated by

endogenous, self-reactive T cells.13 The expression of

CD25 by regulatory T (Treg) cells in naı̈ve mice proved

to be decisive because it allowed them to be physically

isolated from other CD4+ T cells and shown to be the

mediators of immunosuppression. To avoid the ‘politi-

cally incorrect’ term of ‘suppressor T cells’,14 these cells

came to be known as regulatory T (Treg) cells, which was

an unfortunate choice because the term ‘regulatory’

encompasses both positive and negative effects.

CD25 expression identified Treg cells among naı̈ve T

cells that had not been experimentally exposed to antigen.

However, CD25 is not a unique Treg marker because it is

also expressed by effector T cells upon antigen activation.

As yet, no cell surface antigen has been identified that

serves as a lineage marker that is exclusively expressed by

Treg cells (or CD8+ Ts cells). The prominence of Treg

cells was substantially boosted by the identification of a

transcription factor from the forkhead/winged helix fam-

ily, FoxP315,16 as a master switch that drives the differen-

tiation of naı̈ve T cells into the Treg lineage and

maintains their suppressive function.16–20 Antibodies to

murine FoxP3 became available to identify cells express-

ing this intracellular molecule,21–23 but it was the con-

struction of FoxP3 reporter (FoxP3gfp) mice, which

faithfully express green fluorescent protein when FoxP3 is

synthesized, that allowed FoxP3+ cells to be sorted by

flow cytometry and to be shown to be responsible for the

regulatory activity of CD4+ T cells.24–26

The Treg cells express conventional ab T-cell receptors

(TCR) and block autoimmunity, which strongly suggests

that they recognize self antigens, yet it has been difficult

to define the repertoire of epitopes recognized by these

cells. The observations that Treg cells can be induced

from peripheral CD4+ CD25– T cells by stimulation with

exogenous antigens presented via a tolerogenic route27,28

or by activation in the presence of transforming growth

factor-b (TGF-b) 29,30 and that induced Treg cells also

express FoxP330,31 has allowed the application of TCR

transgenic (Tg) T cells to the study of specificity and

mechanisms of action of Treg cells (reviewed in ref. 32).

Collectively, these results suggest that most, if not all,

naı̈ve CD4+ T cells may be capable of becoming Treg cells

under the appropriate conditions. If the latter hypothesis

is correct, then the apparent differences between natural

and induced Treg cells may simply reflect the solidifica-

tion of the expression of FoxP3 arising from chronic

in vivo stimulation by autoantigens versus acute activation

by exogenous antigens. This process would be analogous

to the characteristic way in which CD4+ T cells become

irreversibly committed to T helper type 1 (Th1) and Th2

phenotypes by prolonged repetitive in vitro stimulation in

the presence of the appropriate cytokines.

Breeding TCR Tg mice with the FoxP3gfp reporter mice

allowed us to demonstrate that CD4+ FoxP3+ TCR Tg T

cells, induced by activation with antigen in the presence

of TGF-b and interleukin-2 (IL-2), are similar to natural

Treg cells in their ability to inhibit proliferation and effec-

tor responses by naı̈ve T cells.33 However, the ability of

FoxP3+ T cells to inhibit the responses of T cells specific

for other antigens depended on the expression of the Treg

epitope and the effector epitope by the same antigen-pre-

senting cells (APCs).33 This phenomenon was originally

termed ‘linked-suppression’ by Holan and Mitchison34

and this pattern of specificity has been validated in multi-

ple experimental systems.35–39 Our finding that Treg cells

are specific both in activation and in effector function

in vitro correlates with data indicating that Treg cells have

exquisite functional specificity in vivo.39–42 Identifying an

analogous specificity pattern among polyclonal natural

Treg cells is experimentally problematic, because synge-

neic APCs expressing self antigens can interact with both

Treg cells and effector T cells specific for exogenous epi-

topes, which can be misinterpreted as non-specific sup-

pression. Whether Treg cells and naı̈ve responder T cells

directly interact within the confines of an APC-initiated

cluster or whether these two T cell types interact sequen-

tially with the same APC, as has been shown for helper T

cells,43 is not yet known. Nevertheless, the observation

that Treg cells and responder T cells must recognize the

same APC provides a mechanistic explanation for the

often reported, but poorly understood, requirement that

Treg cells must be in direct contact with effector T cells

to inhibit their responses.

Interest in the role of CD8+ Ts cells was renewed, in

part, by the observations that they could be activated by

antigen in the presence of TGF-b.44,45 Antigen-specific,

CD8+ Ts cells have also been described in the blood of

rejection-free human cardiac transplant recipients46,47 and

FoxP3 is up-regulated in human48 and rat49 CD8+ CD28–

Ts cells from stable transplant recipients. The TGF-b-acti-

vated TCR Tg CD8+ T cells,50 and the donor-specific

CD8+ Ts cells from transplant patients46,51 also exhibit

linked-suppression, suggesting that suppression is most

efficiently mediated by direct cell contact rather than by

the elaboration of cytokines. Although TGF-b-activated

TCR Tg CD8+ T cells fail to proliferate upon restimula-

tion, they express FoxP3 and also down-modulate the

expression of CD86 by dendritic cells,50 which is consis-

tent with the central role of APCs in mediating suppres-

sion. Preliminary data, using CD8+ T cells from TCR Tg

mice expressing the FoxP3gfp allele, suggest that the

FoxP3+ cells are antigen-specific Ts cells, but it is not yet
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clear whether they are the only cells with suppressive

activity in the cultures stimulated with antigen, TGF-b,

and IL-2 (Kapp et al., unpublished observations).

At this juncture, it seems reasonable to reflect on what

we have learned about CD8+ Ts cells in the last 20 years

that sheds light on the issues that caused the convulsive

rejection of the whole body of suppressor T-cell literature

and ridicule of the investigators who studied them. Sev-

eral of the findings that contributed to the demise of the

Ts-cell field have actually been resolved. First, Treg and

Ts cells have been shown to have little or no capacity to

proliferate in vitro when stimulated with antigen or poly-

clonal activators, especially in competition with effector T

cells. Therefore, the conditions typically used to establish

T-cell lines, which were biased toward rapid growth, did

not generate either Treg or Ts cell lines. Only recently

have investigators devised alternative methods of growing

Treg52 and CD8+ Ts cells53 in vitro. Second, it is now

well-recognized that CD8+ T cells can be stimulated by

exogenous proteins that are taken up and processed into

the MHC class I pathway by professional APCs such as

dendritic cells and macrophages (reviewed in refs 54–56)

or antigen-specific B cells that bear surface immunoglob-

ulin capable of binding the native protein.57 Third, the

interacting suppressor inducers, suppressor effectors and

contra-suppressors, once judged to be too complex to be

tenable, are not dissimilar to the complexity of functional

T-cell phenotypes that have now been distinguished by

the patterns of cytokines that they produce. Already, Th0,

Th1, Th2, Th3, Tr1, Th17, Tc1, Tc2, lytic CD8+ and non-

lytic CD8+ Ts-cell subsets have been identified, which

interact in complex and only partially understood path-

ways to maintain homeostasis. Thus, the concepts that

immune regulatory mechanisms are complex and that

both CD4 and CD8 T cells can actively mediate suppres-

sion, or negative regulation, are now accepted as funda-

mental immunological principles.

Other findings that contributed to the demise of Ts

cells have not been explained, but there are plausible

explanations for these phenomena. First, the puzzle of the

I-J determinants recognized by alloantibodies produced

across MHC differences has not been solved. It is, how-

ever, conceivable that these antibodies recognize idiotypic

determinants of the peptide MHC binding surface of the

TCR or even peptide–MHC complexes that are captured

by T cells from APCs during formation of the immuno-

logical synapse (reviewed in ref. 58). Second, the molecu-

lar nature of the soluble antigen-specific suppressor

factors has not been elucidated. However, it is now well-

established that naturally occurring, soluble forms of a

variety of cell surface receptors, such as tumour necrosis

factor59 and IL-6 receptors,60 act as potent inhibitors of

the pathways activated by the ligands that bind to them.

This raises the possibility that the biological activity of

suppressor factors may have been mediated by soluble

TCR, which could interfere with full signalling between T

cells and APCs by inhibiting the kinetics of aggregation in

the immunological synapse. Only time will tell whether

these explanations will be tested or whether answers may

arise from unrelated investigations.

Regardless of where future studies of Ts cells may take

us, it is important to me to try to understand why we

failed in these endeavours 20 years ago. These studies

were not performed by just a few individuals operating in

obscurity. Dozens of investigators on four continents

worked in this area and hundreds of papers were pub-

lished on this topic. At least 10 major independent labo-

ratories worked (and competed with each other) on these

problems using an extensive variety of assay systems over

a period of more than 10 years. Although it is difficult to

understand why solutions were not obtained, it seems

unlikely that we suffered from a collective delusion or

that the data were selectively biased or faked on such a

grand scale, as some have implied. To me, it seems more

likely that the assays and tools that were available were

not robust enough to solve these problems. The lack of

success begat a decrease in funds, lowering the chances of

subsequent success, until funding totally collapsed and

the study of these bioactive factors was abandoned. So,

we are left with the less than satisfying conclusion that

the absence of proof concerning I-J and suppressor fac-

tors is not proof of their absence.
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