
Apoptotic cells induce dendritic cell-mediated suppression via
interferon-c-induced IDO

Introduction

Dendritic cells (DC) are professional antigen-presenting

cells that play a critical role in the induction of immunity

and tolerance. Regulation of these outcomes depends on

several factors, such as the occurrence of specialized DC

subsets and the maturation state of the DC.1–3 Immature

DC (iDC) sample their local environment and efficiently

capture antigen but are ineffective in T-cell priming

because of their low expression of major histocompatibil-

ity complex (MHC) class I and II and costimulatory

molecules and therefore contribute to the induction of

tolerance. Upon receipt of a maturation signal, mature

DC (mDC) show a decreased ability to capture antigen,

concurrent with an upregulation of MHC and costimula-

tory molecules, which facilitates T-cell activation and sub-

sequently the ability to induce an immune response.

Apoptosis is an active phenomenon regulating cellu-

lar homeostasis. In contrast, necrosis, associated with

pathological tissue injury, is characterized by rapid,
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Summary

Dendritic cells (DC) are sensitive to their local environment and are

affected by proximal cell death. This study investigated the modulatory

effect of cell death on DC function. Monocyte-derived DC exposed to

apoptotic Jurkat or primary T cells failed to induce phenotypic matura-

tion of the DC and were unable to support CD4+ allogeneic T-cell prolif-

eration compared with DC exposed to lipopolysaccharide (LPS) or

necrotic cells. Apoptotic cells coincubated with LPS- or necrotic cell-

induced mature DC significantly suppressed CD80, CD86 and CD83 and

attenuated LPS-induced CD4+ T-cell proliferation. Reduced levels of inter-

leukin-12 (IL-12), IL-10, IL-6, tumour necrosis factor-a and interferon-c
(IFN-c) were found to be concomitant with the suppressive activity of

apoptotic cells upon DC. Furthermore, intracellular staining confirmed

IFN-c expression by DC in association with apoptotic environments. The

specific generation of IFN-c by DC within apoptotic environments is

suggestive of an anti-inflammatory role by the induction of indoleamine

2,3-dioxygenase (IDO). Both neutralization of IFN-c and IDO blockade

demonstrated a role for IFN-c and IDO in the suppression of CD4+ T

cells. Moreover, we demonstrate that IDO expression within the DC was

found to be IFN-c-dependent. Blocking transforming growth factor-b
(TGF-b) also produced a partial release in T-cell proliferation. Our study

strongly suggests that apoptosis-induced DC suppression is not an

immunological null event and two prime mediators underpinning these

functional effects are IFN-c-induced IDO and TGF-b.

Keywords: apoptosis; dendritic cells; interferon; necrosis; tolerance

Abbreviations: AC, apoptotic cells; CTLA-4, cytotoxic T-lymphocyte antigen-4; DC, dendritic cells; FITC, fluorescein
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disorganized swelling and subsequent release of intracellu-

lar components into the local environment.4 It is sug-

gested that the different pathways leading to cell death

may give rise to distinct immunological responses.4,5 In

support of this, earlier reports demonstrate that phago-

cytosis of necrotic cells (NC), but not apoptotic cells (AC),

induces phenotypic and functional maturation of DC.6,7

Apoptotic cells are a preferential source of many

autoantigens and a growing body of evidence indicates

that DC ingesting dying cells maintain self-tolerance by

constantly sampling peripheral self-antigens and present-

ing them in a tolerogenic way to the adaptive immune

system.8–11 Ingestion of AC by macrophages and DC ren-

ders these cells unable to stimulate T-cell proliferation,7,10

but may influence the induction of T regulatory cells pro-

moting tolerance.4,6 Conceivably, the ability of DC to

present self-antigens unchecked might initiate autoimmu-

nity, as a result of defects in apoptosis or dead cell clear-

ance mechanisms.11

The mechanism by which AC are swiftly recognized and

phagocytosed by DC is the subject of intense investigation.

Phosphatidylserine and its receptor play a fundamental

role12 in this process;9 however, studies have shown roles

for numerous other receptors.10,13 Recognition and engulf-

ment of AC by DC is known to modulate cytokine produc-

tion, costimulatory receptor expression and ability to

stimulate T-cell proliferation.14,15 Therefore, the AC effect

is not an immunologically null event, but by the inhibition

of DC maturation may contribute to the downregulation of

responses to AC-derived self-antigens and ultimately to the

maintenance of self-tolerance. Although the exact mecha-

nisms of immunosuppression are not fully understood, a

widely accepted view is that iDC, with low level costimula-

tion, would induce anergy or deletion of an interacting

T cell while mDC secreting an array of proinflammatory

cytokines, including the potent stimulatory cytokine inter-

leukin-12 (IL-12), along with high levels of costimulatory

molecules would induce strong adaptive immunity.16

The DC cytokine profile plays an important role in the

regulation of immune tolerance. As such, macrophage

engulfment of AC induces transforming growth factor-b
(TGF-b) and suppression of proinflammatory cytokines.15

Similarly the engulfment of AC by DC inhibits IL-12 pro-

duction,17,18 which has a role in establishing tolerance.19

Cytokines, such as granulocyte–macrophage colony-stim-

ulating factor (GM-CSF) and interferon-c (IFN-c), are

also able to upregulate monocyte phagocytosis of dying

cells, ensuring their quick and efficient removal.20

Previous work has implicated the expression of the

enzyme indoleamine 2,3-dioxygenase (IDO) as an addi-

tional mechanism by which antigen-presenting cells may

regulate T-cell responses. IDO, expressed by a variety of

cells in an inactive or active form, is responsible for the

catabolism of the essential amino acid tryptophan, the

metabolites of which are known to inhibit T-cell func-

tion.21 Further evidence for IDO as an immune modula-

tor is the fact that its transfection into non-antigen-

presenting cell lines22 and its presence within human

monocyte-derived macrophages23 and DC24,25 confers the

ability to inhibit T-cell proliferation either by the deple-

tion of tryptophan or through the accumulation of toxic

and immunosuppressive tryptophan metabolites, acting to

induce T-cell apoptosis or T-cell anergy.26 In vivo studies

demonstrate a role for IDO in maternal tolerance, in the

control of T cells in autoimmune disorders and in the

suppression of immune responses to tumours.21,26

Much work has demonstrated that IFN-c is responsible

for the induction of IDO in DC although IL-1b, tumour

necrosis factor-a (TNF-a) and IL-12 have also recently

been implicated.27,28 Further evidence for IFN-c induction

of IDO is supported by studies revealing IFN-c-dependent

IDO generation as a result of reverse signalling from the

T cell into the DC via cytotoxic T-lymphocyte antigen 4

(CTLA-4) and CD80/CD86.29,30 It is therefore apparent

that mechanisms controlling the activation of IDO are

likely to be a fine balance between numerous environmen-

tal factors. We postulate that IFN-c- induced IDO expres-

sion in DC plays a role in the immunosuppressive ability

of apoptosis-conditioned DC observed in vitro.

Materials and methods

Generation of monocyte-derived DC

All experiments were carried out in accordance with local

ethical guidelines. Peripheral blood mononuclear cells

(PBMC) were isolated from fresh peripheral blood follow-

ing the method of McLeod et al.31 Monocytes were isolated

from the PBMC population using the Monocyte Isolation

Kit II (Miltenyi Biotec, Surrey, UK) and cultured following

an established method.32 Briefly, cells were cultured at

2 · 106/ml at 37�, 5% CO2 for 5 days in RPMI-1640 sup-

plemented with fetal calf serum (10%), penicillin and

streptomycin solution (100 U/ml and 100 lg/ml) and

L-glutamine (2 mM; all Invitrogen, Loughborough, UK) in

the presence of GM-CSF (800 U/ml) and IL-4 (500 U/ml

both Peprotech EC, London, UK). Cells were fed every

other day through the replenishment of half the volume of

fresh medium and cytokines. At day 5, cells were character-

ized and considered to be iDC by the low expression of

CD14, CD40, CD80, CD86 and CD83. PBMC depleted of

monocytes, predominantly consisting of T cells and subse-

quently referred to as primary T cells, were cultured at

1 · 106/ml and stimulated with phytohaemagglutinin

(5 lg/ml; Sigma Aldrich, Poole, UK) for up to 5 days.

DC co-culture

Immature DC were resuspended at 1 · 106/ml in com-

plete medium plus cytokines (as detailed above) and
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cultured for 48 hr in the presence of apoptotic or necrotic

Jurkat cells or primary autologous or allogeneic T cells at

a 1 : 5 ratio of DC : dying cells. As controls, DC were

cultured alone or in the presence of lipopolysacch-

aride (LPS; 5 lg/ml) or monocyte-conditioned medium

(MCM).33 Dendritic cells were also cultured with AC in

the presence or absence of LPS. To determine the effects

of TGF-b, IFN-c and IDO in DC cultured with AC, in

the presence or absence of LPS, co-cultures were set up

with or without TGF-bLAP (20 ng/ml; e-Bioscience,

Wembley, UK), anti-IFN-c neutralizing antibody (5 lg/ml;

e-Bioscience) or 1-methyl tryptophan (200 lM; Sigma

Aldrich). After 48 hr, DC were stained for cell surface

expression of CD80, CD86 and CD83 or re-isolated by

flow cytometric sorting before incorporation into CD4+

T-cell proliferation assays.

Induction of apoptosis and necrosis

The TNF-a-induced apoptosis was induced by incubation

with human recombinant TNF-a (10 ng/ml; R&D Sys-

tems, Abingdon, UK) plus cycloheximide (10 lg/ml;

Sigma Aldrich) while all other cells were induced to

undergo apoptosis by incubation with an anti-Fas anti-

body (0�1 lg/ml; Upstate Biotechnology, Dundee, UK)

for 2 hr at 37� before incorporation into DC co-cultures.

Apoptosis of cells was subsequently confirmed by means

of an Annexin V (BD Bioscience, Oxford, UK) and propi-

dium iodide (Sigma Aldrich) viability assay. Cells were

induced to undergo necrosis following four 1-minute

freeze–thaw cycles in liquid nitrogen.

Immunophenotyping of cells

Cell surface staining of DC was performed by incubating

the cells for 30 min at 4� with primary antibodies recog-

nizing; CD14 (5 ll stock solution; Sigma Aldrich), CD40

(1 lg/ml), CD80 (0�5 lg/ml), CD86 (4 lg/ml), CD83

(10 lg/ml) and human leucocyte antigen DR (2 lg/ml; all

BD Bioscience) followed by incubation with a fluorescein

isothiocyanate (FITC) -conjugated anti-mouse secondary

antibody (Sigma Aldrich) for 30 min at 4�. Stained cells

were analysed on a BD FACSVantage SE using CELLQUEST

software (BD Becton and Dickinson, Oxford, UK). The

geometric mean fluorescence intensity (GMFI) of cells rel-

ative to DC alone was used in analysis unless stated

otherwise.

Allogeneic CD4+ T-cell proliferation assay

Allogeneic CD4+ T cells were isolated from human

peripheral blood using the CD4+ CD25+ Regulatory T-cell

kit (Miltenyi Biotec). The PBMC were obtained as

described previously.31 Briefly, CD4+ T cells were isolated

from PBMC using a process of negative isolation and

CD4+ CD25+ cells were further depleted by a process of

positive selection. Throughout this paper the CD4+ popu-

lation of T cells depleted of T regulatory cells (CD4+

CD25+) will be referred to as CD4+ cells. These CD4+

T cells were fluorescently labelled with carboxyfluorescein

succinimidyl ester (CFSE; 8 lM; Molecular Probes, Pais-

ley, UK) as described previously.34 Then, 2 · 105 CD4+ T

cells were incubated at a 10 : 1 ratio in triplicate with DC

previously conditioned by culture alone or in the presence

of apoptotic or necrotic Jurkat cells or LPS. The specific

proliferation of CFSE+ T cells was quantified at day 5 by

means of the Weighted Division Index34 using a BD

FACSVantage SE. At day 5, cell viability was confirmed

using an Annexin V and propidium iodide viability assay

and flow cytometry.

Cytokine array

Cell-free supernatants from DC co-cultures were collected

after 10, 24 and 48 hr and stored at )20� until analysis.

Levels of IL-1a, IL-1b, IL-2, IL-4, GM-CSF, IL-6, IL-7,

IL-8, IL-10, IL-12, TNF-a and IFN-c were quantified

using the Proteoplex cytokine array (Merck Bioscience,

Nottingham, UK) in accordance with the manufacturer’s

instructions.

Intracellular staining

DC were stained with DiI (1 ll/1 · 106 cells; Molecular

Probes) and cultured with LPS (5 lg/ml) in the presence

or absence of AC. Intracellular IFN-c staining was per-

formed at 8 hr, adding brefeldin A (10 lg/ml; Sigma

Aldrich) for the final 4 hr of culture to prevent IFN-c
secretion. Cells were fixed and permeabilized using com-

mercially available buffers (e-Bioscience) and stained with

an anti-IFN-c FITC-conjugated antibody (1 lg/ml; e-Bio-

science) or isotype control. Intracellular DC IDO expres-

sion was determined at 24 and 48 hr using a monoclonal

anti-IDO antibody (1 lg/ml; Upstate Biotechnology) and

an anti-mouse FITC-conjugated secondary antibody in

the presence or absence of an IFN-c neutralizing antibody

(5 lg/ml) or retinoic acid (10 lM; Sigma Aldrich).

Tryptophan and kynurenine determination

Supernatants were harvested from DC co-cultures and

diluted with 10% (v/v) methanol. Kynurenine and trypto-

phan were detected by high-performance liquid chroma-

tography (HPLC) as described elsewhere35 with minor

modifications. Briefly 50 ll was injected into an Amer-

sham reverse-phase C18 column and eluted with KH2PO4

buffer (0�01 M KH2PO4 and 0�15 mM EDTA) containing

10% methanol at a flow rate of 1 ml/min. The spectro-

photometer was set at 365 and 285 nm to detect kynure-

nine and tryptophan production, respectively, using
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standard preparations (Sigma Aldrich). The concentra-

tions of kynurenine (in lmol/l) and tryptophan (lmol/l)

were used to calculate the kynurenine : tryptophan ratio

(lmol/lmol), as a measure of IDO activity.

Statistical analysis

All data, where possible, are expressed as means ± SEM.

Data were statistically analysed using Student’s t-test. Sta-

tistical significance was determined at P � 0�05.

Results

DC mature in response to NC but not AC
environments

Initial experiments set out to investigate the phenotypic

response of DC to different forms of cell death as deter-

mined by the upregulation of maturation-associated

markers. DC were shown to be responsive to both

MCM- and LPS-induced maturation, as observed by an

upregulation of expression of CD80, CD86 and CD83

(Fig. 1a–d). By contrast, DC responses were minimal in

response to apoptotic Jurkat cells (Fig. 1a,b) irrespective

of the mode of apoptosis induction. As seen in Fig. 1

both Fas- and TNFa-induced apoptosis, generated a sim-

ilar DC profile. Exposure to NC induced an upregulation

of all surface markers similar to that observed with

MCM-induced maturation (Fig. 1a–d). This was particu-

larly evident with CD86, which was significantly different

from AC-induced levels of expression. To determine the

effects of cell type on DC maturation, DC were exposed

to AC or NC allogeneic or autologous primary T cells.

The DC response to both autologous and allogeneic pri-

mary T cells was similar to that observed with Jurkat

cells (Fig. 1c,d).

AC suppress DC responses to NC and LPS

To further assess the effects of AC upon DC maturation

we investigated the effects of AC upon DC maturation in

response to known stimuli. The addition of apoptotic Jur-
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Figure 1. Apoptotic cells (AC) do not induce phenotypic matura-

tion of dendritic cells (DC). The DC were cultured with lipopolysac-

charide (LPS; 5 lg/ml) or AC or necrotic cells (NC) at a 1 : 5 ratio

for 48 hr before staining for CD80, CD86 and CD83. The DC cul-

tured with Fas- (a) or TNF-a- (b) induced AC Jurkat cells or Fas-

induced AC primary autologous (c) or allogeneic (d) T cells do not

upregulate CD80, CD86 and CD83, displaying a phenotype similar

to DC cultured alone. DC exposed to NC Jurkat cells and primary

autologous and allogeneic T cells demonstrate increases in CD80,

CD86 and CD83. Changes in surface expression markers were

detected by flow cytometry and are represented as the geometric

mean fluorescence intensity (GMFI) relative to DC alone. Bars repre-

sent means of four or more independent experiments ± SEM.

*P � 0�05 and �P � 0�05 when compared with DC + monocyte-

conditioned medium (MCM) and DC + NC respectively.
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Figure 2. Apoptotic cells (AC) inhibit phenotypic maturation of

dendritic cells (DC). The DC were cultured with AC simultaneously

with necrotic cells (NC) or lipopolysaccharide (LPS) for 48 hr before

staining for surface expression of CD80, CD86 and CD83. Addition

of AC Jurkat cells to NC- (a) or LPS- (b) stimulated mature DC

(mDC) results in reduced expression of CD80, CD86 and CD83

when compared with controls. Apoptotic autologous (c) or alloge-

neic (d) primary T cells reduced LPS-stimulated mDC expression of

CD80, CD86 and CD83. Surface expression of markers was deter-

mined by flow cytometry and is represented as geometric mean fluo-

rescence intensity (GMFI) relative to DC alone. Values expressed are

means of three or more independent experiments ± SEM. *P � 0�05

DC + NC or DC + LPS.
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kat cells to NC-stimulated (Fig. 2a) or LPS-stimulated

(Fig. 2b) mDC resulted in a reduction in the level of

CD80, CD86 and CD83, a response which was also

observed with apoptotic autologous (Fig. 2c) and allo-

geneic (Fig. 2d) primary T cells. The ability of AC to sup-

press DC maturation was independent of AC engulfment

because reduced levels of surface markers were observed

in the entire DC population irrespective of phagocytosis

(data not shown).

AC suppress iDC- and mDC-mediated T-cell
proliferation

We next investigated the ability of DC, conditioned by

different forms of cell death, to stimulate allogeneic CD4+

T-cell proliferation. The iDC supported T-cell prolifera-

tion as measured by a CFSE dilution analysis; this was

suggestive of a mixed lymphocyte reaction. DC stimulated

by NC supported allogeneic T-cell proliferation to levels

comparable to that of LPS-induced mDC (Fig. 3a–c)

while DC cultured within apoptotic environments did not

support allogeneic CD4+ T-cell proliferation, a response

which was not attributed to decreased T-cell viability

(Fig. 3d).

Our phenotypic analysis revealed that AC were able to

inhibit DC upregulation of cell surface CD80, CD86 and

CD83 in response to a known inducer of maturation. We

therefore investigated the ability of these DC to support

T-cell proliferation. Similarly to the effects on phenotypic

maturation, the addition of AC to mDC reduced the abil-

ity of DC to induce T-cell proliferation (Fig. 4a,b). Preli-

minary results investigating the effector status of the

proliferating T cells, using intracellular IFN-c as a marker,

showed that both iDC and mDC in the presence of AC

showed an abrogated level of IFN-c compared with cul-

tures without AC (data not shown).

AC induce IFN-c production by DC and suppress
LPS-stimulated cytokine responses

To identify the factors responsible for the AC-induced

suppression, the cytokine profile of the differentially
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Figure 3. Apoptotic cell (AC) conditioned

immature DC (iDC) do not support CD4+

T-cell proliferation. Dendritic cells (DC) were

cultured with either AC, necrotic cells (NC) or

lipopolysaccharide (LPS) for 48 hr before

incorporation into T-cell proliferation assays.

(a) and (b) show representative results includ-

ing CFSE plots of R1 and R2 gates of T-cell

cultures (a) and DC : T-cell ratios of 1 : 10

and 1 : 100 (b). (c) shows mean data relative

to DC showing that AC suppress iDC to sup-

port T-cell proliferation. Proliferation is repre-

sented as the weighted division index (WDI)

or the WDI relative to DC alone. T-cell apop-

tosis was quantified at day 5 using flow cytom-

etry and an annexin V and propidium iodide

viability assay (d). The percentage of positive

cells for the given quadrant are shown. Bars

represent the mean of triplicate wells for the

representative assay or of four independent

experiments ± SEM for collated data. Histo-

grams and dot plots represent one independent

experiment of three. *P � 0�001 when com-

pared with DC + AC.
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conditioned DC was investigated. As expected, mDC

secreted high levels of the proinflammatory cytokines;

IL-1a, IL-1b, IL-6, IL-8, IL-12, TNF-a, IFN-c and also the

immunoregulatory cytokine IL-10 in a time-responsive

manner (Fig. 5, key data shown). The AC were found to

significantly suppress LPS-induced IL-12, IFN-c and

IL-10, an effect also observed with TNF-a at the later

time-points investigated. Immature DC conditioned with

AC secreted minimal levels of all the cytokines investi-

gated, with the exception of IFN-c, which was detected at

all time-points at levels comparable or higher than that

induced by LPS. We subsequently confirmed by intra-

cellular cytokine analysis that the IFN-c observed in AC

cultures was DC derived (Fig. 6a) with the greatest

expression detected at 8 hr, the most pronounced

production of which was determined in the absence of

LPS (Fig. 6b).

AC-induced suppression of T-cell proliferation
is mediated in part by TGF-b, IFN-c and IDO

The specific production of IFN-c by DC within AC envi-

ronments suggests a key role for IFN-c in this context.

We therefore further investigated the functional role of

IFN-c in AC-mediated suppression, alongside the role of

TGF-b, because of its immunoregulatory nature. Blocking

IFN-c (Fig. 7a,c) or TGF-b (Fig. 7b,d) caused a partial

but significant release in the apoptotic inhibition of

mDC-induced CD4+ allogeneic T-cell proliferation and a

subtle release in the apoptotic inhibition of the mixed

lymphocyte reaction. In contrast, blocking these cytokines
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lated data. *P � 0�001 when compared with DC + LPS.
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demonstrated little effect upon the release of AC-associ-

ated suppression of cell surface marker expression

(Fig. 7e, f).

The suppressive properties of IFN-c are considered to

be the result of its ability to activate IDO. To investigate

the association of IDO with the effects observed function-

ally, studies set out to assess the effects of IDO blockade.

As with blocking IFN-c and TGF-b, the AC-associated

inhibition of mDC stimulated T-cell proliferation was

significantly reduced in part by blocking IDO activity

(Fig. 8a,b) with a subtle effect upon the AC inhibition of

the mixed lymphocyte reaction. Blockade of IDO, IFN-c
or TGF-b showed no effect upon mDC-stimulated CD4+

T-cell proliferation (Fig. 8d). Consistent with the blocking

of IFN-c and TGF-b, blocking of IDO also had a minimal

effect on DC phenotypic maturation (Fig. 8c). Together

these results suggest a role for TGF-b, IFN-c and IDO in

the AC suppression of T-cell proliferation.

AC co-culture induces upregulation of IFN-c-induced
IDO expression by DC

Given that our studies clearly demonstrate a functional

role for IDO, particularly apparent in the AC suppression

of mDC effects, we sought to confirm DC-induced IDO

expression by intracellular staining. Mature DC in the

presence or absence of AC demonstrated a significant

increase in IDO expression compared with iDC (Fig. 9a)

at both 24 and 48 hr, while iDC exposed to AC showed

increased levels of IDO, significantly by 48 hr in compari-

son with iDC alone. To investigate whether IFN-c was

responsible for AC-associated IDO, expression was inves-

tigated in the absence of IFN-c. Inhibition of IFN-c using

a neutralizing antibody and also retinoic acid resulted in

reduced levels of IDO expression in all conditions tested

(Fig. 9b). These data support the role of DC in IDO pro-

duction and in its regulation of expression by IFN-c.

AC environments induce active IDO

As IDO expression was detected in mDC cultures in the

presence and absence of AC, but functional evidence for

IDO activity was detected only in AC-suppressed mDC,

we subsequently investigated whether the IDO expression

observed was of the active or inactive form. The DC

exposed to AC in the presence of LPS or to LPS alone

showed a significantly higher L-kynurenine : L-tryptophan

ratio compared with DC or AC-conditioned DC, indicat-

ing strong functioning IDO enzymatic activity in mDC

environments (Fig. 9c).

Discussion

Optimal presentation of antigens acquired from dying

cells by DC requires two steps; first, the efficient acquisi-

tion of dying cells via phagocytosis when DC are in

their immature state and, second, the receipt of a matura-

tion signal that can be provided by standard maturation
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stimuli, i.e. MCM or LPS.1 The current study therefore

investigated the differential effects of two types of cell

death upon DC function and the mechanisms by which

this is achieved.

Our observations that AC, but not NC, fail to induce

maturation of DC,16 as determined by the upregulation

of cell surface markers, are consistent with those of previ-

ous studies, irrespective of the mode of apoptosis induc-

tion or cell type.7,36–39 Conversely, however, one study40

suggests that AC induce the maturation of DC, which

may be because the study used ‘late’ AC, which have been

shown previously to elicit different responses to the ‘early’

apoptotic cells41,42 used in the present study. Despite the

ability of DC to phagocytose both AC and NC, our data,

and those of others, show that only NC induce matura-

tion of DC, leading to subsequent activation of CD4+

allogeneic T cells, similar to that observed with LPS.7,14,36

We investigated whether DC responses towards AC

were the result of suppression of DC maturation or an

immunological null event. The data presented demonstrate

that DC conditioned with AC actively downregulated

phenotypic DC maturation, a response suggested to be

the result of complement receptor binding.43,44 The effects

of AC were also evidenced at a functional level by the

inhibition of LPS-driven CD4+ T-cell proliferation. This

is supported by the data of others,17 although it contrasts

with another study,7 which may be explained by the use

of syngeneic CD8+ T cells, and by differences in the cell

ratios and maturation stimuli used. However, our data

and those of others strongly suggest that the DC response
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to AC is one of active suppression, thus reinforcing the

current perception that DC exposed to apoptotic environ-

ments play a major role in the presentation of self-anti-

gens and the induction of immune tolerance.8,16,45

The involvement of TGF-b in the antigen-presenting

cell response to AC environments is well accepted.14,15

Our results suggest that TGF-b had little effect on the DC

phenotype but reduced suppression of mDC-induced

T-cell proliferation by AC. The lack of cytokine-induced

modulation of the DC phenotype is supported by the

inability of AC supernatants to suppress LPS-induced DC

maturation,14,15 although recent work shows TGF-b to

have an inhibitory role.46 The ability of TGF-b to influ-

ence the DC phenotype may be the results of differences

in cytokine priming before the addition of LPS, resulting

in suppressed DC that are unable to respond maximally

to further stimulus. These data, however, would suggest

that, in our system, TGF-b, although not involved in the

phenotypic maturation state of the DC, is a regulator of

AC-induced suppression of CD4+ T-cell proliferation.

To further elucidate the role of cytokines in the sup-

pressive action of the differentially conditioned DC, cyto-

kine profiling was performed. The LPS-stimulated DC

promoted an overall T helper type 1 (Th1) environment

by the production of IFN-c, TNF-a, IL-12, IL-1b and

IL-6, together with an increase in IL-10. One explanation

for increased IL-10, a classical immunoregulatory cyto-

kine, may be the role of IL-12-induced IL-10 in a mecha-

nism of negative feedback.47 Unlike previous reports,44 we

were unable to detect decreases in basal DC production

of TNF-a and IL-1 upon phagocytosis of AC because

initial DC cytokine production was low. Of particular

interest was the specific generation of IFN-c by iDC

co-cultured with AC; this suggested IFN-c to be a key

mediator in the AC-associated suppressive effect, a

mechanism not reported previously.

Multiple signalling events within DC induced by

co-culture of AC in combination with LPS promoted

decreased mDC-induced cytokine responses, which may

occur through the phagocytosis of AC.44 The tolerogenic
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potential of AC would support the inhibition of key pro-

inflammatory cytokines because IL-12 is known to abro-

gate established tolerance18,19,48 and IFN-c has been

shown to override AC-induced suppression of TNF-a.15

Despite demonstrating that IFN-c is a key cytokine in the

iDC response to AC, we were unable to detect IFN-c in

AC-suppressed mDC cultures, possibly because of its

rapid use. We therefore investigated the functional role of

IFN-c in iDC and mDC cultures and its effects on DC

function.

One of the most interesting recent findings is that IFN-

c, classically a proinflammatory cytokine involved in Th1

immune responses, can also play an immunoregulatory

role in the immune system via the induction of IDO.49

Our data demonstrate a statistically significant role for

IFN-c in AC-induced suppression of mDC-induced T-cell

proliferation independent of phenotypic modulation of

the DC. In contrast, neutralization of IFN-c had no effect

on mDC function, suggesting that IFN-c is not an overt

player in this proinflammatory context. The dichotomy of

effects that IFN-c has on T-cell proliferation depending

on the DC environment may be the result of the Th1/Th2

balance. As proposed by others,50,51 increased IL-12

together with high levels of costimulation, as observed in

response to LPS, suggests a Th1 environment. However,

reduced IL-12 together with low expression of CD80/

CD86, as seen in iDC cultures with AC, suggests an envi-

ronment that is biased towards tolerance or Th2 cell gen-

eration, depending on the CD80/CD86 responsive

threshold. As Th2 cells are sensitive to IFN-c, because of

the expression of both IFN-c receptor 1 and IFN-c recep-

tor 2,52 the effect of co-culture with AC would enable

IFN-c to have an anti-inflammatory effect.

In our system, IDO mediated the partial suppression of

mDC-induced CD4+ T-cell proliferation via IFN-c-depen-

dent mechanisms. Further evidence of a regulatory role

of IFN-c is demonstrated in vivo in models of human

autoimmunity, including experimental autoimmune ence-

phalomyelitis53 and experimental autoimmune uveoret-

initis54, where an absence of IFN-c results in exacerbated

disease. The biological significance of our results, how-

ever, remains to be investigated. Residual expression of

IDO following inhibition of IFN-c suggests a role for

other regulatory factors, together with IFN-c.27,28

The enzyme responsible for tryptophan catabolism,

IDO, is involved in various mechanisms of T-cell toler-
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ance, including the induction of T-cell anergy, immune

deviation and apoptosis of activated T cells. In addition,

Fallarino et al.55 demonstrate a possible feedback loop

through tryptophan-induced T-cell apoptosis inducing a

‘regulatory DC’ with subsequent effects on T-cell func-

tion. However, preliminary studies in our laboratory

suggest apoptosis-related effects on DC irrespective of

the cell type undergoing apoptosis and, indeed, no cor-

relation of an IDO-related response with T-cell viability.

IDO involvement in DC responsiveness has been docu-

mented in both tolerogenic and mDC environments.56,57

Explanations for the variation in expression and effect

include the existence of an active and inactive enzyme58

although, our HPLC data suggest IDO activity in both

contexts. In addition to its regulation by IFN-c, IDO

activity has recently been shown to be responsive to

IL-6.59 In the cytokine milieu produced by mDC, IL-6

remains high in the presence of AC. Production of IL-6

by DC has been reported as a result of reverse signalling

via CD80/CD86 and CD28 during DC–T-cell interac-

tions,59 which counters the effects of reverse signalling

via CTLA-4, previously shown to invoke IFN-c produc-

tion by DC.29,30,60,61 It is therefore possible that in mDC

cultures, IL-6 regulation of IDO is overridden. There-

fore, DC are affected by both the effects of T-cell liga-

tion and their environment.

In conclusion, these findings strongly implicate IFN-c
and IDO in a role in the immunosuppressive effect

observed upon DC within AC environments, supporting a

role for IDO in self-antigen presentation and immune tol-

erance. The essential role of apoptosis in cellular homeo-

stasis makes it vital that, upon phagocytosis of AC, DC

do not mature or initiate an immune response. One pos-

sibility is that the activation of IDO through IFN-c is a

mechanism by which the body ensures immune tolerance

to self-antigens, thereby reducing the risk of autoimmunity.

Despite this evidence, it is clear that IDO is not the sole

factor and the role of numerous factors, e.g. TGF-b,

remains to be elucidated. Investigations into these pro-

cesses will increase our understanding of the mechanisms

controlling peripheral self-tolerance, providing new strate-

gies for antigen delivery that maintain tolerance rather than

immunity.
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