
Differential contribution of TAP and tapasin to HLA class I antigen
expression

Introduction

The role of human leucocyte antigen (HLA) class I anti-

gens in interactions between target cells and cytotoxic

T lymphocytes (CTL) has stimulated interest in examining

their expression on malignant cells. There is convincing

evidence that HLA class I antigens can be downregulated or

lost on malignant cells and that these variations may

be associated with a poor prognosis.1–3 Characterizing the

mechanisms underlying efficient class I expression at the

cell surface is expected to contribute to the design of

strategies that aim to enhance class I expression at the

surface for optimal recognition by CTL.

The expression of HLA class I molecules at the cell sur-

face depends upon the appropriate assembly of three

major components, a heavy chain, b2-microglobulin and

peptide in the endoplasmic reticulum (ER). Peptides are

generated by proteasomes4 and aminopeptidases5,6 in the

cytosol followed by transport into the ER lumen by the

ATP-dependent transporter associated with antigen

processing (TAP).7,8 Within the ER, peptides are further

trimmed by aminopeptidases.9–11 The binding of peptides

by class I molecules is thought to occur within a multi-

molecular assemblage termed the peptide loading com-

plex. The peptide loading complex consists of a TAP

heterodimer surrounded by multiple class I molecules,12,13

tapasin,14,15 calreticulin15 and ERp57.16–18 While the

chaperone calreticulin19 and the thiol-oxidoreductase

ERp5720–23 promote appropriate folding and disulphide

bond formation, tapasin plays multiple roles in the pep-

tide loading complex. It promotes the stabilization of the

peptide loading complex,14,24 aids in the appropriate
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Summary

Expression of class I human leucocyte antigens (HLA) on the surface of

malignant cells is critical for their recognition and destruction by cyto-

toxic T lymphocytes. Surface expression requires assembly and folding of

HLA class I molecules in the endoplasmic reticulum with the assistance of

proteins such as Transporter associated with Antigen Processing (TAP)

and tapasin. Interferon-c induces both TAP and tapasin so dissection of

which protein contributes more to HLA class I expression has not been

possible previously. In this study, we take advantage of a human mela-

noma cell line in which TAP can be induced, but tapasin cannot. Inter-

feron-c increases TAP protein levels dramatically but HLA class I

expression at the cell surface does not increase substantially, indicating

that a large increase in peptide supply is not sufficient to increase HLA

class I expression. On the other hand, transfection of either allelic form

of tapasin (R240 or T240) enhances HLA-B*5001 and HLA-B*5701 anti-

gen expression considerably with only a modest increase in TAP.

Together, these data indicate that in the presence of minimal TAP activ-

ity, tapasin can promote substantial HLA class I expression at the cell

surface.

Keywords: antigen presentation; cancer; human leucocyte antigen; major

histocompatibility complex; tapasin; transporter associated with antigen

processing (TAP); tumour

Abbreviations: BAP31, B-cell receptor associated protein 31 kiloDaltons; HLA, human leucocyte antigen; IFN-c, interferon-c;
TAP, transporter associated with antigen processing; Tpsn, tapasin.
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selection of peptides,25–27 maintains appropriate HLA

class I redox status21 and enhances TAP levels.24,28,29

The magnitude by which tapasin enhances TAP appears

to be different in murine cells compared to the one

human cell line examined to date. Murine cells deficient

for tapasin show a much larger defect, (several hundred-

fold) in TAP levels than the human tapasin-deficient cell

line .220.B8 (two-fold) when compared to their wild-type

counterparts.29,30 Furthermore, two alleles of tapasin have

been identified that exist at approximately equal frequen-

cies in the human population, yet their functional differ-

ences or similarities are unknown.31

The importance of proteins in the peptide loading

complex is highlighted by impaired class I assembly and

surface expression in cells that are deficient for any one

of these proteins.14,19,22,30,32–35 Although each component

of the peptide loading complex is required for optimal

assembly and transport of HLA class I molecules to the

surface, defects in TAP or tapasin show the most marked

defects.14,32 To date, the relative contributions of TAP

and tapasin expression to the level of HLA class I expres-

sion has been difficult to separate because these two mol-

ecules are coordinately regulated at the transcriptional

level.36–39

In the present study, we have compared the effects of

both tapasin alleles on TAP stabilization and HLA class I

expression in a melanoma cell line. Furthermore, we have

examined the relative contributions of TAP and tapasin

to HLA class I expression, which addresses the functional

significance of variations in TAP and tapasin expression

in both normal and malignant cells.

Materials and methods

Cell lines and reagents

The melanoma cell lines M553 (HLA-A28, A2-haplotype

loss40 and HLA-B*5001 and HLA-B*5701, this report)

and M501 (HLA-A2, A24) have been described previ-

ously.1,40 All cell lines were grown in RPMI-1640 medium

(Life Technologies, Grand Island, NY) containing 10%

bovine calf serum (Hyclone Laboratories, Logan, UT) and

10 mM HEPES.

Antibodies

The monoclonal antibody (mAb) W6/32 recognizes

b2-microglobulin-associated HLA-A, -B and -C mole-

cules.41 The mAb SFR8.B6 recognizes the HLA-Bw6

epitope42 and is highly dependent upon the presence of

residues Arg82 and Gly83. SFR8.B6 reactivity is abolished

by the replacement of these residues with either Leu82 or

Arg83.43,44 Based on this rationale, we reasoned that

SFR8.B6 probably reacts with the HLA-B*5001 (Arg82,

Gly83) product but not HLA-B*5701 (Leu82, Arg83R).

The mAb TT4-A2045,46 recognizes the HLA-Bw4 epitope,

which is highly dependent upon residues 79–83 that are

present in HLA-B*5101.47 These residues 79–83 are com-

pletely conserved between HLA-B*5101 and HLA-B*5701,

suggesting that the TT4-A20 recognizes HLA-B*5701

expressed on M553 cells. The rabbit antiserum R.Ring4c

recognizes the C-terminal peptide of TAP1.12 The TAP1-

specific antibody NOB-1 was generated by immunizing

BALB/c mice with a synthetic peptide containing residues

777–794 (GGAIREGGTHQQLMEKKG).48 The mAb TO-3

specific for human tapasin was generated in BALB/c mice

immunized with a synthetic peptide containing residues

29–42 (QGPGEPPPRPDLDP).48 The mAb specific for

a-tubulin was purchased from Sigma-Aldrich (St Louis,

MO). The mAb PaSta1 and the R.SinB rabbit polyclonal

antiserum recognize lumenal epitopes within tapasin.21

The antiserum, Clyde, recognizes the C-terminal region of

calnexin.24 The BAP31-specific rabbit antiserum recog-

nizes the C-terminal peptide (CLEEHAKLQAAVDGPMD

KKKAE).49

Flow cytometric analysis

Cells were washed and incubated with saturating concen-

trations of the HLA-specific or control antibodies for

30 min at 4�. After washing, 500 000 cells were resus-

pended in saturating concentrations (10 lg/ml) of fluo-

rescein isothiocyanate-conjugated, goat anti-mouse

immunoglobulin G antibodies. After washing, cells were

fixed in 2% paraformaldehyde and analysed on a FAC-

Scan instrument (Becton Dickinson, San Jose, CA). Data

were analysed with WINMDI software (Joe Trotter, The

Scripps Research Institute, La Jolla, CA).

Interferon-c treatment

Cells were incubated with 100 IU/ml interferon-c (IFN-c),

(PBL Biomedical Laboratories, New Brunswick, NJ) for

20–24 hr. This dose effectively increases HLA class I

expression at the cell surface and TAP and tapasin protein

levels within the cell (ref. 50 and Figs 1–3).

Western blot analysis

Quantitative fluorescence-based Western blotting was per-

formed as described previously.24 Briefly, cells were lysed

using 1% Triton X-100 in 10 mM Tris–HCl, 150 mM

NaCl, pH7�4 containing protease inhibitors phenylmethyl-

sulphonyl fluoride (0�5 mM) and N-ethylmaleimide

(5 mM). Post-nuclear supernatants were diluted to the

indicated number of cell equivalents and separated by

sodium dodecyl sulphate–polyacrylamide gel electropho-

resis (SDS–PAGE). Protein measurements by the Bradford

assay (Bio Rad, Hercules, CA) indicate that (M553 or

M553tpsn or M501) lysates corresponding to 10 000 cell
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equivalents contain 1 lg protein. Following transfer of

proteins to an Immobilon-P membrane (Millipore, Bed-

ford, MA), proteins of interest were detected using the

indicated primary antibodies followed by secondary anti-

bodies coupled to alkaline phosphatase. After washing,

VistraECF substrate (Amersham Pharmacia, Piscataway,

NJ) was applied and fluorescence was measured using a

STORM instrument (Molecular Dynamics, Palo Alto,

CA). Fluorescence measurements were acquired and anal-

ysed using IMAGEQUANT software. The amount of fluores-

cence for each band (i.e. tapasin, TAP1, tubulin) was

quantified by integration of the area under the curve gen-

erated for each band. For loading controls, the same

membrane was reprobed for a-tubulin and/or calnexin.

The ratio of fluorescence signal of TAP1 over tubulin was

utilized to compare between different membranes.

Peptide translocation assay

Peptide translocation was measured as previously

described.24 Cells were permeabilized in 0�005% digitonin,

50 mM HEPES, 78 mM KCl, 4 mM MgCl2, 8�37 mM CaCl2,

10 mM ethyleneglycoltetraacetic acid, 0�4% bovine serum

albumin for 5 min at 37�. The peptide termed B27#3 gly-

copeptide1 (RRYQNSTEL) containing an NXT glyco-

sylation acceptor site was iodinated using Chloramine T.

Permeabilized cells, supplemented with 1 mM ATP, were

added to 2 294 200 counts/min of 125I-labelled B27#3

peptide at 37� for 3 min. Three minutes of peptide trans-

location represents an initial rate that is proportional to

the number of functional heterodimers present.24 The

translocation reaction was stopped by adding Triton

X-100 to a final concentration of 1%. Immediately there-

after, samples were placed on ice. Glycosylated
125I-labelled peptide was recovered from post-nuclear

supernatants using concanavalin A–Sepharose. After

washing, concanavalin A–Sepharose-associated counts

were measured in a Cobra II Auto-Gamma counter

(Packard Bioscience, Meriden, CT).

Polymerase chain reaction (PCR) amplification of
HLA-B alleles from M553 cells

Total RNA from M553 cells was extracted using TRIzol

(Invitrogen, Carlsbad, CA) and cDNA was generated

using oligo-dT primers and Superscript II reverse trans-

criptase (Invitrogen) according to the manufacturer’s rec-

ommendations. The PCR amplification of HLA-B alleles

was performed using the high-fidelity enzyme Accuprime

Taq (Invitrogen) and primers 50-ATGCGGGTCACGGCG
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Figure 1. Defective HLA class I expression on M553 cells is not

restored by IFN-c. The cell lines indicated were either untreated or

treated with IFN-c for 20–24 hr before analysis by flow cytometry

using the HLA-A, -B, -C specific monoclonal antibody W6/32 or a

control antibody (filled histogram). A representative value from at

least three independent experiments is shown.
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Figure 2. Defective TAP expression in M553 cells can be overcome

by IFN-c treatment. The cell lines indicated were either untreated

()) or treated (+) with IFN-c for 20–24 hr before lysis. Recovered

proteins were subject to SDS–PAGE followed by detection of the

indicated proteins by immunoblot. (a) Fifty thousand cell equiva-

lents (5 lg total protein) were applied to each lane. (b) Cell lysates

were serially diluted to the indicated cell equivalents. (c) TAP func-

tion was measured as described in the Materials and methods. The

amount of translocated peptide in the presence (+) or absence ())

of apyrase is plotted for each cell type and treatment indicated. A

representative figure of at least three independent experiments is

shown.
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CCCCGAACC-30 and 50-TCAAGCTGTGAGAGACACAT

CAGA-30. The amplicons were cloned into pGEM-

T-EASY (Promega, Madison, WI) and single colonies

were isolated and sequenced using the SP6 and T7 prim-

ers (Roswell Park Biopolymer Facility). Translated

sequences were aligned to all known HLA-B alleles in the

IMGT database.51–53

Restoration of tapasin expression in M553 cells

The expression construct encoding the R240 allele of

tapasin was obtained by reverse transcription-PCR ampli-

fication from the melanoma cell line 1195 using the prim-

ers 1F (50-AGCGCCATGAAGTCCCTGTCTCTGCTC-30)

and 1R (50-GTGCCCTCACTCTGCTTTCTTCTTTGA-30)

followed by cloning into pDRIVE (Qiagen, Valencia, CA)

and subcloning into a modified pCDNA3.1(-)neo (Invi-

trogen) in which the gene encoding puromycin resistance

replaced the neomycin-resistance gene. The cloned prod-

uct was verified by sequencing the DNA inserted into the

pDRIVE plasmid. The T240 allele of tapasin was ampli-

fied from 721.45.1 cells and cloned into the expression

construct pmcfr.puro (originally created by Tom Novak,

Yale University School of Medicine). Both expression

constructs [pCDNA3.1(-)puro and pmcfr.puro] contain

the human cytomegalovirus (CMV) promoter to produce

constitutive tapasin transcription that is unaffected by

incubation with IFN-c. Expression constructs were trans-

fected into M553 cells using Effectene (Qiagen) according

to the manufacturer’s recommendations. After transfec-

tion, clones were isolated by limiting dilution in the pres-

ence of 1 lg/ml puromycin.

Results

Barely detectable HLA class I antigen expression
on melanoma cells M553

Flow cytometric analysis with the HLA class I-specific

mAb W6/32 showed minimal staining of M553 cells, but

high class I expression on the melanoma cell line, M501

(Fig. 1). Increased class I expression on M553 cells treated

with IFN-c suggested that the structural genes (i.e. heavy

chain, b2-microglobulin) were probably intact. However,

the limited increase by IFN-c was compatible with func-

tional defects in antigen presentation components.

Defects in TAP and tapasin in M553 cells

Using 50 000 cell equivalents (5 lg), TAP1 protein was

undetectable in M553 cells but detectable in M501 cells

(Fig. 2a). Treatment of M553 cells with IFN-c induced

TAP1 expression appreciably (Fig. 2a). To quantify the

magnitude of TAP1 induction by IFN-c, several dilutions

of M553 lysates were assayed (Fig. 2b). In the absence of

IFN-c, TAP1 was only marginally detectable, even when

using 1 500 000 cell equivalents (150 lg, Fig. 2b). How-

ever, TAP1 was detectable from as little as 50 000 cell

equivalents (5 lg) from IFN-c-treated M553 cells

(Fig. 2b). The presence of IFN-c strongly induced TAP1

protein levels (with at least a 10- to 30-fold increase).

Given the increase in TAP1 protein levels, we expected an

increase in TAP function. Indeed, M553 cells treated with

IFN-c showed a substantial increase in peptide transloca-

tion ability compared to untreated M553 cells (Fig. 2c).

Addition of apyrase, which cleaves ATP, demonstrated

the dependence of peptide translocation on ATP. The
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Figure 3. Defective tapasin expression is not inducible by IFN-c,

but can be restored by transfection. (a) The cell lines indicated were

either untreated ()) or treated (+) with IFN-c for 20–24 hr before

lysis and analysed as in Fig. 2a. (b) M553 cells and transfectants con-

taining R240tpsn or T240tpsn alleles were lysed and immunoprecipi-

tated using tapasin-specific antibody (PaSta1) or control antibody.

(c). Western blots were probed for tapasin using rabbit antiserum

(R.SinB). (c) Lysates from M553 and M553(T240)tpsn cells were

serially diluted and after SDS–PAGE, the indicated proteins were

detected by immunoblot analysis. (d) M553 and M553(T240)tpsn

cells were tested for TAP function as described in the Materials and

methods. (e) Serial dilutions of untreated (-IFN-c) M553 and

M553(R240)tpsn cells were immunoblotted as indicated. (f) IFN-c-

treated M553 and M553(R240)tpsn cells were analysed as in (e).

Quantification of the fluorescent bands in (e) and (f) was performed

with ImageQuant software. Each bar represents the average of the

TAP1 : tubulin signal over all dilutions. A representative figure from

at least three independent experiments is shown.
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observation of greater peptide translocation in M501 cells

compared to IFN-c-induced M553 cells (Fig. 2c), in the

face of similar or slightly lower TAP1 protein levels

(Fig. 2a), suggested that peptide transport was impaired

even in the IFN-c-treated M553 cells.

Transfection of tapasin cDNA enhances TAP protein
levels and peptide transport

Since tapasin is known to increase peptide transport,28 we

hypothesized that a defect in tapasin could be responsible

for the lower peptide translocation in M553 cells. Indeed,

we found that tapasin protein was undetectable in M553

cells both under basal conditions and following incubation

with IFN-c (Fig. 3a). To test the possibility that defective

tapasin expression in M553 cells is responsible for

impaired peptide transport, we stably transfected M553

cells with each of the two known tapasin alleles under con-

trol of the constitutively active CMV promoter. It is note-

worthy that this single amino acid polymorphism (R240

versus T240) subtly, but reproducibly, altered the mobility

of tapasin as measured by SDS–PAGE (Fig. 3b, comparing

the tapasin immunoprecipitate of M553(T240)tpsn with

M553(R240)tpsn). The expression of the T240 tapasin

allele in M553(T240)tpsn led to a two-fold enhancement

of the barely detectable levels of TAP1 in M553 cells

(Fig. 3c, comparing the TAP1 bands in M553 with those

of M553(T240)tpsn). Support for the two-fold increase in

TAP1 protein levels by tapasin was provided by a corre-

sponding two-fold increase in the ability to translocate

peptide by M553(T240)tpsn cells compared to M553 cells

(Fig. 3d). Transfection of M553 cells with the R240 allele

resulted in a similar two-fold increase in the faint TAP1

band in M553(R240)tpsn cells compared to M553 cells

(Fig. 3e). Therefore, although tapasin increased TAP1 pro-

tein levels, this effect was modest (two-fold) compared to

the IFN-c-induced TAP1 levels (> 10-fold, see Fig. 2a).

Confirmation of the idea that human tapasin had a less

dramatic effect in increasing TAP levels compared to IFN-

c came from the observation that the presence of tapasin

in M553(R240)tpsn cells did not further enhance

M553(R240)tpsn TAP1 levels (normalized to tubulin) after

IFN-c treatment (Fig. 3f).

Enhancement of HLA-B*5001 and -B*5701 antigen
expression by tapasin

To investigate whether the lack of tapasin was responsible

for the marked downregulation of class I molecules on

M553 cells, we compared class I expression on M553 and

M553(T240)tpsn cells by flow cytometry. Stable transfec-

tion of the T240 tapasin cDNA enhanced the levels of over-

all HLA-A, -B, -C antigen expression by 30-fold on M553

cells (Fig. 4a). Comparable results were obtained in

M553(R240)tpsn cells (data not shown). Since tapasin

affects the surface expression of different class I allelic prod-

ucts to varying degrees, the cDNA encoding the HLA-B

alleles was amplified by PCR and sequenced to determine

which alleles were expressed in M553 cells. Comparison

with the IMGT database51–53 revealed that M553 cells

expressed HLA-B*5001 and HLA-B*5701. The surface

expression of HLA-B*5701 was enhanced 30-fold upon

transfection of tapasin (Fig. 4b, compare dotted line to

solid line). HLA-B*5001 was below the detection limit on

M553 cells but its induction was increased 10-fold on

M553(R240)tpsn cells (Fig. 4c, compare dotted line to solid

line). HLA-A alleles were not detectable in the presence or

absence of tapasin (data not shown). Increased HLA class I

expression on tapasin-transfected M553 cells was therefore

the result of the HLA-B*5701 and HLA-B*5001 alleles.

Lack of detectable effects of IFN-c on HLA class I
antigen expression on M553tpsn cells

Since the enhancement of TAP1 by IFN-c was greater

than that observed by tapasin transfection, we tested
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whether IFN-c induction of TAP in the presence of high

tapasin expression (i.e. M553(T240)tpsn cells) could

enhance class I levels further. Given that the transfected

tapasin gene is under the control of the CMV promoter,

which is not induced by IFN-c, we reasoned that the

effects of IFN-c on M553tpsn cells would only reflect the

enhancement of TAP levels, but not of tapasin levels.

Although overall HLA-A, -B, -C expression was not

enhanced by IFN-c (Fig. 5a, mean fluorescence intensity

for untreated 107 versus 132 with IFN-c), the staining of

HLA-B*5001 (mean fluorescence intensity for untreated

47 versus 74 with IFN-c, Fig. 5b) and HLA-B*5701 (mean

fluorescence intensity for untreated 140 versus 209 with

IFN-c, Fig. 5c) both appeared to be modestly enhanced

by IFN-c. The enhancement of Bw4 and Bw6 staining by

IFN-c may be the result of the influence of a different, or

more optimal, peptide repertoire because peptides can

affect staining of these epitopes by some antibodies.54

These data further indicate that low versus high quantita-

tive variations in TAP protein levels in M553tpsn cells

did not alter the overall levels of surface class I expres-

sion. In contrast, high levels of tapasin expression maxi-

mized class I expression at the cell surface in M553tpsn

cells. This finding is reproducible in the M501 cell line,

which contains high tapasin levels (Figs 3a and 5d) but

does not show increased class I expression on the surface

upon IFN-c treatment (Fig. 5d).

Discussion

In the present report we utilize a tapasin-deficient, but

TAP-inducible, cell line to reveal the relative contribu-

tions of TAP and tapasin to HLA class I expression at

the cell surface. The phenotype of negligible class I

expression on the melanoma cell line M553 could have

been explained by low TAP level or lack of tapasin pro-

tein. We find that although IFN-c effectively induces

TAP expression and activity, class I expression does not

increase appreciably. These data suggest that, for HLA-

B*5001 and HLA-B*5701, low versus high TAP levels do

not alter overall class I status. On the other hand, tapa-

sin transfection increases class I expression at the cell

surface 30-fold. Combined, these observations imply that

in a fully competent antigen-presenting cell, although

IFN-c induces both TAP and tapasin, it is tapasin that

is the major contributor to expression of these alleles at

the cell surface.

Further support for the idea that the level of TAP is

not a major factor in expression of HLA class I at the cell

surface comes from the observation that TAP induction

(by IFN-c) does not increase class I levels in tapasin-

transfected M553 cells. Additionally, the fact that tapasin

increases TAP by only two-fold and enhances HLA class I

expression 30-fold substantiates the idea that the pres-

ence of TAP—although not necessarily its abundance—

is important for efficient expression of these alleles.

Although we suggest that TAP levels are not important

for HLA class I expression, elegant studies using cell lines

in which the TAP genes are deleted demonstrate that

TAP is required for class I expression at the surface.32

These results can be reconciled with ours by acknowledg-

ing that a minimum basal level of TAP is required to

support HLA class I transport to the cell surface. How-

ever, we suggest that further increases in TAP above the

minimum level do not alter the expression of tapasin-

dependent alleles such as HLA-B*5001 and HLA-B*5701.
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Figure 5. Inability of IFN-c to increase class I expression on cells

containing high levels of tapasin. (a–c) Untreated M553(T240)tpsn

cells (dotted lines) and IFN-c-treated M553(T240)tpsn cells (solid

lines) were stained using the mAbs described in Fig. 4. (d) Untreated

or IFN-c-treated M501 cells were stained using the mAb W6/32.
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Our findings that tapasin controls HLA class I expres-

sion are consistent with previous evidence indicating that

tapasin is limiting and recycles to assemble class I mole-

cules sequentially.55 By extension, one may predict a

linear relationship between tapasin expression levels and

class I surface expression. Indeed, regardless of the HLA

haplotype, tapasin appears to be the only antigen presen-

tation component that directly correlates with surface

HLA class I expression in a panel of twenty-five mela-

noma cell lines (T. Ogino, S. Ferrone unpublished obser-

vations). Furthermore, high tapasin levels (in M553tpsn

cells or M501 cells) appear to maximize cell surface class

I expression such that even IFN-c treatment fails to upre-

gulate class I expression further. It is however possible

that, in other cell types, other components of the peptide

loading complex may be responsible for low surface

expression of HLA class I molecules.56 Consistent with

this idea, BAP31 has been shown to be limiting for HLA

class I expression on the surface of HeLa cells.57

Before the discovery of tapasin, M553 cells were

reported as having a single genomic haplotype loss in

which both HLA-A2 and HLA-B40 had been deleted.40

We confirm that the HLA-A2 antigen is not detectable by

flow cytometry (data not shown). However, HLA-B

(HLA-B*5001 and HLA-B*5701) expression at the cell

surface is detectable when M553 cells are transfected with

tapasin. Tapasin expression is, therefore, an important

parameter to consider when examining the HLA class I

phenotype of tumour cells by flow cytometry. Although

recent studies have begun to examine tapasin expression

in cell lines and in malignant lesions,38,58,59 to our knowl-

edge, the present report represents the first demonstration

of the causal effects of tapasin on HLA class I antigen

expression and TAP activity in a tumour cell line.

Tapasin is reported to enhance TAP by two- to four-

fold when transfected into the only human cell line, .220

(a B lymphocyte cell line), known to be deficient for tapa-

sin.24,28 However, the stabilizing effect of tapasin on TAP

levels in murine fibroblasts or splenocytes has been

reported to be in the order of several hundred-fold.29,30

Given the consistent results between human .220 B cells

and M553 melanoma cells, a species difference (rather

than differences between cell types) probably accounts for

the differential effects of mouse versus human tapasin on

TAP protein levels. Furthermore, the expression of

human tapasin in insect cells does not alter (human) TAP

activity, suggesting that human tapasin does not have a

large effect on TAP activity.60

Overall, we have demonstrated that tapasin plays a

dominant role in dictating surface HLA-B*5001 and

HLA-B*5701 in the presence of minimal TAP activity. In

the endogenous setting, we suggest that IFN-c contributes

to antigen presentation via two major mechanisms. First,

IFN-c induces TAP protein levels and activity to increase

peptide supply into the ER, which may increase the

opportunity to bind viral peptides for example, but this

induction does not appear to increase HLA-B*5001 or

HLA-B*5701 expression substantially. Second, IFN-c
induces tapasin, which promotes the expression of HLA

class I molecules at the cell surface. The increase in TAP

levels caused by tapasin is modest compared to that

induced by IFN-c directly. Together, these findings sug-

gest that modulation of tapasin in tumour cells may have

a profound effect on HLA class I expression and their

potential to be recognized by CTLs.
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