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ABSTRACT We demonstrate, by using mathematical
modeling of cell division cycle (CDC) dynamics, a potential
mechanism for precisely controlling the frequency of cell
division and regulating the size of a dividing cell. Control of
the cell cycle is achieved by artificially expressing a protein
that reversibly binds and inactivates any one of the CDC
proteins. In the simplest case, such as the checkpoint-free
situation encountered in early amphibian embryos, the fre-
quency of CDC oscillations can be increased or decreased by
regulating the rate of synthesis, the binding rate, or the
equilibrium constant of the binding protein. In a more com-
plex model of cell division, where size-control checkpoints are
included, we show that the same reversible binding reaction
can alter the mean cell mass in a continuously dividing cell.
Because this control scheme is general and requires only the
expression of a single protein, it provides a practical means for
tuning the characteristics of the cell cycle in vivo.

In recent years, studies of the cell division cycle (CDC) have
uncovered many of the genes and proteins that drive and
regulate cell division (for reviews, see refs. 1–5). With this
expanding knowledge, it is becoming increasingly apparent
how the cell cycle can be artificially controlled. Typically, such
manipulations are achieved by introducing mutations into the
genes that regulate the cycle. However, these mutations usually
result in uncontrolled cell division or complete suppression of
cell division, or cause the cell to commit fatal errors during the
cell cycle.

Here, we develop methods for gaining more precise control
of the CDC by using our understanding of the dynamics of the
CDC oscillator. Specifically, we describe a mechanism that can
stop and restart cell division, modulate the frequency of cell
division, and control the size of dividing cells. This control
scheme requires only the expression of a protein that binds to
and inhibits any one of the CDC proteins.

To explore the features of our control scheme, we apply it
to two previously developed models of the CDC. The first
model, developed by Goldbeter (6, 7), is based on the situation
encountered in early amphibian embryos and presents the
simplest and most intuitive description of the CDC. Though a
significant abstraction of the real cell cycle, it captures the
fundamental dynamics of the molecular interactions that drive
CDC oscillations. The model, which characterizes the G2yM
phase transition, reduces the CDC to three proteins: cyclin,
Cdc2 kinase, and a cyclin protease. Cyclin, which is synthesized
constitutively in the model, activates the Cdc2 kinase, which
activates the cyclin protease, which, in turn, degrades cyclin.
This model produces limit cycle oscillations under the condi-
tions that (i) the activation of Cdc2 kinase andyor the activa-
tion of the cyclin protease is by means of threshold mecha-

nisms, and (ii) time lags are associated with the threshold
mechanisms.

The second model, developed by Novak and Tyson (8),
describes cell division in Schizosaccharomyces pombe. This
model is substantially more complex than the Goldbeter
model, and it provides a more realistic description of the CDC
oscillator. The Novak–Tyson model, at its core, contains
threshold activationydegradation mechanisms similar to those
in the Goldbeter model, but it also includes several additional
features. The model describes both the G1yS and G2yM phase
transitions, incorporates autocatalytic activation of the M-
phase promoting factor, and includes size control checkpoints
at both the start of DNA replication and the beginning of
M-phase. In the Goldbeter and the Novak–Tyson models, we
show that in the absence of checkpoints, the expression of a
cyclin or cyclin-Cdc2 inhibitor modulates the frequency of the
CDC oscillator. Moreover, we show that the qualitative fea-
tures of this control scheme are nearly identical in both cases
despite the substantial differences between the two models.

The effectiveness of this control scheme on two different
models of the CDC emphasizes one of its critical features:
model independence. Although the CDC is increasingly well
understood, the exact details of the molecular interactions
have not been fully elucidated. Our control scheme is based on
the basic biochemical dynamics that form the core of the CDC
oscillator, not on the precise details of the CDC. Thus, our
control scheme is likely to be effective in the vastly more
complicated CDC of the living cell.

Model for the Control of Cell Division

We achieve control of cell division by expressing an inhibitor
of one of the CDC proteins. The general form of this control
scheme is given by:

U̇1 5 f1~U1, . . . , Un! 2 a1U1Y 1 ~a2 1 ad1!Z,

U̇2 5 f2~U1, . . . , Un!,

···

U̇n 5 fn~U1, . . . , Un!,

Ẏ 5 vs 2 d1Y 2 a1U1Y 1 ~a2 1 akd!Z,

Ż 5 a1U1Y 2 ~a2 1 akd 1 ad1!Z. [1]

In the above equation, the model of the basic CDC oscillator
is represented by U1, . . . , Un and functions f1, . . . , fn (in
boldface), where U1 is the concentration of the target protein
of the inhibitor and U2, . . . , Un are the concentrations of the
other proteins in the CDC model. Y denotes the concentrationThe publication costs of this article were defrayed in part by page charge
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of unbound inhibitor, and Z denotes the concentration of
inhibitor-target complex. The rate constants a1 and a2 deter-
mine the rate of binding and release, and the dissociation
constant Kd 5 a2ya1. The rate of inhibitor synthesis, given by
vs, is balanced by d1, the basal rate of inhibitor degradation.
Likewise, U1 is degraded at a basal rate given by kd (see Eq. 2).
The inhibitor and target proteins, when bound in a complex,
also are degraded by proteolytic pathways, but at a fraction,
a , 1, of the rates of d1 and kd.

The Goldbeter model of cell division is given by:

Ċ 5 vi 2 k1

XC
C 1 K5

2 kdC,

Ṁ 5
V1~1 2 M!

~1 2 M! 1 K1
2

V2M
M 1 K2

,

Ẋ 5
V3~1 2 X!

~1 2 X! 1 K3
2

V4X
X 1 K4

[2]

where

V1 5
C

C 1 K6
V19, V3 5 MV39,

where C denotes the cyclin concentration; M and X denote the
fraction of active Cdc2 kinase and cyclin protease, respectively;
vi is the rate of synthesis of cyclin; k1, kd, and K5 characterize
the kinetics of cyclin degradation; the parameters Vi and Ki (i 5
124) characterize the kinetics of the enzymes involved in
posttranslational modification of M and X; and K6 character-
izes the allosteric modulation of the enzyme corresponding to
V1.

In the simulations and analysis presented here, we choose
cyclin as the target of the inhibitor. In this case, Eq. 2 is
substituted into Eq. 1, where U1 5 C, U2 5 M, and U3 5 X. The
scheme is represented schematically in Fig. 1. Although we
choose cyclin here, modulation of the CDC frequency can be
achieved by using an inhibitor of any of the CDC proteins. The
choice of cyclin as the target protein is simply the most obvious
one, because cyclin plays a prominent role in the CDC
oscillator.

Because of its large size and complexity, we do not show the
Novak–Tyson model of cell division here. In our simulations,
we use the model and parameter values as presented in ref. 8,
and, as above, we substitute the model equations into Eq. 1. In

this case, we choose the cyclin-Cdc2 complex (the M-phase and
S-phase promoting factor) as the target of the inhibitor.

We simulate both the Goldbeter and Novak–Tyson models
by using an adaptive time-step Runga-Kutta integration al-
goritm implemented in FORTRAN 77 and a fixed time-step
Runga-Kutta integrator implemented in XPP-AUT (ftp:yy
ftp.math.pitt.eduypubybardwareytutystart.html) numerical
analysis software. Parameters in all simulations are normalized
such that concentrations are dimensionless and rate constants
have dimensions min21. Below, we describe our results con-
cerning (i) the reduction of CDC frequency, (ii) the effects of
inhibitor strength, (iii) the increase of CDC frequency, and (iv)
the effects of cell cycle checkpoints.

Reducing the Frequency of Oscillations

We find that when the binding of the cyclin inhibitor is rapid
relative to the frequency of CDC oscillations, the frequency of
oscillations is decreased (curve a, Fig. 2A). In this case, the
inhibitor plays a role akin to a capacitor in an electric circuit.
The inhibitor acts as a large reservoir for cyclin that is filled and
emptied during the oscillations. The additional time needed to
fill and empty the reservoir slows down the oscillations. As
cyclin is constitutively synthesized and its concentration begins
to rise, the inhibitor binds to it, and the rise in the concen-
tration of free cyclin is slowed. Thus, cyclin is delayed in
reaching the threshold for activating Cdc2 kinase. Conversely,

FIG. 1. Control of the Goldbeter model with a cyclin inhibitor. The
Goldbeter model is outlined by the dashed box. Solid arrows indicate
protein synthesis or enzymatic conversion. Dotted arrows denote
modulation. Dashed arrows denote degradation.

FIG. 2. Simulation results for frequency modulation of the Gold-
beter CDC model. Frequencies are normalized to the natural fre-
quency ( fn) of the CDC oscillator, i.e., the frequency when no inhibitor
is present ( fn 5 0.0518 min21). The rate of inhibitor binding is
quantified as the sum of the inhibitor rate constants, a1 and a2. The
dissociation constant for the inhibitor is Kd 5 a2ya1 5 1.0. Parameter
values for the Goldbeter model are: vi 5 0.1 min21, k1 5 0.5 min21,
kd 5 0.02 min21, K1 5 K2 5 0.06, K3 5 K4 5 0.1, K5 5 0.02, K6 5 0.3,
V19 5 0.75 min21, V2 5 0.25 min21, V39 5 0.3 min21, V4 5 0.1 min21,
d1 5 0.05 min21, a 5 0.1. (A) Effect of vs, the rate of inhibitor
synthesis, on CDC frequency for two inhibitor binding rates: (a1 1 a2)
5 1.4 min21 (curve a) and (a1 1 a2) 5 0.06 min21 (curve b). (B)
Contour plot showing the effects of v

s and the inhibitor binding rate
on the CDC frequency. Oscillations at the natural frequency ( fn) are
marked by the thick black contour line. Above the fn contour, the
frequency of oscillations is reduced; below the contour, the frequency
is increased.
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when cyclin is degraded because of elevated levels of cyclin
protease, the release of cyclin from the inhibitor-cyclin com-
plex hinders the fall in cyclin concentration.

A theory for a similar effect involving a rapidly binding
inhibitor in a simplified model of the citric acid cycle has been
described by Selkov (10, 11) and Zhabotinsky (12). The model
consists of only two proteins with concentrations s and r and
is described by:

~1 1 Ka!ṡ 5 f1~s, r! 1 2~«!

ṙ 5 f2~s, r!. [3]

In the above equation, the only contributions of the inhibitor
are the order epsilon terms and the scaling factor (1 1 Ka),
where Ka is the association constant of the inhibitor. Because
the order epsilon terms can be neglected, one can see that for
any value of Ka.0 the rate of change of s is reduced without
affecting the dynamics of r. Hence, the frequency of oscilla-
tions can be reduced simply by increasing the strength of
inhibition.

From this analysis, it appears that the frequency of oscilla-
tions can be monotonically reduced to arbitrarily small values
simply by increasing Ka. As discussed below, this effect does not
occur. The inhibitor has a maximum effect on the frequency
of oscillations at an intermediate value of Ka. At Ka 5 0 and
Ka 5 `, the reduction in frequency is minimized. This effect
becomes apparent only when the finite concentration of the
inhibitor is included in the model. Because, in the theory
described by Selkov (10), the quantity of inhibitor is uncon-
strained, this effect does not arise.

Effect of Inhibitor Strength

We find that the maximum reduction in frequency caused by
cyclin inhibition occurs at an intermediate value of Kd (the
dissociation constant of the inhibitor), as shown in Fig. 3 B and
C. This effect is caused by the variation of inhibitor strength
with Kd. Because the inhibitor binds cyclin rapidly, we can
characterize its strength by using the equilibrium concept of
buffering power (BP). BP quantifies the ability of the inhibitor
to respond to changes in the concentration of free cyclin by
binding or releasing it. We define BP as BP 5 dCtotydC, where
C is the concentration of free cyclin at equilibrium and Ctot is
the total concentration of cyclin (Ctot 5 C 1 Z). Substituting
Y 5 Ytot 2 Z into the equilibrium relation for inhibitor-cyclin
binding, Kd 5 C YyZ, we obtain:

BP 5
dCtot

dC
5 1 1

KdYtot

~C 1 Kd!
2 , [4]

where Ytot is the total concentration of inhibitor. As shown in
Fig. 3A, BP rises to a peak at intermediate values of Kd. Hence,
the maximum reduction in the frequency of oscillations will
occur at intermediate values of Kd (Fig. 3 B and C).

One also can see from Eq. 4 that BP rises linearly with Ytot.
In our control scheme, Ytot is not constant, but its mean value
is governed by vs, the rate of synthesis of the cyclin inhibitor
(Eq. 1). Hence the strength of the frequency modulation will
increase as the rate of inhibitor synthesis is increased. Ulti-
mately, the CDC is overwhelmed by the large concentration of
inhibitor, oscillations are suppressed, and the system is forced
into a stable equilibrium (Fig. 2B). Therefore, the magnitude
of the frequency reduction can be altered by manipulating vs
and Kd of the rapidly binding inhibitor, but the frequency
cannot be reduced to arbitrarily small values.

In the case of a slowly binding inhibitor, BP, an equilibrium
concept, cannot be used to explain the frequency versus Kd
relationship. But it is clear from Fig. 3 B and C that for large

Kd (very weak binding), the inhibitor becomes ineffective
regardless of whether it binds cyclin slowly or rapidly.

Increasing the Frequency of Cell Division

When the binding of the inhibitor to cyclin (or cyclin-Cdc2) is
slow, we find that the frequency of oscillations is increased
(curve b, Fig. 2 A). Although the effect is not intuitive, the
inhibitor increases the frequency by boosting the rise and fall
of cyclin concentration at appropriate points in the cell cycle.
The inhibitor again plays a role akin to a capacitor, storing
cyclin as the concentration rises and releasing cyclin as the
concentration falls. However, there is a delay in the binding
and release of cyclin because the binding is slow. Conse-
quently, the inhibitor continues to release cyclin after the free
cyclin concentration begins to rise. Conversely, it continues to
bind cyclin after the free cyclin concentration begins to fall.
This delay is manifested in the cell cycle as an increased phase
shift between the inhibitor-cyclin complex and the free cyclin
concentrations. As shown in Fig. 4B, the concentration of the
inhibitor-cyclin complex continues to fall—-and release cy-
clin—-after the free cyclin concentration has reached its
minimum. The subsequent rise in free cyclin is accelerated for
a length of time equal to the phase shift, i.e., until the
inhibitor-cyclin complex reaches its minimum concentration.
The free cyclin therefore rises more quickly to the threshold for

FIG. 3. Effects of the inhibitor dissociation constant, Kd 5 a2ya1,
on frequency modulation of cell division. (A) BP (as defined by Eq. 4)
vs. Kd showing that inhibitor strength is maximum at intermediate
values of Kd and is almost completely ineffective at low and high Kd
values. (B) Effect of Kd on the frequency of the Goldbeter oscillator
for rapidly and slowly binding inhibitors. The inhibitor binding rates
are (a1 1 a2) 5 3.0 min21 (rapid binding) and (a1 1 a2) 5 0.2 min21

(slow binding); and vs 5 0.1 min21 for both curves. Parameters for the
Goldbeter model are the same as in Fig. 2 except for K1 5 K2 5 0.02.
(C) Effect of Kd on the frequency of the Novak–Tyson oscillator for
rapidly and slowly binding inhibitors. The inhibitor parameters are: (a1
1 a2) 5 1.021 (rapid binding) and (a1 1 a2) 5 0.1 min21 (slow
binding); and Vs 5 0.08 min21 for both curves. Parameter values for
the model are given in ref. 8.
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activating the next phase of the cell cycle. On the other hand,
when the free cyclin reaches its peak concentration, the
inhibitor continues for a period of time to bind the free cyclin.
The fall in free cyclin concentration is aided by the inhibitor
and proceeds more rapidly toward the threshold for deacti-
vating the next phase of the cycle. As a result, the frequency
of oscillations is increased.

As shown by Goldbeter and Guilmot (13), the existence of
at least one hard threshold is necessary to ensure robust
oscillations of the CDC. Similarly, we find that frequency
increases are more pronounced when hard thresholds exist in
the activation of CDC proteins. The rise and fall of the free
cyclin concentration is accelerated for a finite period of time
after it achieves its minimum or maximum. After that period,
the inhibitor tends to slow the rise or fall of cyclin. However,
if cyclin activates the downstream CDC protein through a hard
threshold, then that protein is fully activated while the inhibitor
is still accelerating the cycle. Thus, the slowing effects of the
inhibitor are avoided and the cycle frequency is increased
substantially. Alternately, if the threshold is soft, the cyclin
activates the downstream protein more gradually. The down-
stream protein is not fully activated until the inhibitor has
begun to slow the system. Thus, the accelerating effects are
diminished and the increases in frequency will be less dramatic
than those for a hard threshold (Fig. 5).

Effect of Cell Cycle Checkpoints

Crucial to the viability of a dividing cell is the existence of cell
cycle checkpoints that slow down or stop the CDC oscillator in
response to internal and external factors, such as DNA repli-
cation, spindle formation, and cell mass. We find that these
checkpoints can significantly alter the effects of our control
scheme when they are active.

To explore the effects of checkpoints, we use the Novak–
Tyson model because it includes a mass-control checkpoint on
the G1yS and the G2yM phase transitions. These checkpoints
can be switched on or off in the model. Fig. 6 shows the effects
of the cyclin-Cdc2 inhibitor on the Novak–Tyson model when
the checkpoints are inactive. Although this model is far more
complex than the Goldbeter model, containing 13 equations
(versus three for the Goldbeter model), the qualitative effects
of the cyclin-Cdc2 inhibitor are similar to the effects of the
cyclin inhibitor on the Goldbeter model (Fig. 2B). That is, the
rate of inhibitor binding primarily determines whether the
frequency of oscillations is increased or decreased, whereas the
rate of synthesis of inhibitor primarily determines the magni-
tude of the effect up to the point where the oscillations are
entirely suppressed.

Although there are two mass-control checkpoints in the
Novak–Tyson model, we examine only the effects of the G1yS
checkpoint. When this checkpoint is active, the mass of the cell
is regulated by the Rum1 protein that binds to and degrades
cyclin-Cdc2. High concentrations of Rum1 prevent cell divi-
sion because cyclin-Cdc2 is rapidly degraded. Cell division
proceeds only when the concentration of Rum1 is lowered by

FIG. 5. Effect of the Cdc2 activation threshold on the frequency
increase in the Goldbeter model. Threshold strength is altered by
varying the parameters K1 and K2. Parameter values are: K1 5 K2 5
0.02 (curve a), K1 5 K2 5 0.1 (curve b), and K1 5 K2 5 0.5 (curve c).
All other model parameters are the same as in Fig. 2.

FIG. 6. Simulation results for frequency modulation of the Novak–
Tyson model with checkpoints inactive. Contour plot shows the effects
of vs and the inhibitor binding rate on the CDC frequency. Parameter
values for the model are given in ref. 8. The dissociation constant for
the inhibitor is Kd 5 0.1. Oscillations at the natural frequency ( fn) are
marked by the thick black contour line ( fn 5 0.0118 min21). Above the
fn contour, the frequency of oscillations is reduced; below the contour,
the frequency is increased.

FIG. 4. Effect of inhibitor binding rate on the frequency of the
Goldbeter oscillator and on the phase shift between the inhibitor-
cyclin complex and free cyclin concentrations. Model parameters are
the same as given in Fig. 2 except for K1 5 K2 5 0.1. For the dashed
curves, vs 5 0. (A) The rate of inhibitor binding is rapid, the phase shift
is nearly nonexistent, and the oscillations are slowed. Parameter values
for the inhibitor are: vs 5 0.2 min21, Kd 5 1.0, and (a1 1 a2) 5 1.0
min21. (B) The rate of inhibitor binding is slow, the phase shift is large,
and the frequency of oscillations is increased. Parameter values for the
inhibitor are: vs 5 0.2 min21, Kd 5 1.0, and (a1 1 a2) 5 0.1 min21.
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increasing its rate of degradation. Rum1 degradation is ele-
vated by two factors: (i) increases in cell mass and (ii)
cyclin-Cdc2 through positive feedback. Thus, Rum1 and cy-
clin-Cdc2 act as antagonistic proteins, each enhancing the
degradation of the other, whose interactions are modulated by
cell mass. If the mean mass of the cell is too low, Rum1
overcomes cyclin-Cdc2, the period of oscillations is extended,
and the mean cell mass increases until a stable period of
oscillations is achieved. Under these conditions (Fig. 7A), the
frequency of cell division is strictly controlled by the rate of cell
growth (the period of cell division must equal the mass
doubling time), and the mean cell mass is regulated by the level
of expression of the Rum1 protein. A high level of Rum1
expression raises the mean cell mass, whereas a low level of
expression reduces mean cell mass.

When we introduce a reversible cyclin-Cdc2 inhibitor into
the Novak–Tyson model with G1yS mass-control active, we
observed two different effects: the cell cycle exhibits period
doubling or the mean cell mass is reduced. The period doubling
occurs for low levels of expression of a slowly binding cyclin-
Cdc2 inhibitor (Fig. 7B). For higher levels of inhibitor expres-
sion, the mean mass of the cell is significantly reduced for both
slowly (Fig. 7C) and rapidly (not shown) binding cyclin-Cdc2
inhibitors.

In the period-doubling case (Fig. 7B), the slowly binding
cyclin-Cdc2 inhibitor has the effect of speeding up the cell
cycle by boosting the rise and fall of cyclin-Cdc2 as explained
above. However, the resulting decrease in cell division period
causes the mean cell mass to fall and the Rum1 concentration
to rise. Thus, oscillations are delayed until the cell mass
increases sufficiently to reduce Rum1 concentration. Then the
cyclin-Cdc2 inhibitor once again forces the cell to divide
rapidly and the cell mass drops.

When we increase the level expression of the slowly binding
cyclin-Cdc2 inhibitor, its concentration is boosted sufficiently
to reduce the rise in Rum1 concentration that occurs at low cell
mass. Thus, cell division proceeds at a lower cell mass (Fig.
7C). Yet the frequency of oscillations cannot be increased
because the presence of Rum1 ensures that cell division is
entrained to the mass doubling time. On the other hand, a
rapidly binding cyclin-Cdc2 inhibitor also causes a reduction of
the mean cell mass because it acts as a biochemical buffer of
free cyclin-Cdc2. The inhibitor helps to maintain a higher level
of free cyclin-Cdc2 by releasing it from the bound form. The
rise in Rum1 concentration is counteracted by the increased
cyclin-Cdc2 concentrations and cell division proceeds at a
lower mean cell mass.

Discussion

In this study, we show that the expression of a single protein
(an inhibitor of cyclin or a cyclin complex) is a possible
mechanism for precisely controlling a variety of features of the
CDC. The nature of the effect depends, in part, on the
characteristics of the inhibitor (i.e., the level of expression, the
binding constant, and the rate of binding) and, in part, on the
dynamics of the CDC.

In the simplest case (the Goldbeter model), the effects of the
inhibitor are the most straightforward. The inhibitor can
increase or decrease the frequency of cell division or stop
division completely. The nature of the effect is determined
primarily by the rate of binding of the inhibitor, i.e., a rapidly
binding inhibitor decreases the frequency of oscillations and a
slowly binding inhibitor increases the frequency of oscillations.
In the more complex system (the Novak–Tyson model), the
effect of the inhibitor is similar to that in the Goldbeter model
if no regulatory checkpoints are active. Alternatively, if a
mass-control checkpoint is active, the inhibitor controls the
mean cell mass, but it does not affect the frequency of cell
division.

To clarify these results and to draw the most general
conclusions, we distinguish between local and global effects of
the inhibitor. Local effects are alterations to the dynamics of
the protein that is directly inhibited, i.e., cyclin or cyclin-Cdc2.
Global effects are alterations to the dynamics of the complete
cycle. This distinction is somewhat artificial because the local
and global dynamics are coupled. However, it is useful because
the local effects are the most consistent in the two models and
under various cell cycle conditions, whereas the global effects
tend to be more variable.

The local effects can be summarized as follows. A rapidly
binding inhibitor buffers a target protein, slowing down its rise
and fall during the cycle. On the other hand, a slowly binding
inhibitor will introduce a delay in the response of the binding
reaction such that the initial part of the rising and falling
phases of the inhibited protein are accelerated. The magnitude
of either effect is determined by the level of expression of the
inhibitor and the equilibrium constant.

The global response of the cell to local alterations in the
dynamics depends on the specific dynamics of the cell cycle. In
this study, we investigate two principal cell cycle configurations
with different dynamics. In both configurations, cyclin or a
cyclin-complex is the target of the inhibitor. In the first
situation, cycle checkpoints are inactive and the cyclin activates

FIG. 7. Effect of inhibitor on Novak–Tyson model when G1yS mass
control checkpoint is active. (A) Stable oscillations when inhibitor is
not expressed. (B) Stable period-2 oscillations when a slowly binding
inhibitor is expressed at a low level (vs 5 0.055 min21). (C) Stable
oscillations when a slowly binding inhibitor is expressed at a high level
(vs 5 0.1 min21). Mean cell mass is reduced.
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the downstream CDC protein through a hard threshold. In this
case, a slowly binding inhibitor increases the frequency of
oscillations and a rapidly binding inhibitor decreases the
frequency of oscillations. If the threshold is soft, the ability of
the inhibitor to increase frequency is diminished.

In the second situation, the mass control checkpoint is
active. In this case, a low level of expression of a slowly binding
inhibitor produces period doubling. A high level of expression
of the inhibitor, or alternatively, expression of a rapidly binding
inhibitor, results in a decrease in the mean cell mass.

To achieve successful control of the cell cycle experimen-
tally, it is necessary to tune the characteristics of the inhibitor
to the specific dynamics of the cell. Because of the simplicity
of the control scheme, dynamic control of the inhibitor char-
acteristics is plausible. First, the level of expression of the
inhibitor can be controlled dynamically with a suitably de-
signed promoter. Second, the binding constant and binding
rate can be controlled by expressing two or more mutant forms
of the inhibitor with differing characteristics. Such mutants can
be designed by using current genetic manipulation techniques.
Then, by varying the relative level of expression of the various
mutant forms, the effective binding constant and binding rate
can be altered dynamically. Another approach is to use one or
more chemical inhibitors of one of the cell cycle proteins to
directly modulate the cell cycle. Recently, Gray et al. (14) have
used combinatorial chemistry to design compounds that bind
and inhibit cyclin-dependent kinases.

Although we describe the cyclin inhibitor as a mechanism for
achieving artificial control of the cell cycle, there is recent
evidence that such a mechanism exists naturally in the cell. It
has been shown that proteins of the p16 and p21 families, when
overexpressed, slow or arrest the CDC by binding to and
inhibiting cyclins and cyclin-dependent kinases (9, 15–19). This
evidence suggests that these cyclinycdk inhibitors act as

switches to start and stop cell division. They also may act to
tune the cell cycle dynamics when expressed at low levels.

This work was supported by the National Science Foundation and
the College of Engineering at Boston University.
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