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Abstract
The mature nephron forms from a simple epithelial vesicle into an elaborate structure with distinct
regions of specialized physiological function. The molecular components driving the process of
nephron development are not well understood. To identify genes that may be informative in this
process we conducted a transcriptional profiling screen using Wnt4 mutant kidneys. In Wnt4 −/−
homozygous mice, condensates and pretubular aggregates are induced, however, epithelial renal
vesicles fail to form and subsequent tubulogenesis is blocked. A transcriptional profile comparison
between wildtype and Wnt4−/− mutant kidneys at E14.5 was performed using Affymetrix
oligonucleotide microarrays to identify nephron-expressed genes. This approach identified 236 genes
with expression levels >1.8 fold higher in wildtype versus mutant kidneys, amongst these were a
number of known nephron component markers confirming the validity of the screen. These results
were further detailed by wholemount in situ hybridization (WISH) of E15.5 urogenital systems
(UGS). We annotated the spatial expression pattern of these genes into eight categories of expression.
Genes expressed in renal vesicle and their derivatives, structures absent in the mutant, accounted for
the largest number of the observed expression patterns. A number of additional genes in areas not
directly overlapping the Wnt4 expression domain were also identified including the cap mesenchyme,
the collecting duct, and the cortical interstitium. This study provides a useful compendium of
molecular markers for the study of nephrogenesis.
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1. Results and Discussion
1.1 Screen for genes in nephron formation

The formation of nephrons in the mammalian kidney utilizes several key developmental
mechanisms including reciprocal induction of target cells by secreted factors, mesenchymal-
to-epithelial cell transitions, morphogenesis of epithelial tubules, and patterning of these
tubules (Bates, 2007; Costantini, 2006; Dressler, 2006; Yu et al., 2004). The process of nephron
formation begins with the outgrowth of the ureteric bud from the Wolffian duct. The ureteric
bud invades the adjacent metanephric mesenchyme, initiating a reciprocal inductive interaction
that causes the ureteric bud to branch and the responding mesenchyme to condense around the
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branch tips, forming the cap mesenchyme. The interaction of these two initial tissues begins a
cascade of nephron development that repeats to form each nephron. The ureteric bud forms
the collecting duct system of the kidney, while the epithelial nephron arises from progenitors
within the cap mesenchyme. In this latter process, a subset of the cap mesenchyme coalesces
to form the pretubular aggregate beneath the tips of the ureteric epithelium. The cells of the
aggregate then undergo a mesenchymal-to-epithelial transition (MET) to form the renal vesicle
(RV), the precursor of the nephron. From this point, the RV undergoes an extensive
morphogenesis, elongating to form first the comma-body, then the S-shaped body (SB) before
maturing into the complex nephron responsible for renal function. Patterning of these
intermediate structures establishes the various physiological domains of the mature nephron
critical for proper function.

Studies of several signaling pathways, as well as transcription factors, have revealed genes
involved in the patterning the nephron including Fgf8 (Grieshammer et al., 2005), Pou3f3
(Nakai et al., 2003),Sprouty (Basson et al., 2005; Basson et al., 2006), Notch/presenillins
(Cheng et al., 2007; Cheng et al., 2003; McCright et al., 2002), and Lhx1 (Kobayashi et al.,
2005). In particular, genetic studies have shown several members of the Wnt family of lipid-
modified secreted glycoproteins have important roles in the initiation and maintenance of
nephron formation and branching morphogenesis (Carroll et al., 2005; Kispert et al., 1998;
Majumdar et al., 2003; Stark et al., 1994). One of these, Wnt4, has an essential role in the
transition of the pretubular aggregate to a renal vesicle through the canonical β-catenin
dependant Wnt signaling pathway (Park et al., 2007; Stark et al., 1994). In Wnt4 null mutants,
the mesenchyme undergoes an inductive interaction initiated by the ureteric bud; however, the
inductive process is not maintained. Consequently, renal vesicles and their derivative nephrons
are absent in Wnt4 mutants. The absence of renal vesicles and more mature nephron derivatives
provides the basis for a broad screen for molecular components of nephron development.

We have used microarray profiling of Wnt4 mutant kidneys to identify genes expressed during
nephron morphogenesis. Wholemount in situ hybridization (WISH) was performed to examine
expression of differentially expressed genes, and their spatial expression patterns were
annotated using an anatomical ontology (Little et al., 2007). This screen efficiently identified
genes expressed in the developing nephron structures generating a large set of new markers
for functional studies.

1.2 Transcriptional profiling of Wnt4 mutant kidneys
Wnt4 plays an essential role in the formation of epithelial renal vesicles from pretubular
aggregates. Consequently, Wnt4 mutant kidneys lack nephrons while retaining mesenchymal
and ureteric epithelial structures. To identify genes expressed in the developing nephron, we
performed transcriptional profiling of E14.5 Wnt4 mutant kidneys. This time point was selected
because most mature nephron components are present in the wildtype along with every
developmental stage of nephron formation (e.g. renal vesicle, S-shaped body). An exception,
the loop-of-Henle (LOH), does not progress beyond the anlage stage until after E16.5 (Cebrián
et al., 2004; Kim et al., 2002). By comparing wildtype to Wnt4 mutant, we sought to identify
genes expressed in the nephron structures that were present in the wildtype, but absent in
Wnt4 mutant kidneys. This experimental design was used to identify a large number of genes
with expression patterns limited to the developing nephron. While direct gene targets of the
Wnt4 signaling pathway may be included in the results, an earlier time point for the comparison
when the molecular phenotype first emerges (e.g. E12.5) would be better suited for such a goal.
Here, we are focused on identifying a broad collection of nephron genes, including those from
later nephron structures that would not be under direct control of Wnt4 signaling.

We also note that our design focuses on genes expressed at higher levels in the wildtype versus
the Wnt4 null mutants (i.e. expressed in the structures missing in the mutants). A cursory
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examination of genes enriched in the Wnt4 mutant vs. the wildtype shows an abundant
representation of genes expressed in the ureter. This is not surprising given the normal size of
the ureter compared to the mutant mesenchymal tissue (FIG. 1b.). While the intention here is
to present nephron enriched genes, the array data is available publicly available for other useful
comparisons.

Initially, we used Affymetrix MG-U74Av2 oligonucleotide arrays to profile expression from
E14.5 wildtype and Wnt4 mutant whole kidneys (FIG. 1b). One pair of wildtype kidneys was
sufficient to produce 5ug of total RNA, the amount needed to meet the requirements for a single
round amplification. However due to the small size of the Wnt4 mutant kidneys, 8–10 Wnt4
mutant kidneys were pooled to isolate requisite RNA. As a result, each wildtype biological
replicate represents two kidneys from a single E14.5 embryo, whereas each Wnt4 mutant
replicate represents 8–10 pooled kidneys from 4–5 mutant embryos. We consider these
“minimally pooled biological replicates”. Four wildtype biological replicates and three Wnt4
mutant biological replicate samples were amplified, labeled and hybridized to test arrays to
assay target quality. One of the labeled mutant samples (i.e. labeled targets) that failed to meet
minimal criteria was rejected. The remaining two labeled Wnt4 mutant samples and all four
labeled wildtype samples were hybridized to MG-U74Av2 arrays. All raw data and scan reports
were submitted and are available from the Gene Expression Omnibus (GEO) at the National
Center for Biotechnology Information (NCBI) as GEO Series GSE6288.

The Affymetrix output from the six hybridizations was imported into the Rosetta Resolver
Analysis software (Version 4) for analysis. We evaluated the quality of the profiles by first
examining Absent/Present calls in the wildtype samples for a number of genes well studied in
the kidney. Wnt4, Pax2, Pax8, Lhx1, Cadherins 1, 2, 6, 11, and GDNF all met the criteria for
Present calls (p-value <0.01) as expected. Some genes failed to meet the statistical cutoff
though they are expressed in E14.5 kidney. These included Fgf8 (Grieshammer et al., 2005),
ret (Pachnis et al., 1993; Schuchardt et al., 1994), Pou3f3 (Nakai et al., 2003), Wnt7b (Kispert
et al., 1996; Patterson et al., 2001), Ihh (Valentini et al., 1997), and Shh (Yu et al., 2002).
Overall, the wildtype profiles had 6824 Present calls (54.9%) and the Wnt4 mutant profiles had
6628 Present calls (53.4%). These percentages are consistent with our experience, and that of
others for baseline comparisons.

The Wnt4 mutant profile was compared to the wildtype control using Resolver with a p-value
cutoff of <0.001 as a starting point. The MvA plot (i.e. ratio vs. mean) of this comparison is
shown in FIG. 2. Labeled targets failing the p-value cutoff were considered “unchanged” and
are shown in light grey. There were 11,049 targets unchanged in this comparison (88.9%).
Those targets statistically lower, or down-regulated, in wildtype vs. Wnt4 mutant kidneys are
below the centerline and colored green (597; 4.8%). This set of genes is not the focus of this
particular study. Targets statistically higher, or upregulated, in the wildtype vs. Wnt4 mutant
are shown in red and blue above the centerline (776; 6.2%). We ranked these statistical
differences by fold change focusing solely on those genes expressed at higher levels in the
wildtype (nephrons forming) than the Wnt4 mutant (nephrons absent). We selected a minimal
fold change cutoff at 1.8 fold higher in wildtype than Wnt4 mutant identifying 268 of the 776
significantly up-regulated gene transcripts (colored blue in FIG. 2). This list resolved to 236
unique genes once duplicates were removed. A partial list of these differentially expressed
genes is shown in Table 1 (full list in Supplemental data).

Table 1 shows the calculated fold change between the samples and the respective Absent/
Present (A/P) calls for each sample. Note here that A/P calls are calculated independent of a
statistical comparison between mutant and wildtype. Instead, these calls are calculated against
an empirically determined standard (Affymetrix). Therefore, it is possible to have an “Absent”
call in both samples (each sample compared to the empirical Absent) while still showing a
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significant difference between mutant and wildtype (e.g. Fgf8, Table 1) if the variance of each
is small enough to compare the samples to each other. Even with a low variance, low abundance
genes may suffer a higher rate of false positives (i.e. false difference calls) when comparing
profiles. One approach would be to filter out low abundance genes before validating by in situ
hybridization. In our study, we chose to do the entire set by in situ hybridization, and therefore
identifying false positives in the validation experiments. Other important general caveats of
microarray profiling experiments that may affect detection sensitivity include probe
performance, 3′ bias in labeled samples, and highly restricted expression. A good example of
the latter in this study is Ret. Ret is expressed at high levels, but only in the ureteric tips.
Therefore, in the context of the whole kidney sample the Ret transcript appears to be of low
abundance in our assay.

Genes known from prior work in the field to be expressed in structures absent in Wnt4 mutants
are noted in bold print. Noticeably, Wnt4 shows the highest fold change in comparing these
samples. Fgf8 is reduced in Wnt4 mutants and Lhx1 requires Wnt4 for normal expression
(Kobayashi et al., 2005). Both of these markers are significantly higher in the wildtype versus
the Wnt4 mutant as expected. The number of expected differences appearing in the list
strengthened our view that this screen effectively identified genes expressed in renal structures
missing from Wnt4 mutants.

1.3 In situ hybridization of embryonic urogenital systems
We next sought to examine the spatial expression and validate the profiling result of each of
these genes using WISH analysis. Of the 236 genes from the profiling analysis, we were able
to generate riboprobes for 217 using the various clone sources available to us including a
BMAP-UG library, RIKEN DNAbook (Kawai and Hayashizaki, 2003), and RT-PCR from
kidney cDNA. All in situ data generated as well as details on each probe was submitted to the
GUDMAP database (www.gudmap.org).

We performed WISH on E15.5 whole urogenital systems (UGS) to assess the spatial
distribution of the genes identified by the profiling comparison. The E15.5 time point was used
after a pilot study comparing the WISH data from 70 probes done on both E14.5 and E15.5
UGS samples. We found the increased number of developing nephron structures in the E15.5
samples aided our ability to annotate the expression and the photography. In this comparison
set, we did not find any differences in the expression patterns other than the number of structures
labeled. Therefore, the E15.5 time point is appropriate for this type of screen, i.e. to identify a
collection of genes in the nephron. Using the annotation guidelines and the anatomical ontology
established by GUDMAP, we annotated the expression of all 217 genes by in situ hybridization
using nine expression categories summarized in Table 2 (Little et al., 2007).

We found the largest class of expression to be localized to epithelial nephron tubules, covered
by two categories. The early tubule refers to the developmental nephron encompassing the
renal vesicle and S-shaped body. The “Late Tubule” class refers to maturing nephron structures
such as the proximal and distal convoluted tubules, the LOH, and the glomerulus. The
developing nephrons are located in the cortex and have distinct patterns of expression – e.g.
Wnt4, Pax8, Lhx1 are developmental markers (Kobayashi et al., 2005; Little et al., 2007; Stark
et al., 1994). The maturing nephron structures are deeper within the kidney and markers here
include the proximal tubule specific gene (Slc34a1)(Madjdpour et al., 2004). This organization
permits us to annotate expression patterns using WISH accurately. Viewing with a stereoscope
aids this process. A reference set of WISH markers that were helpful in annotating samples
can be viewed at gudmap.org (Little et al., 2007).

FIG. 3 shows some examples from the “early” and “late” tubules classes. FIG. 3A shows early
tubule expressed genes. Notable are the well documented Wnt4, Pax8, and Lhx1 expression.

Valerius and McMahon Page 4

Gene Expr Patterns. Author manuscript; available in PMC 2009 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Dkk1 is of interest in the Wnt signaling pathway and shows two types of expression patterns.
The sharp spheres have spacing and depth suggesting expression restricted to a region of the
S-shaped body. This was confirmed on follow-up section in situ hybridization (SISH) analysis
(data not shown). In addition to the epithelial expression, Dkk1 is expressed in mesenchymal
cells in the interstitium. This presents in the wholemounts as a diffuse pattern intercalated
between the expressing SBs. In comparison, Dll1 is expressed in a near exact overlapping
domain in the SB but not in the interstitium. Note the similar spacing of the Dll1 expression
to the epithelial Dkk1 expression. This illustrates the level of detail WISH can provide for
cortical patterns that are often difficult to discern by SISH.

FIG. 3b. shows several genes expressed in the PCT. At E15.5, the glomerulus and PCT are the
most extensively developed component of the mature nephron tubule. Extensive, deeper,
epithelial expression is seen with these probes. Pdzk1 (Gisler et al., 2003), Slc34a1 (Madjdpour
et al., 2004), and Tcn2 are known to be expressed in the proximal convoluted tubule (studies
have shown Pdzk1 & Slc34a1 interact in yeast 2-hybrid screens) (Capuano et al., 2005)
confirming the spatial identification of this class of genes. Villin is also present in the brush
border of cells that make up the PCT. At this stage of kidney development, the proximal tubule
is expanding more extensively than the distal tubule. For genes expressed throughout a given
tubule segment, this difference can aid in the identification of proximal vs. distal tubules.
Kdap is expressed in the PST and has a sharp boundary with the LOH (Mori et al., 2003).

Another category of genes mapped to cell populations that were present in Wnt4 mutants (Fig.
4). These include know markers of cap mesenchyme such as Cited1 (Boyle et al., 2007), but
also FXYD6, a member of the FXYD-domain family of ion transport regulator genes that
regulate Na, K-ATPase activity. FXDY6 has been shown to play a role in this process in the
cochlea (Delprat et al., 2007). Its expression outside of later epithelial structures in the cap
mesenchyme is unexpected (Burrow et al., 1999).

We also identified several genes that are normally expressed in the epithelial collecting duct
(FIG 5a). These include the transmembrane heparan sulfate proteoglycan Sdc4. Interestingly
sulfated proteoglycans modulate epithelial branching morphogenesis in organ culture (Steer
et al., 2004). Also Tcf2, which has been previously associated with kidney disease (Coffinier
et al., 1999;Edghill et al., 2006). Of particular interest in this collection is Fhl1. Fhl1 is
expressed in regions of the CD and spans the connecting tubule and portions of the distal tubule
segment. Fig 5b also shows two examples of genes expressed in forming vasculature and
possibly neural derivatives (Schip1) (Goutebroze et al., 2000). Claudin5 has been reported in
renal vasculature (Reyes et al., 2002), whereas Schip1 has only been associated with neural
structures (Neurofibromatosis type 2 (NF2) protein). To date, the development of neural cell
populations is poorly understood in the developing kidney.

1.4 Annotation of expression patterns
We annotated the pattern of gene expression we observed using the anatomical ontology
recently published by the GUDMAP consortium (Little et al., 2007) at the level of detail
permitted by WISH (Table 2). This summarizes the percentage of all genes examined that were
scored as expressed in that structure. These data are not exclusive as many genes are expressed
in more than one cell population. Further, only positive expression patterns may be scored with
confidence, as false negatives due to probe problems are difficult to identify. Note that 19%
of the probes tested gave no signal. To gain confidence in our annotation approach, we
performed section in situ hybridization (SISH) on a set of representative genes to confirm
details of our observations of the WISH samples. FIG. 6 shows representatives from four of
the annotated classes; cap mesenchyme, early and late tubule, and collecting duct. It is
important to note the depth of the observed patterns in the WISH samples aids in determining
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early and late tubules expression differences (e.g. compare Pax8 and Slc34a1 in the upper
panels of FIG. 6.).

1.5 Profiling cell state
Our effort here was to expand the know repertoire of spatially significant genes within the
context of mammalian nephrogenesis through the use of microarray screens. Recently, there
have been genome-wide efforts to catalogue all genes in an organ to provide a framework for
understanding development and disease by in situ expression analysis (Gray et al., 2004; Lein
et al., 2007; McKee et al., 2005). The ultimate aim is to describe the spatial and temporal
expression pattern of all genes in an organ or tissue with ever increasing resolution. With the
introduction of microarray technologies, there have been several efforts to focus expression
studies on specific structures by creating expression profiles of those structures, then
secondarily generating spatial information by in situ approaches utilizing these. This strategy
can significantly increase the resolution of the screen. One approach has profiled small subsets
of cells generated through dissection (Mitchell et al., 2006), cell sorting (Takemoto et al.,
2006), or laser-capture microdissection (Potter et al., 2007). The resulting profile provides
more specific information about the cell “state” of the profiled population. As we demonstrate
here, a second approach that uses genetic mutants that have a very specific phenotype, allows
broad information to be collected on cell populations (Chen et al., 2006).

Together, the data from these types of studies provides both useful markers to improve our
molecular understanding of emerging cell types as well as more specific information on
individual genes whose function may be more critically linked to the developmental
mechanisms at play.

Our profiling screen effectively identified genes expressed during tubulogenesis with over 50%
of those assayed expressed in renal vesicles and/or later derivatives. In addition, all major
expression domains are represented suggesting many genes can be found in multiple domains.
Given the success of this initial screen, we performed a second more comprehensive screen
using Affymetrix MOE430v2 microarrays using the labeled target used in the initial
experiment. This identified 983 non-redundant genes with a greater than 1.8 fold expression
elevation in wildtype versus Wnt4 mutants (Supplementary Table 2). The molecular markers
in these screens will aid our dissection and understanding of mammalian nephrogenesis.

2. Experimental Procedures
Mouse strains

The Wnt4+/n mouse line has been described previously (Stark et al., 1994). Wildtype Swiss
Webster mice were obtained from Jackson Lab.

Gene Expression Profiling
E14.5 wildtype and Wnt4 n/+ whole kidneys were dissected and total RNA isolated with
RNAzol (Tel-Test, Friendswood, TX). Labeled aRNA was made using a single round of
amplification according to the manufacturers instructions (Affymetrix, Santa Clara, CA). Four
wildtype and three Wnt4 mutant samples were used. One mutant sample showed poor 5′ to 3″
ratios indicating degradation, and was therefore discarded. The remaining four wildtype and
two mutant samples were profiled on Affymetrix GeneChip® MG-U74Av2 arrays. The data
was analyzed using Rosetta Resolver software (Rosetta Biosoftware, Seattle, WA). A p-value
cutoff of 0.001 was used to identify significantly changed genes. This list was ranked by fold
change differences and a secondary cutoff of <1.8 fold difference was applied. Duplicate genes
were then removed leaving 236 unique genes meeting the two filtering criteria.
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In situ hybridization
E14.5 and E15.5 kidneys were fixed in 4% paraformaldehyde at 4°C overnight and dehydrated
in methanol. Following WISH, hybridized samples were developed in BM purple (Roche,
Indianapolis, IN), stored in 80% glycerol and photographed using a Nikon DXM1200 digital
camera. A full protocol from our laboratory is available on the GUDMAP website under
Protocols (http://www.gudmap.org/Research/Protocols/McMahon.html). Annotation of the
observed expression patterns was done in accordance with the anatomical ontology published
by the GUDMAP Consortium (www.gudmap.org). Validation and annotation results are based
on in situ data from E15.5 UGS samples. Note there is a normal variation of +/− 0.5 days in
the collection of these samples.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Wnt4 null mutant kidneys fail to undergo tubulogenesis
A) Schematic depicting the formation of nephrons from the precursor cap mesenchyme
population. In Wnt4 mutant kidneys condensation and pretubular aggregate formation initiate
normally, but the mesenchymal-to-epithelial transition (MET) fails to occur and tubule
development is blocked. B) Isolated wildtype and mutant kidneys from E14.5. The Wnt4
phenotype, an absence of nephrons, is readily evident by this time.
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FIG. 2. Microarray analysis to identify genetic markers of the developing nephron
Replicate samples of E14.5 wt & Wnt4 mutant kidneys were profiled on Affymetrix MG-
U74Av2 arrays. We focused on genes showing increased expression in the wildtype sample
(nephron tubules forming) versus Wnt4 mutant (no nephron tubules). Resolver data analysis
was performed using a p-value cutoff of <0.001 (both green and blue data points), and a minimal
fold-change of >1.80 fold higher in wildtype kidneys vs. Wnt4 mutant kidneys identifying 236
genes (blue data points only).
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FIG. 3. Genes expressed in E15.5 renal vesicle and its derivatives
A) Genes expressed in early-formed structures including the renal vesicle and S-shaped body.
Dkk1 and Dll1 have similar expression domains in the S-shaped body, but Dkk1 has an
additional interstitial domain of expression. B) Genes expressed in more mature nephron
structures, frequently the proximal convoluted tubules.
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FIG. 4. Examples of genes expressed in the cortical kidney mesenchyme
Several genes exhibited expression in the cap condensate, that include precursors to the
epithelial nephron (e.g. Fxyd6, Cited1, Mapk12. Pkig). Others showed punctate patterns of
expression in this domain (e.g. Slx1a7, Chst2, and Sdcbp).
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FIG. 5. Genes expressed in the collecting duct and other structures at E15.5
A) Though the collecting duct is present in the Wnt4 mutant, a group of genes expressed in the
duct was detected in the profile comparison. Pcbd and Tcf2 are typical of this class of genes
with expression limited to the collecting duct. Fhl1 is expressed in the collecting duct tip but
also continues through the connecting tubule into part of the distal convoluted tubule. B) Some
patterns of expression where unique, such as Cldn5, suggesting expression was limited to
subdomains of better understood patterns. Schip1 exhibits a somewhat unusual interstitial
pattern.
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FIG. 6. High-resolution analysis of representatives from four expression classes
Section in situ hybridization (SISH) was done on E15.5 kidneys with representatives from each
of the classes annotated in the wholemounts. Note that the “collecting duct” label includes
ureteric trunk and tip. The bottom panels are higher magnifications to illustrate detail. These
categories are not mutually exclusive as Fxyd6 and Sdc4 both have expression in additional
sub-domains.
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