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In recent years, the homogeneous catalysis by gold complexes received increasing attention.
Particularly, cyclizations of alkynes and allenes mediated by gold complexes have been widely
explored.1 Along this line, the Gevorgyan group has recently reported a gold-catalyzed
regiodivergent cycloisomerization of bromoallenyl ketones a into isomeric bromofurans b and
c (Scheme 1).2 According to the originally proposed mechanism, products b and c result from
different activation modes of the substrate by gold complexes.2 It was thought that more
oxophilic Au(III) catalyst3 coordinates to the carbonyl oxygen (d), which, via halirenium
intermediate e, produces the 3-bromofuran b, a product of 1,2-Br migration. Alternatively, the
more π-philic Au(I) catalyst coordinates to the distal double bond of the allene (f), leading to
the gold carbenoid intermediate g. Subsequent 1,2-hydride shift in the latter forms 2-
bromofuran c (Scheme 1).2 Great interest has been aroused by this important discovery, since
not only it opens an unprecedented access to different types of halofurans, but also represents
the very first example of reaction, in which employment of gold catalyst in different oxidation
states leads to different products.1a,c,4,5,6 A more detailed mechanistic investigation of
origins of the observed regioselectivity of this cycloisomerization, properties of the key
intermediates, as well as profiles of the overall catalytic cycles, may give better understanding
on the important transition metal-catalyzed chemistry of alkynes and allenes. This in turn, may
provide guide for future design of new catalytic transformations. Herein, we wish to report our
theoretical and experimental results on the mechanism of Au(III)- and Au(I)-catalyzed
cycloisomerization of bromoallenyl ketones, with the emphasis on the origins of the
regiochemistry of 1,2-migrations. Our study indicates that the 1,2- H migration could be
assisted by the ligand L of the Au(PR’3)L complex, thus, the regioselectivity of 1,2-migrations
can be controlled by ligands at Au-complexes.

Thus, DFT calculations to investigate the above mentioned cycloisomerization have been
performed.7,8 The computed energy surfaces for the AuCl3 and Au(PH3)Cl-catalyzed
cycloisomerizations of bromoallenyl ketone 1 are provided in Figure 1. Results of the Au(III)-
catalyzed reaction (I, Figure 1) indicate that the gold catalyst, upon coordination to the distal
double bond of the allene 1,9 instantly gives the cyclic intermediate 2 via a barrierless and
highly exergonic process with relative free energies of 32.6 and 33.6 kcal/mol, in the gas phase
and in toluene solution, respectively. Next, intermediate 2 undergoes more favorable 1,2-Br
migration via the transition state TS1 to generate the product complex 3 rather than 1,2-H shift
through TS2 to give 4. Thus, the computed free energy barriers difference of 14.3 kcal/mol for
the latter processes is in a good agreement with the experimentally observed nearly exclusive
1,2-Br migration.2 Although, the formation of the complex 3 from intermediate 2 is endergonic
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(Figure 1), the latter will be transformed into the product b irreversibly via a highly exergonic
(30.3 kcal/mol) ligand exchange process of 3 with another molecule of substrate, thus,
completing the catalytic cycle.10

Remarkably, it was found that the AuCl3-catalyzed cycloisomerization of 1 in wet toluene11
leads to the decreased ratio of 1,2-Br vs 1,2-H migration products. This implies that the H-shift
could be catalyzed by a trace amount of water present in the system, analogously to the recently
reported H2O-assisted formal 1,2-H shift in the Au+-catalyzed carbocyclization.8c This
hypothesis was unambiguously confirmed by the calculations and further by reactions
performed in the presence of D2O.10 Thus, DFT calculations revealed the H2O-assisted H-
shift from 2 to 4 is a stepwise H-abstraction/donation process with an activation free energy
of 17.8 kcal/mol in toluene, which is only about 1.4 kcal/mol higher than that for the 1,2-Br
migration.10

The energy surface for the reaction catalyzed by Au(I) (II, Figure 1) is quite different from
that for Au(III). Coordination of the less electrophilic Au(PH3)Cl to the distal double bond of
1 gives π-complex 5 with the free energy increased by 20.8 kcal/mol in toluene solution. The
latter, via the TS3 with 10.5 kcal/mol activation energy barrier, transforms into the zwitterionic
intermediate 6. From intermediate 6, the reaction may proceed through the direct 1,2-migration
steps to generate complexes 7 and 8. Calculations showed that the activation barrier for the
direct 1,2-H shift (TS5) is 30.1 kcal/mol, while that for the 1,2-Br migration (TS4) is only 14.6
kcal/mol, thus contradicting with the experimental results on the observed predominant 1,2-H
shift.2 However, the major 1,2-H migration pathway can reasonably be rationalized in terms
of the stepwise ligand-assisted H-shift process. Thus, as shown in II (Figure 1), 6 rotamerizes
to a relatively more stable intermediate 9. Geometries of 6 and 9, revealed the remarkably
prolonged Au-Cl distances, implying quite weak Au-Cl interactions. 12 Consequently, the
weakly coordinated chloride is now capable of hydrogen abstraction at C2 via TS6 with a
barrier of 6.3 kcal/mol only to give intermediate 10. Notably, the HCl moiety is associated with
the gold-substituted furan through Cl-H---C3 hydrogen bonding interaction.10 Gas phase
calculations showed that the formation of 10 is slightly exergonic, though a solvation by toluene
substantially destabilizes this intermediate. Protiodeauration of 10 at C3 via TS7 leads to the
product complex 8. The activation free energy of this step is 15.7 and 8.7 kcal/mol in the gas
phase and in toluene, respectively. Dissociation of 8 is quite favorable with an exergonicity of
26.3 kcal/mol in toluene. Thus, the overall barrier for the chloride-assisted H-migration process
from 9 to the complex 8 is 8.7 kcal/mol only.

Based on these results, we hypothesized that if no labile chloride ligand present in a Au(I)-
catalyzed cycloisomerization (e.g. using cationic Au(I) or AuCl complexes), reaction may
proceed via a predominant 1,2-Br migration. As predicted, our experiments indicated that
employment of AuCl or cationic catalysts, such as Au(PPh3)BF4 and Au(PPh3)SbF6, produced
the 1,2-Br migration product A as a major or sole isomer (Scheme 2).10 Unexpectedly, use of
Au(PPh3)OTf lead to exclusive formation of the 1,2-H shift product B, thus, exhibiting a
dramatic counterion effect on the regioselectivity of the reaction. The DFT calculations shed
light on this seeming controversy.8d,10 The computations revealed that in both Au(PR3)+ and
AuCl-catalyzed reactions, the 1,2-Br migration is more favorable with the activation barrier
about 13 kcal/mol. However, 1,2-H shift in Au(PR3)+-catalyzed reactions can be assisted by
the counterions. Thus, it was found that the OTf--assisted 1,2-H shift requires an activation
free energy of 9.6 kcal/mol only, whereas those for BF4

- and SbF6
- are much higher (20.2 and

29 kcal/mol, respectively), which is in a good agreement with the experiments.

In summary, the mechanism of Au-catalyzed cycloisomerization of bromoallenyl ketones has
been investigated through DFT computational and experimental studies. It was found that both
Au(I) and Au(III) catalysts13 activate distal double bond of the allene to produce cyclic
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zwitterionic intermediates, which undergo a kinetically favored 1,2-Br migration. However,
in the cases of Au(PR3)L (L = Cl, OTf) catalysts, the counterion-assisted H-shift is the major
process, indicating that the regioselectivity of the Au-catalyzed 1,2-H vs 1,2-Br migration is
ligand dependent. The present study may provide better understanding on the reactions of
allenes and alkynes activated by Au(I) and Au(III) complexes,14,15 different catalytic
performance of Au-complexes in different oxidation states, and particularly the ligand effect,
which has received limited attention only.1c,8d,16
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Figure 1.
Potential energy surfaces for AuCl3- and Au(PR’3)Cl-catalyzed cycloisomerizations (R =
CH3, R’= H).7
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Scheme 1.
Regiodivergent Au(III)- and Au(I)-catalyzed cycloisomerizations of bromoallenyl ketones.
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Scheme 2.
Experimental results of Au(I)-catalyzed reations.10
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