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A novel 4-class single-trial brain computer interface (BCI) based on two (rather than four or more) binary linear discriminant
analysis (LDA) classifiers is proposed, which is called a “parallel BCI.” Unlike other BCIs where mental tasks are executed and
classified in a serial way one after another, the parallel BCI uses properly designed parallel mental tasks that are executed on both
sides of the subject body simultaneously, which is the main novelty of the BCI paradigm used in our experiments. Each of the
two binary classifiers only classifies the mental tasks executed on one side of the subject body, and the results of the two binary
classifiers are combined to give the result of the 4-class BCI. Data was recorded in experiments with both real movement and motor
imagery in 3 able-bodied subjects. Artifacts were not detected or removed. Offline analysis has shown that, in some subjects, the
parallel BCI can generate a higher accuracy than a conventional 4-class BCI, although both of them have used the same feature
selection and classification algorithms.
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1. Introduction

Low communication speed is one of the main prob-
lems hampering the application of brain computer inter-
faces (BCIs) outside laboratories. Most of the current
electroencephalogram(EEG-) based BCI systems use various
mental tasks which are classified and translated into different
computer commands using various pattern classification
algorithms. An increased number of mental tasks or brain
patterns, if classified reliably, can potentially boost the
communication speed of the BCI systems. This is because
as the number of classes grows, the potential number of
class combinations grows exponentially. In recent years, there
have appeared some BCls employing multiclass classifiers
in their EEG pattern discrimination. Obermaier et al. [1]
used four motor-imagery and one mental-calculation tasks.
Their initial results showed that using three classes could
improve the information transfer rate. With motor-imagery
tasks consisting of four different classes, Naeem obtained
accuracies between 33 percent and 84 percent using inde-
pendent component analysis (ICA) [2]. Townsend compared
common spatial patterns (CSP) with complex band power

features in a four-class BCI involving motor imagery [3].
Widely used motor imagery mental tasks in 4-class BCIs [2—
4] involve the movements of left hand, right hand, feet, and
tongue. The tongue-related task is problematic in EEG-based
BCIs because it may produce electromyography (EMG)
which is difficult to monitor and could be treated as EEG by
the classifiers.

To realize its potential higher information transfer rate,
a multiclass BCI must have a considerably high accuracy.
Unfortunately, with the number of classes increased, the
accuracy of the BCls decreases because every additional EEG
pattern to be classified brings up more difficulty to the
classifier. Moreover, many classification algorithms, such as
linear discriminant analysis (LDA) [1] and support vector
machines (SVMs), are best suited for classifying binary
problems.

Although the classifiers play an important role in the
accuracy of BCI systems, neurophysiological background
knowledge of EEG signals, if properly exploited in the design
of mental tasks and experiment paradigms, will also help
improve the accuracy of a BCI system. It is well known that
each hemisphere of the brain is related to the opposite side
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of the body. For example, left-hand movement is represented
in the right motor cortex, and right hand movement in the
left motor cortex. Neighboring parts of the cortex represent
neighboring parts of the body. A principle used by many
BCIs in choosing mental tasks is that mental tasks should
activate different parts of the brain, thus generating easily
separable EEG patterns.

Having in mind the basic knowledge of neurophysiology
and the fact that binary classifiers greatly outperform multi-
classifiers, we propose a new approach to multiple mental/
motor task classification in BCI design, which we name
“Parallel BCI.” The novelty in our approach lies in that two
binary classifiers, called left BCI and right BCI, run in parallel
to classify the properly designed parallel mental tasks that
are executed simultaneously on the left side and right side
of the subject body. The mental tasks of the parallel BCI
only involve hand and feet movement. The results from
the left BCI and right BCI are combined leading to the
classification of four mental states. It is demonstrated that,
in some subjects, the parallel BCI achieves a higher accuracy
than the conventional 4-class BCI for classifying four mental
states.

2. Data Acquisition

We designed two parallel paradigms for our experiments.
One only involves hands movement (paradigm A), and
the other involves hand and feet movement (paradigm B).
Their corresponding labels are described in Table 1 and
Figure 1, respectively. The experiment consisted of 3 runs
with 40 trials each for each subject. In each trial, from
t = 3 seconds, an arrow pointing to left, right, up, or
down was displayed (see Figure 2). Subjects were instructed
to execute or imagine hand/foot movement at one or both
sides of the body, as indicated in Table 1. For example,
in the experiment of paradigm B (see Table I(b)), when
the cue of an up arrow is displayed, the subject should
imagine movements of both hands at the same time. When
a left arrow displayed, the subject should imagine a left-
hand movement and a right-foot movement at the same
time. For a right arrow, it means simultaneous right-
hand movement and left-foot movement. The down arrow
means simultaneous movements at both feet. Combining
the movements executed simultaneously at both sides of
the subject body, we can get the class labels of the 4-class
whole system (see Table 1). In paradigm A, these classes
(combinations) are both hands, left hand only, right hand
only, no movement at all (see Table I(a)). In paradigm B,
they are both hands, left hand and right foot, right hand and
left foot, both feet (see Table 1). No feedback was shown to
the subject in the experiments. It should be noted that, in
paradigm A, “no movement” (or relax) at left/right side of
the subject body is regarded as a mental task (EEG pattern)
in the left/right BCI. “Relax” has been used as an EEG
pattern in synchronous BCIs, though not quite commonly.
For example, Akrami et al. [5] employed baseline as a mental
task in a 3-class BCIL.

The electrode positions with respect to the international
10-20 systems are shown in Figure 3. The recording was
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made with a 16-channel EEG amplifier from G-Technology
(http://www.gtec.at/). The channels in the left hemisphere
were referenced to the left mastoid. The channels in the right
hemisphere were referenced to the right mastoid. The EEG
was sampled at 256 Hz.

3. Data Processing

The recorded EEG data was first filtered for 0.5-100 Hz,
and then preprocessed with common average reference and
band power feature extraction (with 16 bands covering 8-
45Hz, that is, 8-9Hz, 10-11Hz, 12-13Hz, 14-15Hz, 16-
17 Hz, 18-19Hz, 20-21 Hz, 22-23 Hz, 24-25Hz, 26-27 Hz,
28-30Hz, 31-33Hz, 34-36 Hz, 37-39 Hz, 40-42Hz, 43-
45Hz). The band power of each frequency band at each
channel is calculated by first digitally bandpass filtering the
data, squaring each sample and taking logarithm, and then
averaging over a one-second sliding window [6]. Averaging
the samples of band power over a one-second window is
a method widely used in EEG-based BCIs to smooth the
data and reduce the variability. Electrooculogram (EOG) and
other artifacts were not detected or removed. A subset of no
more than 20 features was selected using a sequential forward
floating selection (SFFS) [7] algorithm based on 3-fold
cross-validation. SFFS starts from an empty set and in each
iteration generates new subsets by adding a feature selected
by an evaluation measure (here, it is the LDA classifier)
[7]. It has been found that simple linear classifiers were just
marginally worse than complex nonlinear methods [8, 9]. It
was shown in the BCI Competition 2003 and 2005 that LDA
performed as well as (sometimes even outperforms) SVMs
[10], and almost all the winning classifiers were linear [11].
Hence, two binary LDA classifiers, one in left BCI and the
other in right BCI (see Figure 1), were used to classify the
two motor tasks of the left side and right side, respectively.
The binary LDA classifier assigns linear weights to the band
power features so as to provide a separating hyperplane
between the two classes in feature space. For details of the
LDA algorithm, please refer to [1]. The 4-class result of the
Parallel BCI was obtained according to the class label coding
indicated in Table 1 and Figure 1.

For a comparison, we also processed the data by regard-
ing the system as a conventional four-class BCI, which, for
convenience, is called “conventional BCI.” The 4 classes of the
conventional BCI in paradigm A are the four combinations
of the movements executed simultaneously on the left and
right sides of the subject body (i.e., both hands, left hand
only, right hand only, none movements at all) (see Figure 4).
Similarly, the 4 classes of the conventional BCI in paradigm
B are both hands, left hand and right foot, right hand and
left foot, both feet. The conventional BCI used the same
feature extraction and classification (LDA) methods. As LDA
is not directly appropriate for 4-class classification, we used
four one-versus-all binary LDA classifiers. Rifkin’s analysis
and review [12] has shown that, for multiclass problems,
the “one-versus-all” scheme can be as accurate as any other
approaches. In the conventional BCI, each LDA classifier
was trained to discriminate one of the four classes from the
remaining three. For each test sample, the four classifiers
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(a) Paradigm A

Left hand

movement

(b) Paradigm B

FIGURE 1: (a) The map between the two classes of the left/right BCI and the 4 classes of the whole system in paradigm A (also see Table I(a)).
The 4-class classification result of the total system is determined by the outputs of the left BCI and right BCI. For example, when and only
when both left BCI and right BCI have positive outputs, the class of the total system will be regarded as 4. (b) The map in paradigm B is
similar to that of paradigm A except that it involves foot movement.

TaBLE 1: The mental tasks and corresponding class labels of the binary left/right BCI and the 4-class whole system in paradigm A and B.
Note that the class label of left/right BCI corresponds to the movement of the left/right side of the body. For example, in paradigm A, positive
output (+) of the left BCI indicates the left-hand movement. The subject is instructed to execute or imagine the movements at both sides of
his body simultaneously. The left/right BCI only classifies the two kinds of movements of the left/right side at the subject body.

(a) Paradigm A

Class label Movement
Arow | e | Classlabel | SRR CERAT | ofright
BCI side BCI side
Left 1 4 Hand - None
Right 2 - None 4 Hand
Down 3 = None = None
Up 4 + Hand + Hand
(b) Paradigm B
Class label Movement
Arrow | e | Clsslabel | SERERC CERAT | ofright
BCI side BCI side
Left 1 + Hand - Foot
Right 2 - Foot A Hand
Down 3 = Foot = Foot
Up 4 + Hand + Hand
'Fixatoncross |
! I Arrow | '
Blank screen  |Warning
A
0 1 2 3 4 5 6 7 8
Beep  Trigger Time in seconds

F1Gure 2: Experimental paradigm begins with a blank screen. After 2 seconds, a fixation cross appears and an audio tone warns the subject
to prepare. At second three, an arrow appears on the screen, indicating the motor imagery the subject should perform (adapted from [1]).



Computational Intelligence and Neuroscience

TaBLE 2: Classification accuracies (mean and standard deviation) of the parallel BCI and conventional BCI with 3 subjects executing real

motor tasks (3-fold cross-validation).

Subject 1 (%) Subject 2 (%) Subject 3 (%)
Paradigm A Parallel BCI 80.2 £ 1.2 83.3 +£0.7 62.5+2.7
Conventional BCI 65.3 + 1.5 852+ 1.2 67.5+3.4
. Parallel BCI 82.5+24 833+ 1.5 58.2 + 1.6
Paradigm B =200 tional BCT 733+ 1.1 77.5+2.3 65.1+ 1.4

TasLE 3: Classification accuracies (mean and standard deviation) of the parallel BCI and conventional BCI with 3 subjects executing motor

imagery tasks (3-fold cross-validation).

F1GURE 3: The electrode positions of the parallel BCI.

were run each with the data. The classifier that generated
the largest positive value was chosen to give the result of the
conventional 4-class BCI [12].

4. Results

Each data set was obtained from an experiment (paradigm
A or B) of one subject, consisting of 3 sessions, each with
40 trials. It was processed using 3-fold cross validation. The
averaged accuracy got from the test data of the three folds of
each data set is shown in Tables 2 and 3. Subjects 1 and 2 are
male and right-hand dominant. They had experience in BCI
experiments. Subject 3 is female and left-hand dominant,
and had no experience of BCI experiments before. All
subjects were able-bodied. In some experiments of paradigm
A and paradigm B, the parallel BCI produced a higher
accuracy than that of the conventional BCI. Experiences and
training for the parallel BCI experiments in Subjects 1 and 2
have incurred better results than in Subject 3.

Subject 1 (%) Subject 2 (%) Subject 3 (%)
Paradigm A Parallel BCI 70.3 £ 2.3 75.8 + 1.4 58.3 +3.2
Conventional BCI 63.3 +1.9 63.3 +2.2 60.1 + 3.7
. Parallel BCI 75.2 £ 0.6 83.3 £0.7 60.3 1.2
Paradigm B 1750 0 tional BCT 733+ 15 852+ 1.8 55.8 + 2.6
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FIGURE 4: The map between the positive output of the 4 one-versus-
all LDA classifier and the 4 classes of the conventional BCI (also see
Table 1) in paradigm A. For example, LDA 3 is a binary classifier
discriminating class 3 against all remaining classes (1, 2, 4). If its
positive output is the largest among all the four binary classifiers,
the class of the conventional BCI will be regarded as 3.

5. Discussion

The novelty of the parallel BCI is in the design of the mental
tasks (i.e., the coded parallel mental tasks). Unlike other
BCIs where the mental tasks are executed and classified



Computational Intelligence and Neuroscience

one after another in a serial way, the mental tasks in the
parallel BCI are executed parallel at both sides of the subject
body. Moreover, the binary mental tasks at each side of the
subject body are separately classified by a binary classifier.
The potential separability of the EEG patterns caused by the
left and right limbs has been exploited to reduce a 4-class
BCI to two binary BCIs. For some subjects, this reduction has
brought the whole system, a 4-class BCI, an accuracy higher
than that of a conventional 4-class BCI which employed 4
one-versus-all binary classifiers.

The parallel BCI and the conventional BCI involved in
this paper have indeed used the same binary classification
algorithm (LDA), the same features (band power), and the
same feature selection algorithms (SFFS). The vital difference
between them is that the parallel BCI has exploited the
coding in the properly designed parallel mental tasks while
the conventional BCI has not. Therefore, the improved
performance of the parallel BCI for some subjects is due to
the coded mental tasks rather than the classifier or the feature
selection algorithm it used.

One drawback of the parallel BCI (especially in paradigm
B involving hand and foot movements) is that the subjects
need a few training sessions before they can get used to
the simultaneous parallel mental tasks at their left and
right hand/foot. Because this is the first time this kind of
simultaneously executed mental tasks were used in a BCI
study, the neurological difference between the topographic
patterns of parallel mental task and serial mental task is
not clear. Moreover, currently only simple band power
features were used for the classification. Common spatial
pattern (CSP) method has shown its efficacy in extracting
topographic pattern of brain rhythm modulations [13].
Phase synchronization reflects the cooperative interactions
between anatomically disparate neural populations [14].
These methods could be more appropriate for classifying the
parallel mental tasks, which will be investigated in the future
work.

Our current work considers only offline analysis of
synchronous BCI experiments. An offline scenario is more
suitable for comparing the schemes of the parallel BCI and
conventional BCI as it is more reliable and stable [10, 15].
However, the aim of our next work is online BCI. As shown in
other BClIs, with online feedback, the classification accuracy
can be increased even more.
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